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Abstract. A vibrational transportation model is proposed for single-piece and granular materials. 
In contrast to the well-known (“basic”) model, it allows obtaining simple general formulas for 
estimating the velocity of vibrational transportation in intensive tossing regimes. Such regimes are 
characteristic of a large number of existing and promising vibrational transportation-based process 
machines. This approach eliminates the need to design separate complex formulas for each of the 
many regimes predicted by the basic model. It has been shown that the resulting formulas are in 
good agreement with the experimental data, including those obtained in the work. In connection 
with the study, the topic of rational modeling of similar dynamic systems with complex behavior 
is discussed. 
Keywords: vibrational transportation, tossing regimes, engineering model, transportation 
velocity, theory, experiment, basic model, research technique, multiplicity of regimes, 
multistability. 

1. Introduction 

The most common existing model of the vibrational transportation process for solids and 
granular materials treats the material transported as a single body (a material point) moving 
without the air resistance. The interaction of the body with the vibrating surface is taken into 
account in the law of Coulomb (dry) friction and the stereomechanic impact theory [1-9]. For 
brevity, this will be referred to as the basic model. 

In a large number of vibrating machines, the particle motion regime implemented implies that 
the particles are systematically separated from the vibrating surface. Moreover, in the most 
common ranges of parameter variations, the basic model predicts the possibility of many different 
motion regimes, with their minor domains of existence and stability adjoining or overlapping in 
the parameter space. In the phase space, these regimes correspond to minor domains of attraction 
[1-10]. Under the above conditions, it apparently makes no sense to calculate the vibrational 
transportation velocities for each regime, especially since this does not correspond to the 
parameter setting accuracy. In such cases, it seems more appropriate to consider a simpler  
(“crude”) process model. In this model, the process is represented as a series of particle throws at 
a certain angle to the horizon, where the longitudinal displacement of the material is deemed to be 
caused by such throws. As a result, using certain additional assumptions, simple formulas may be 
obtained for estimating the vibrational transportation velocity, suitable in a wide working range 
of parameter variations. The calculation results for the formulas proposed are in good agreement 
with the experiments, both available in the literature and obtained in this work. 

In connection with the study, the general topic of rational modeling of similar systems with 
complex behavior (multiplicity of regimes, multistability) is discussed [11-14]. 

2. On the basic model of vibrational transportation 

The “basic” model mentioned above leads to the consideration of a substantially nonlinear or, 
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more precisely, “piecewise linear” system with a variable structure. In accordance with the model, 
the material point may be separated from the vibrating surface, may rest on the surface, or may be 
sliding in one direction or the other. The general case considered implies motion along a plane 
performing rectilinear translational harmonic oscillations with the amplitude of 𝐴 and frequency 
of 𝜔 at a certain angle of 𝛽 to the plane; and the plane may be tilted to the horizon at an angle of 𝛼 (see Fig. 1). 

 
Fig. 1. Oscillations of machine working surface 

The longitudinal and transverse projections of the oscillation velocity for the points of the 
plane are determined by the following formulas: 𝑢 = 𝐴𝜔cos𝛽cos𝜔𝑡,      𝑣 = 𝐴𝜔sin𝛽cos𝜔𝑡. (1)

If the transverse overload parameter: 

𝑤௩ = 𝐴𝜔ଶ𝑔 sin𝛽cos𝛼, (2)

is less than 1, then the particles are moving without detaching from the plane; and if the parameter 
is over 1, then the particles periodically separate from the surface. There are only several types of 
separation-free steady motion (regimes) [1-3]. For the detaching motion, however, such regimes 
are numerous (see, in particular, [1-10]), especially with the parameter values of 2.0 < 𝑤௩ < 6.5 
(see, for example, [3], p. 23, Fig. 6) that are characteristic of a large number of machines of this 
type. The conditions here are as described in the introduction (multiplicity of regimes, 
multistability). Obtaining vibrational transportation velocity formulas for each of the regimes 
seems pointless. It, therefore, seems adequate to apply a “crude” model of the process, avoiding 
the above-mentioned complexity. Such a model may only be valid in the above range of the most 
commonly used parameter values of 𝑤௩ and only with respect to the vibrational transportation 
velocity, being the integral characteristic of motion. In addition, there is reason to believe that the 
vibrational transportation velocity value is a smooth monotonous function of the system 
parameters. 

3. Process engineering model, vibrational transportation velocity 

The model proposed is extremely simple. It is assumed that the vibrational transportation 
process consists of a sequence of particle throws at an angle to the horizon and uses certain 
elements of the basic model. 

Let us first consider the case of a horizontal plane of 𝛼 = 0. It is also assumed that the recovery 
coefficient is 𝑅 = 0, that is, the impact is absolutely inelastic. We believe that the throw of a 
particle weighing 𝑚 occurs at an angle of 𝛽 to the horizon, starting at the point in time of 𝑡଴, when, 
similarly to the basic model, the normal reaction 𝑁 = 𝑚𝑔 −𝑚𝐴𝜔ଶsin𝛽sin𝜔𝑡  acting on the 
particle vanishes. In this case, the initial velocity is equal to the velocity of the plane at the moment 
of separation 𝑡 = 𝑡଴. At this point, the separation phase 𝛿଴ is described by: 

𝛿଴ = 𝜔𝑡଴ = arcsin ൬ 1𝑤௩൰, (3)
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and the following is valid for the projections of the initial velocity: 

𝑢଴ = 𝐴𝜔cos𝛽cos𝜔𝑡଴ = 𝐴𝜔ඨ1 − 1𝑤௩ଶ cos𝛽 ≈ 𝐴𝜔cos𝛽,
𝑣଴ = 𝐴𝜔sin𝛽cos𝜔𝑡଴ = 𝐴𝜔ඨ1 − 1𝑤௩ଶ sin𝛽 ≈ 𝐴𝜔sin𝛽.  (4)

Let us first consider a particle flight under the assumption that the plane is motionless (we will 
find out below that this assumption is true for the regimes of interest). The flight duration 𝑡∗ is 
determined using the elementary equality of 𝐴𝜔sin𝛽 = ଵଶ 𝑔𝑡∗ , and the corresponding phase  
angle is: 

𝜑∗ = 𝜔𝑡∗ = 2𝐴𝜔ଶ𝑔 sin𝛽 = 2𝑤௩. (5)

Let us assume that, in the regimes considered, the particle flight occurs only once per period 
of motion velocity variation 𝑇௣, and the particle longitudinal displacement occurs only during the 
flight. Then the average particle velocity, i.e. the vibrational transportation velocity, will be: 

𝑣௠ = 𝑢଴ ⋅ 𝑡∗𝑇௣ = 𝑡∗𝑝𝑇଴ 𝑢଴ = 2𝐴𝜔ଶsin𝛽2𝜋𝑝𝑔 𝑢଴ = 𝑤௩𝜋𝑝 𝑢଴ = 𝑤௩𝜋𝑝𝐴𝜔cos𝛽. (6)

Let us use 𝜑  and 𝛿଴  to denote the phase angles of the end and start of the flight; then  𝜑∗ = 𝜑 − 𝛿଴ . According to Eq. (5), at 𝑤௩ = 𝜋𝑝 , the particle flight continues for exactly 𝑝 
oscillation periods of the plane 𝑇଴ = 2𝜋/𝜔 and the particle contacts with the plane only when 𝜑 = 𝛿଴ + 2𝜋𝑝, that is, there are continuous tossing regimes. In such regimes, the plane occupies 
the same position at the moments of collision, and the longitudinal displacement of the particle 
occurs only during the flight. In other words, for such conditions, Eq. (6) is correct in the sense of 
the basic model. Let us also note that, in the range of values close to 𝑤௩ = 𝜋𝑝, the regimes under 
consideration are also observed in the basic model and the values of 𝜑∗ = 2𝑤௩ , according to 
Eq. (5), are close to those determined for the basic model by solving the transcendental equation 
for 𝜑 (see [1], p. 157, Eq. (11.4)). Therefore, when 𝑤௩ = 𝜋𝑝, Eq. (6) yields 𝑣௠ = 𝐴𝜔cos𝛽. It 
seems logical to assume that this expression will also be approximately true for the intermediate 
values of 𝑤௩ > 𝜋. 

When using this approximation, we assume that the physical value of vibrational transportation 
velocity monotonically depends on the parameters of 𝐴𝜔 and 𝑤௩ . As a result, we obtain the 
following formulas: 𝑣௠ = 𝑤௩𝜋 𝐴𝜔cos𝛽,        ሺ𝑤௩ ≤ 𝜋ሻ, (7)𝑣௠ = 𝐴𝜔cos𝛽,        ሺ𝑤௩ ≥ 𝜋ሻ. (8)

It is somewhat more difficult to obtain the corresponding formulas for 𝛼 ≠ 0 and 𝑅 ≠ 0. Let 
us take these without the conclusion based on the formula from the [3] (see Eq. (31), p. 28): 

𝑣௠ = 𝑤௩𝜋 𝐴𝜔cos𝛽 ൬1 − 𝑅1 + 𝑅 − 2 − 𝜆𝜆 tg𝛽tg𝛼൰ ,         ሺ𝑤௩ ≤ 𝜋ሻ, (9)𝑣௠ = 𝐴𝜔cos𝛽 ൬1 − 𝑅1 + 𝑅 − 2 − 𝜆𝜆 tg𝛽tg𝛼൰ ,         ሺ𝑤௩ ≥ 𝜋ሻ, (10)
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where |𝛼| < 𝜌 = arctg𝑓; 𝑓 and 𝜌 are the coefficient and angle of sliding friction, respectively; 
and 𝜆 is the coefficient of instant friction. 

4. Comparison with experimental data 

The experimental determination of vibrational transportation velocities of individual bodies 
and granular materials is covered in a number of works, reviewed in the Handbook [3]. Among 
the recent works on the subject, let us particularly note [15, 16]. There are also data covering 
material displacement velocities on vibrating screens [17] (see also [15]). The calculation results 
for Eq. (7-10) demonstrate good agreement with the data listed. The coincidence of Eq. (10) with 
the empirical formula of L.P. Levin [18] is notable, presented in our work in the form of  𝑣௠ = ଶగ 𝐴𝜔cos𝛽 ≈ 0.64𝐴𝜔cos𝛽.  Namely, when 𝛼 = 0  and 𝑅 = 0.2,  Eq. (10) yields  𝑣௠ = 0.67𝐴𝜔cos𝛽. The study performed actually translates this empirical formula into the status 
of a theoretically substantiated formula. 

 
Fig. 2. Dependence of the dimensionless transportation velocity on the transverse overload 𝑤௩ (1, 2, 3  

are the calculated dependencies: 1 is 𝑅 = 0; 2 is 𝑅 = 0.2; 3 is 𝑅 = 0.25 (Eq. (9), (10));  
4 is the empirical dependence [18]; the experimental values are as follows:  

● – pieces of crushed stone, ▲ – pieces of rubber, ■ – a copper cylinder, O – granular material) 

In addition, special experiments were carried out in this work for the vibrational transportation 
of single-piece materials (20-40 mm crushed stone pieces, rubber pieces, a copper cylinder) and a 
fine crushed stone bed (fraction of 3–7 mm) with the thickness of approx. 10 mm. In the 
experiments performed using the vibration stand designed by Mekhanobr [19], the oscillation 
amplitude of the tray 𝐴 varied between 0.38 to 4.4 mm, with the frequency 𝜔 of 37.7 to 264 1/s 
(6–42 Hz). The tray was mounted horizontally, with the vibration angle 𝛽  of 45°. The 
experimental results are presented by points in Fig. 2; solid lines show the results of calculations 
using the formulas proposed. The figure demonstrates good agreement between the theoretical 
and experimental results at the recovery coefficients of 𝑅 = 0.20-0.25. The coefficient values 
were established experimentally. 

The experiments have confirmed the smooth monotonic nature of the dependence between the 
velocity 𝑣௠ and the overload factor 𝑤௩, including in the ranges where various particle motion 
regimes are present according to the basic model. The linear nature of the dependence between 𝑣௠ and 𝑤௩ has also been confirmed at a constant value of 𝐴𝜔 in the range of 𝑤௩ < 𝜋, as well as 
the practical independence of 𝑣௠ from 𝑤௩ at 𝑤௩ > 𝜋. 

5. On modeling dynamic systems with complex behavior 

The study touches on the general problem of rational modeling of a dynamic system. Similarly 
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to the problem considered, let us assume complex behavior of the system modeled: in a certain 
domain of the parameter space, there are a large number of steady motion regimes; their minor 
domains of existence and stability are closely adjacent or overlapping; and, in the phase space, 
these regimes correspond to certain minor domains of attraction (multiplicity of regimes, 
multistability). At the same time, the parameters setting accuracy does not correspond to the sizes 
of the domains indicated. Let us find a certain integral characteristic of the regimes, similar to the 
average motion velocity considered above or energy consumption. Note that the situation 
described is characteristic of piecewise smooth systems and discontinuous systems [20] and is 
also observed for a number of “smooth” systems, for example, in the problem of the behavior of 
a pendulum with a vibrating suspension axis [4, 21-23]. It seems that, in such a situation, it would 
be advisable, for example, to consider a more “crude” model, as it was done above. Another way 
is to use approximation methods, in particular, those related to the averaging idea [4, 20] (which, 
however, is often the same) or a probabilistic description. 

Let us also note that the idea of moving from a model with Coulomb friction to a “smooth” 
model was successfully used in [24] for numerical studies. 

6. Conclusions 

Simple model representations are used in the work to obtain formulas for estimating the 
vibrational transportation velocity in intensive tossing regimes that are characteristic of a wide 
class of vibrational transportation and process machines. A simple formula has also been obtained 
for the significant process value of the material dimensionless flight time (flight phase). It turned 
out to be double the value of the transverse overload factor. The calculation results for the formulas 
proposed are in good agreement with the experimental data. The issues of modeling similar 
systems with complex behavior have been discussed. 
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