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Abstract. The problem of the occurrence of semi-slow speed oscillations of an unbalanced rotor 
during its passage through the resonance zone has been solved using the method of direct 
separation of motions. It has been proved that when a stationary regime is established, semi-slow 
damping oscillations of the rotor speed arise in the region of the Sommerfeld effect, they are the 
result of the superimposement of free accompanying oscillations with a relatively low frequency 
on forced fast oscillations. In this respect, the initial amplitudes of such oscillations are quite large, 
and oscillations damping is relatively slow. 
Keywords: vibration machine, Somerfeld effect, inertial vibration exciter, semi-slow oscillations. 

1. Introduction  

Inertial vibration exciters are used to drive a wide variety of vibration machines. Most of these 
machines operate in resonance mode. The problem of their passage through the resonance zone is 
quite important for vibration engineering. It has been well studied already. A review of the works 
in this field is given, for example, in the books [1, 2]. In particular, these studies draw our attention 
to the fact of existence of fast, slow and semi-slow motions in the region of the Sommerfeld effect. 
The existence of semi-slow rotor motions nearby the resonance zone of the carrier system was 
mentioned in [3-6]. It is important that semi-slow oscillations are used to facilitate the passage of 
vibration machines though the resonance zones. 

In [3], a quantitative analysis of semi-slow oscillations of an unbalanced rotor is performed; 
an expression for the frequency of such oscillations is obtained. Attention is drawn to the fact that 
the equation of semi-slow oscillations can be used to improve the start-up control systems for 
super resonance vibration machines. Practical examples of the use of semi-slow motions to 
facilitate the passage through the resonance zone are considered in [7-9]. 

This paper is devoted to the extension of the results obtained in [3]. Using the direct motion 
separation method it is shown that the general solution for the fast motion equation describes a 
transition process towards ascertainment of a stationary motion mode of an unbalanced rotor in 
the resonance zone of vibration machine, as well as that semi-slow oscillations of the rotor speed 
are seen as transition process in the region of the Sommerfeld effect. 

2. Dynamic model and system motion equations 

The dynamic model of the vibration machine is adopted in the form of a bearing body 
connected with a fixed base by linear elastic and damping elements; with an unbalanced vibration 
exciter (unbalanced rotor) driven by an asynchronous electric motor (Fig. 1) placed on. The 
bearing body can move only in a strictly fixed direction 𝑂𝑥. The equations of system motions can 
be represented as: 𝐼𝜑ሷ ൌ 𝐿ሺ𝜑ሶ ሻ − 𝑅ሺ𝜑ሶ ሻ  𝑚𝜀ሺ𝑥ሷsin𝜑  𝑔cos𝜑ሻ, (1)𝑀𝑥ሷ  𝛽௫𝑥ሶ  𝑐௫𝑥 ൌ 𝑚𝜀ሺ𝜑ሷ sin𝜑  𝜑ሶ ଶcos𝜑ሻ, (2)
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where 𝜑 – rotor angle; 𝑥 – relocation of bearing body; 𝐼 – rotor moment of inertia; 𝑚, 𝜀 – rotor 
mass and its eccentricity; 𝑐௫ – coefficient of elastic element axial stiffness; 𝛽௫ – coefficient of 
elastic element viscous friction; 𝐿ሺ𝜑ሶ ሻ – electric motor torque (its static characteristic); 𝑅ሺ𝜑ሶ ሻ– 
moment of resistance to rotation; 𝑔 – gravity acceleration. 

 
Fig. 1. Dynamic model of vibration machine 

3. Semi-slow speed oscillations of unbalanced rotor 

To study the motion of the rotor during its passage though the resonance zone we use the 
method of direct separation of motions [1, 2]. Looking for solutions to system Eqs. (1), (2) in the 
form of 𝜑ሶ = 𝜔(𝑡) + 𝜓ሶ(𝑡,𝜔𝑡), 𝑥 = 𝑥(𝑡,𝜔𝑡), we consider 𝜔(𝑡) – as slow, and 𝜓ሶ  and 𝑥 – as fast 2𝜋 – periodic in 𝜏 = 𝜔𝑡 functions, while their average value over the period on 𝜏 equals to zero; 
we also accept that 𝜓ሶ ≪ 𝜔 . We are determining the coordinate 𝜑  in the following way:  𝜑 = 𝜔(𝑡) 𝑡 + 𝛼(𝑡) + 𝜓(𝑡,𝜔𝑡), where 𝛼(𝑡) is some function 𝑡, which we consider as slow one; 
we will disregard it in the future. 

Note that the “sticking” mode of the rotor speed during slow passage of the vibration machine 
through the resonance zone is of particular interest because its the most loaded mode of its 
operation. 

Following this method, we get the equations of slow and fast rotor motions in the form obtained 
in [2]: 𝐼𝜔ሶ = 𝐿(𝜔) − 𝑅(𝜔) + 𝑉(𝜔), (3)𝐼𝜓ሷ = −𝑘𝜓ሶ + 𝜇Ψ(𝑥ሷ ,𝜑), (4)

where 𝑉(𝜔) = 𝑚𝜀⟨𝑥ሷsin𝜑 + 𝑔cos𝜑⟩  – vibration moment; 𝑘  – total damping coefficient; 𝜇Ψ(𝑥ሷ ,𝜑) = 𝑚𝜀(𝑥ሷsin𝜑 + 𝑔cos𝜑 − ⟨𝑥ሷsin𝜑 + 𝑔cos𝜑⟩); 𝜇 – small parameter. 
Here and down the text, angle brackets indicate the averaging over a period 𝑇 = 2𝜋 by quick 

time 𝜏. Moments 𝐿(𝜑ሶ ), 𝑅(𝜑ሶ ) linearized nearby “sticking” frequency 𝜑ሶ = 𝜔 (𝜔 ≤ 𝑝௫), according 
to the formulas 𝐿(𝜑ሶ ) = 𝐿(𝜔) − 𝑘ଵ𝜓ሶ , 𝑅(𝜑ሶ ) = 𝑅(𝜔) + 𝑘ଶ𝜓ሶ , when 𝑘ଵ + 𝑘ଶ = 𝑘 , 𝑘ଵ , 𝑘ଶ  – 
electrical and mechanical damping factors [2]; 𝑝௫ = ඥ𝑐௫ 𝑀⁄ . 

In [2] in the initial approximation, 𝜓 = 𝜓() = 0, 𝜑() = 𝜔𝑡, 𝑥() = 𝐴௫()cos(𝜔𝑡 − 𝛾௫), was 
obtained the expression for the vibration moment: 𝑉(𝜔) = −𝑉୫ୟ୶sin𝛾௫, (5)

where: 

𝑉୫ୟ୶ = 𝑚𝜀𝜔ଶ2 𝐴௫(),      sin𝛾௫ = 2𝑏௫𝜔Δ ,      𝑏௫ = 𝛽௫2𝑀, 𝐴௫() = 𝑚𝜀𝜔ଶ𝑀Δ ,       Δ = ඥ(𝜔ଶ − 𝑝௫ଶ)ଶ + 4𝑏௫ଶ𝜔ଶ. 
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In Eq. (5) value 𝐴௫ represents the amplitude of the stationary forced oscillations described by 
the equation 𝑀𝑥ሷ + 𝛽௫𝑥ሶ + 𝑐௫𝑥 = 𝑚𝜀𝜔ଶcos𝜔𝑡 + 𝜇ଶ𝑋. 

Expression for vibration moment Eq. (5) is the following: 𝑉(𝜔) = −12𝐴௦௧ଶ 𝛽௫𝜔𝑘ௗ௬ଶ , (6)

where 𝐴௦௧ = 𝑚𝜀 𝑀⁄  – the amplitude of steady-state induced resonant oscillations;  𝑘ௗ௬ = ఒమೣට൫ଵିఒమೣ൯మାସమೣఒమೣ – dynamic coefficient; 𝜆௫ = 𝜔 𝑝௫⁄ ; ℎ௫ = 𝑏௫ 𝑝௫⁄ . 

According to Eq. (6), the magnitude of the vibration moment is proportional to the square of 
the dynamic coefficient, i.e. its frequency dependence is of a substantially resonant character.  
Thus, when the rotor passes slowly through the resonance zone, there is a rapid increase in the 
inhibitory vibration moment, which leads to the frequency “sticking”. To analyze the transition 
process towards the steady rotor motion in the region of the Sommerfeld effect, let’s examine the 
equation of fast motions Eq. (4). We represent Eqs. (4) in the form obtained in [3] while studying 
the semi-slow oscillations of the rotor (𝜑 = 𝜔𝑡 + 𝜓): 𝐼𝜓ሷ + 𝑘𝜓ሶ = 𝑚𝜀ሾ𝑥ሷsin(𝜔𝑡 + 𝜓) − ⟨𝑥ሷsin𝜔𝑡⟩ሿ. (7)

Note that the same as in [3], we do not take into consideration the effect of the gravity moment 
on the ongoing dynamic processes. 

By linearizing the right side Eq. (7) on 𝜓 taking into account the solution of the Eq. (2) as 𝑥(), 
we give the equation of fast motions in the form: 𝐼𝜓ሷ + 𝑘ଵ𝜓ሶ + 𝑐ట𝜓 = −𝑉୫ୟ୶sin(2𝜔𝑡 − 𝛾௫) − 𝑉(𝜔)       −𝜓 𝑉୫ୟ୶cos(2𝜔𝑡 − 𝛾௫) − 𝑘ଶ𝜓ሶ − 𝑚𝜀⟨𝑥ሷsin𝜔𝑡⟩, (8)𝜓ሷ + 2𝑏ట𝜓ሶ + 𝑝టଶ𝜓 = Ф௫sin2𝜔𝑡 + 𝜇Ψଵ, (9)

where: 𝑐ట = 𝑉୫ୟ୶cos𝛾௫,      𝜇Ψଵ = −1𝐼 ൫𝑉୫ୟ୶cos(2𝜔𝑡 − 𝛾௫)𝜓 + 𝑘ଶ𝜓ሶ൯, 𝑏ట = 𝑘ଵ2𝐼 ,      Ф௫ = −𝑉୫ୟ୶𝐼 ,        𝑝టଶ = 𝑐ట𝐼  
Note that the estimates of the terms of the fast motions equations made in [3, 10] were taken 

into account above. 
As we can see, the equation of fast motions takes the form of the equation of small forced 

oscillations; the coefficient 𝑐ట can be called the conditional stiffness coefficient. In case of a slow 
passage through the resonance zone, the coefficient 𝑐ట  begins to increase significantly; when  𝜔 = 𝑝௫ – it turns into zero. If the frequency exceeds the critical value 𝜔 = 𝑝௫, the coefficient 𝑐ట 
takes a negative value, and, accordingly, the stationary mode becomes unstable. Therefore, the 
term 𝑐ట𝜓 is so called a restoring moment; when 𝜔 < 𝑝௫ it “ensures” the stability of the stationary 
regime in the region of the Sommerfeld effect. 

In Eq. (8), the value 𝑝ట represents the natural frequency of so-called semi-slow oscillations of 
the unbalanced rotor. A detailed analysis of the expression for the frequency is given in [3]; it is 
shown that for the validity of the equation of semi-slow oscillations it is necessary that  𝜔 𝑝ట⁄ > 3, as a rule, this condition is satisfied for vibration machines under study.  

To study the transition regime towards steady motion in the region of the Sommerfeld effect, 
we have to find the general solution of the fast motion Eq. (9). For clarity, we will disregard the 
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influence of resistance forces. At the same time, we take into account that: the effect occurs with 
a rapid increase in the vibration moment 𝑉(𝜔) , which action can be evaluated by impetus  
(2𝜔 ≫ 𝑝ట); inhibitory effect of vibration moment occurs during the half of its oscillations period; 
prior to the occurrence of the effect the rotor speed oscillations are relatively small. Consequently, 
the initial conditions are presented as 𝜓 = 0, 𝜓ሶ = −𝑉୫ୟ୶ 𝐼𝜔⁄ . Then, the expression describing 
the oscillations of the rotor frequency during the establishment of a stationary mode will be 
presented as follows: 𝜓ሶ = Фଵ cos𝑝ట𝑡 + Фଶ cos 2𝜔𝑡 ≈ −𝑉୫ୟ୶2𝐼𝜔 (3 cos𝑝ట𝑡 − cos 2𝜔𝑡), (10)

where Фଵ = − ౣ ౮ூఠ − ଶఠౣ ౮ூ(ସఠమିഗమ ), Фଶ = ଶఠౣ ౮ூ(ସఠమିഗమ ). 
Let’s analyze the resulting solution. In this case, we have to recall the assumption adopted 

above on disregarding the friction forces, they only dampen free vibrations in the case 𝑝ట ≪ 𝜔. 
Therefore, when a stationary mode of rotor rotation is established, a transient process takes place, 
which can be described as a damping biharmonic oscillation of the rotor speed with a fundamental 
frequency equal to the frequency 𝑝ట , i.e. non-stationary process looks like a relatively slow 
oscillations. It is not difficult to establish that the initial amplitudes of these oscillations are large 
enough, they are at least a third as much as the amplitudes of the stationary regime that is being 
established subsequently. Of course, semi-slow oscillations are dampening over time and turn into 
purely forced monoharmonic oscillations. 

4. Results of computer simulation 

During the simulation, the following parameter values were set: 𝑀 =  40 kg; 𝑚 =  3 kg;  𝜀 = 0,03 m; 𝐼 = 0,006 kg⋅m2; 𝑐௫ = 7,5⋅104 N/m; 𝛽௫ = 135 kg/s; electric motor – asynchronous, 
with a frequency 𝑛𝑠 = 1500 rtm, power 𝑃 = 0,6 kW [11]. 

 
a) 

 
b) 

Fig. 2. Change of rotor speed spinning in time: a) from the moment of the engine start-up;  
b) in the steady regime: 1 – passage through the resonance zone; 2 – speed “sticking” 

As it can be seen from the graphs Fig. 2(a), Fig. 3(a), when the rotor speed is “sticking”, 
biharmonic oscillations are excited, which are the result of superimposement of damping 
oscillations with a relatively low frequency (13,8 s-1), approximately equal to the frequency 𝑝𝜓, 
on fast oscillations (83,7 s-1), frequency of which is close to the doubled frequency of the rotor 
speed “sticking” (2𝜔 ≈ 83 s-1; 𝜔 ≈ 𝑝௫ = 43,3 s-1) In this case, the initial amplitudes of such 
oscillations are quite large (the maximum reaches 11,8 s-1, but subsequently, in the stationary 
mode they decrease to 3,3 s-1), and the dampening of semi-slow oscillations is relatively slow (up 
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to 5 s). 
The graphs in Fig. 2 convincingly indicate that semi-slow oscillations are seen as an unsteady 

process in the region of the Sommerfeld effect. 
The simulation results are in good agreement with the calculation results according to the 

formulas obtained: 𝑝ట ≈  13,3 s-1; Фଵ ≈  8,5 s-1, Фଶ ≈  2,9 s-1 (the frequency of “sticking” is 
accepted according to Fig. 2 and is equal to 𝜔 ≈ 41,4 s-1).  

In support of the foregoing, a graph (Fig. 3(b)) of the rotor frequency oscillations during the 
speed “sticking” is presented, a graph was obtained as a result of a numerical solution of the fast 
motion Eq. (9). Comparing this graph with the numerical solution of the initial system of Eqs. (1), 
(2), we can conclude that the results are well comparable and describe the same dynamic process. 

 
a) 

 
b) 

Fig. 3. Change of rotor speed spinning in stationary regime obtained by numerical solution:  
a) the initial system of motion Eqs. (1), (2); b) equations of fast motions Eq. (9) 

5. Results and discussion 

Thus, when a speed of the unbalanced rotor stucks in the resonance zone, its relatively slow 
(compared to the frequency 𝜔 ) damping oscillations are excited. Taking into account the 
quantitative estimates of parameters of motions (frequencies) taking place in the system, such 
oscillations are often called semi-slow.  

The described regularity of the system motion is also represented as the presence of the “inner 
pendulum” and its semi-slow oscillations in the region of the Sommerfeld effect. The natural 
oscillation frequency of the “inner pendulum” is also called the “Blechman frequency” [8]. Using 
this approach, it can be easily found with sufficient accuracy for practical use. 

The maximum amplitudes of the arising semi-slow oscillations of the rotor speed are quite 
large, and their dampening happens slowly, thus it can be of a significant danger for vibration 
machines [11]. 

Following the approach used, it is easy to show that the action of the gravity moment on the 
rotor does not directly have a significant effect on the dynamic processes under study. 

For the case when the oscillatory part of the system has several degrees of freedom, the 
equation of semi-slow oscillations retains its form. Only the expression for the frequency of 
semi-slow oscillations is changing, the methodology used for determining is the same. 

6. Conclusions 

Semi-slow speed oscillations of the unbalanced rotor observed during the vibration machine 
passage through the resonance zone are seen as a transition process towards the steady rotor 
motion in the region of the Sommerfeld effect. 

Semi-slow speed oscillations can cause significant drive vibrations, that must be taken into 
account when designing this type of vibration machines. 
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The conducted research will contribute to the selection of parameters for the algorithms for 
controlling the passage of vibration machines with inertial vibration exciters through the 
resonance zone.  
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