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Abstract. The high dimensionality data originating from rolling bearing measuring signals with 
non-linearity and low signal to noise ratio often contains too much disturbance like interference 
and redundancy for accurate condition identification. A novel manifold learning named Local 
coordinate weight reconstruction (LCWR) is proposed to remove such disturbance. Due to the 
different contribution of samples to their manifold structure, weight value is used for the 
contribution difference. By reconstructing local low-dimensional coordinates according to its 
weight function about geodesic distance in neighborhood, LCWR targets to reduce reconstruction 
error, preserve intrinsic structure of the high dimensionality data, eradicate disturbance and extract 
sensitive features as global low-dimensional coordinates. The experimental results show that the 
intraclass aggregation and interclass differences of global low-dimensional coordinates extracted 
via LCWR are better than those of local tangent space alignment (LTSA), locally linear 
embedding (LLE) and principal component analysis (PCA). The accuracy reaches the highest 
96.43 % using SVM to identify LCWR based global low-dimensional coordinates, and its 
effectiveness is testified in diagnosis of rolling bearing fault. 
Keywords: manifold learning, nonlinear dimensionality reduction, feature extraction, rolling 
bearing, fault diagnosis. 

1. Introduction 

Rolling bearing plays a key role in rotating machinery. It is necessary to monitor rolling 
bearing condition and identify its fault to avoid accident [1-3]. The state information of rolling 
bearing is usually described with high dimensionality data consisting of multiple characteristics 
in time and frequency domain [4-6], which contains redundancy and interference, and exists 
nonlinearity. Therefore, several works have been explored to remove such disturbance and obtain 
low-dimensional sensitivity features for better accuracy and efficiency of rolling bearing fault 
[7, 8].  

As a type of classic manifold learning for dimensionality reduction [9, 10], local tangent space 
alignment (LTSA) completing nonlinear dimensionality reduction through finding out 
neighborhoods of high dimensionality samples, carrying out local dimensionality reduction, and 
realigning all neighborhoods’ low-dimensional coordinates to construct global low-dimensional 
coordinates [11], recently has been used for fault diagnosis besides its earlier successful 
applications to image processing, data mining, machine learning, etc. [12, 13]. For instance, Zhang 
et al. proposed supervised locally tangent space alignment (S-LTSA) to optimize the 
neighborhood selection of LTSA based on the training samples’ categories, so that the 
neighborhood includes the same samples as possible to accurately reflect the local structures of 
different types of bearing fault signals [14]. Li et al. improved the accuracy of bearing fault 
diagnosis using LLTSA dimensionality reduction [15]. Kumar A and Kumar R utilized Linear 
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Local Tangent Space Alignment (LLTSA) to suppress noise and retain characteristic defect 
frequencies of rolling bearing with inner and ball fault [16]. Su et al. proposed orthogonal 
supervised linear local tangent space alignment (OSLLTSA) to make the neighborhood selection 
of LLTSA better by introducing sample’s label information, which removed interference and 
redundancy in high dimensionality fault data and extracted low-dimensional sensitivity fault 
features [17]. Wang et al. proposed supervised incremental local tangent space alignment 
(SILTSA) through embedding supervised learning into the incremental local tangent space 
alignment to extract bearing fault characteristics, process new samples and classify [18]. Su et al. 
stated supervised extended local tangent space alignment (SE-LTSA) to enhance intraclass 
aggregation and interclass differences of nonlinear high dimensionality samples by defining 
distance between samples and optimizing neighborhood choice based on class label [19]. 
In summary, the current interests focused on neighborhood optimization options and local tangent 
space estimation of LTSA for dimensionality reduction and low-dimensional sensitivity fault 
characteristics extraction. 

Different from above methods, local coordinate weight reconstruction (LCWR) manifold 
learning is proposed to reconstruct local coordinates by weight coefficient, so as to extract global 
low-dimensional sensitivity features for improving fault diagnosis capability of rolling bearing. 
The following is as below: Section 2 proposes LCWR for coordinate reconstruction, Section 3 
validates LCWR and Section 4 is conclusions. 

2. LCWR 

LCWR has two major tasks. First, the projection coordinates of k nearest neighbors of each 
sample on the tangent space of the neighborhood are calculated to build the local low-dimensional 
manifold using LTSA. Next, the global low-dimensional coordinates are obtained by aligning the 
low-dimensional coordinates of all neighborhoods according to weight coefficient, which is a 
main innovation of LCWR.  

2.1. Local coordinate computation 

Let sample matrix 𝐗 = ሺ𝐱ଵ, 𝐱ଶ, … , 𝐱ேሻ ∈ 𝐑×ே, 𝐷 is the number of sample dimensions and 𝑁 
is the number of samples. Sample 𝐱  and its 𝑘 nearest samples (including 𝐱 ) constitute local 
neighborhood matrix 𝐗 = (𝐱ଵ , 𝐱ଶ , … , 𝐱 ) ∈ 𝐑× , each neighborhood exists a local tangent 
space 𝐐 ∈ 𝐑×ௗ  (𝑑 < 𝐷)  consisting of standard orthogonal basis vectors, and  𝚯 = (𝛉ଵ,𝛉ଶ, … ,𝛉) ∈ 𝐑ௗ× is the projection of 𝐗 onto 𝐐. For the main geometric structure 
information within neighborhood, minimize the sum of square of distance between 𝐗 and 𝚯: Min  ฮ𝐗 − 𝐗 − 𝐐Θฮிଶ ,S. t.  𝐐் 𝐐 = 𝐈ௗ ,  (1)

where 𝐗 = 1 𝑘⁄ 𝐗𝐞𝐞் is a mean matrix of 𝐗, 𝐞 is a unit column matrix of length 𝑘, and 𝐈ௗ is a 𝑑 by 𝑑 unit matrix.  
Apply singular value decomposition to 𝐗 − 𝐗: 𝐗 − 𝐗 = 𝐔Σ𝐕் ≈ 𝐔ௗΣௗ𝐕ௗ். (2)𝐐𝚯, 𝐐, 𝚯 are computed as below: 𝐐𝚯 = 𝐔ௗΣௗ𝐕ௗ்,𝐐 = 𝐔ௗ ,𝚯 = 𝐐 ் ൫𝐗 − 𝐗൯, (3)
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where 𝐔 ∈ 𝐑× is a left singular vector set, 𝐕 ∈ 𝐑× is a right singular vector set, ∑ ∈ 𝐑× is 
a singular value diagonal matrix, ∑ ∈ 𝐑ௗ×ௗௗ  is a diagonal matrix with 𝑑  maximum singular 
values in descending order, 𝐔ௗ ∈ 𝐑×ௗ  is the corresponding left singular vector set and  𝐕ௗ ∈ 𝐑×ௗ is right singular vector set. 

Thus, 𝚯 holds the most important geometric structure information in 𝐗. 
2.2. Global coordinate construction 

Suppose 𝐓 = (𝜏ଵ, 𝜏ଶ, … , 𝜏) ∈ 𝐑ௗ×  is the local low-dimensional coordinate of 𝐗 . Build 
the affine transformation between 𝐓 and 𝚯: 𝐓 = 𝐓 + 𝐋𝚯 + 𝐄 . (4)

The local reconstruction error 𝐄 is written as: ‖𝐄‖ிଶ = ฮ𝐓 − 𝐓 − 𝐋𝚯ฮிଶ , (5)

where 𝐋 ∈ 𝐑ௗ×ௗ is a local affine matrix, 𝐓 = 1 𝑘⁄ 𝐓𝐞𝐞் is a mean matrix of 𝐓, 𝐄 ∈ 𝐑ௗ× is a 
local reconstruction error matrix. 

However, owing to the different contribution of samples to their manifold structure, a novel 
LCWR based on weight coefficient is proposed to reduce permutation error and reconstruct local 
coordinates more accurately. According to LCWR, the closer a sample is to its manifold, the larger 
its weight coefficient is. Likewise, the farther a sample is from its manifold, the smaller its weight 
coefficient is. So an exponential function of geodesic distance between a sample and the center 
point of its neighborhood, reflecting the proximity to its manifold structure, is defined as weight 
coefficient, namely: 

𝜔 = exp ቈ− ൬𝐺𝜎 ൰ఉ, (6)

where 𝜔 denotes the weight coefficients of the 𝑗th nearest neighbor 𝑥 in 𝐗, 𝐺 and 𝜎 denote 
the geodesic distance from 𝑥 to the center of 𝐗 and the mean square error of 𝐗 respectively, 
and 𝛽 is adjustment parameter. 

Then 𝐄 is rewritten as: ‖𝐄‖ிଶ = ฮ(𝐓 − 𝐓 − 𝐋Θ)𝐖ฮிଶ = tr[(𝐓𝐇 − 𝐋𝚯𝐖)(𝐓𝐇 − 𝐋𝚯𝐖)்ሿ, (7)

where 𝐖 = diag(ඥ𝜔ଵ,ඥ𝜔ଶ,⋯ ,ඥ𝜔) ∈ 𝐑× is a weight coefficient matrix,  𝐇 = (𝐈 − 1 𝑘⁄ 𝐞𝐞்)𝐖 ∈ 𝐑×. 
Fix 𝐓 and minimize 𝐄 to preserve as much local information as possible, namely: ∂‖𝐄‖ிଶ ∂𝐋⁄ = 𝟎, (8)𝐋  = 𝐓𝐇Φ் × inv൫ΦΦ்൯, (9)

where 𝐋 ∈ 𝐑ௗ×ௗ, 𝚽 = 𝚯𝐖 ∈ 𝐑ௗ×. 
Substitute Eq. (9) into Eq. (7) and obtain 𝐄: ‖𝐄‖ிଶ = tr(𝐓𝐁𝐁் 𝐓் ), (10)

where 𝐁 = 𝐇 − 𝐇𝚽் × 𝑖𝑛𝑣(𝚽𝚽் )𝚽 ∈ 𝐑×. 
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Minimize the sum of all neighborhoods reconstruction errors to obtain the global low-
dimensional coordinate 𝐓: 

Min‖𝐄‖ிଶே
ୀଵ = min tr(𝐓𝐁𝐁் 𝐓் )ே

ିଵ = min tr(𝐓𝐑𝐁𝐁் 𝐑் 𝐓்),ே
ୀଵS. t.𝐓𝐓் = 𝐈ௗ ,  (11)

where 𝐓 = ൫𝜏ଵ,𝜏ଶ, … , 𝜏ே൯ ∈ 𝑅ௗ×ே  is the global low-dimensional coordinate of 𝐗 , 𝐓 = 𝐓𝐑 ,  𝐑 = 𝐑(: , 𝐈) ∈ 𝐑ே×  is a selection matrix, 𝐑 = diag൫one(1,𝑁)൯ , 𝐈 = (𝑖ଵ, 𝑖ଵ, … , 𝑖)  is the 
subscript of 𝑘 nearest neighbors of 𝑥. 

It is equal to solve differential equation: 𝑑𝑑𝐓൭‖𝐄‖ிଶே
ୀଵ − 𝜆𝐓𝐓்൱ = 𝟎, (12)

[𝐓(𝐑𝐁𝐁் 𝐑் )் + 𝐓𝐑   𝐁𝐁் 𝐑் ሿே
ୀଵ − 2𝜆𝐓 = 𝟎, (13)𝐌𝐓் = 𝜆𝐓் , (14)

where 𝐌 = 𝐌் = ∑ 𝐑𝐁𝐁் 𝐑்ேୀଵ ∈ 𝐑ே×ே. 
Therefore, the optimal solution of 𝐓் is composed of eigenvectors corresponding to the 2nd 

to the (𝑑 + 1)th smallest eigenvalues of 𝐌. 𝐓் = (𝑢ଶ,𝑢ଷ, … ,𝑢ௗାଵ) or 𝐓 = (𝑢ଶ,𝑢ଷ, … ,𝑢ௗାଵ)் ∈𝐑ௗ×ே is an orthogonal global low-dimensional coordinate mapping matrix of nonlinear manifold 
in 𝐗, where 𝑢 ∈ 𝐑ଵ×ே is an eigenvector corresponding to the 𝑗th eigenvalue of 𝐌. 

LCWR is summarized as follows: 
(1) Look for neighborhood. Local neighborhood 𝐗 of each sample 𝐱 (𝑖 = 1,2, … ,𝑁) is found 

by k nearest neighbors. 
(2) Extract local coordinates. Projection matrix 𝐐  and local low-dimensional coordinate 

matrix 𝚯 of each neighborhood 𝐗 are obtained according to Eq. (2) and Eq. (3), respectively. 
(3) Construct global coordinates. Global low-dimensional coordinate matrix 𝐓 is conducted 

from 𝚯 reconstruction by weight coefficient matrix 𝐖 and expressed as Eq. (14). 
The flow chart of LCWR is shown in Fig. 1. 

3. Verification and analysis 

Experimental data is from the bearing data center of Case Western Reserve University. Four 
types of bearing sates under speed of 1750 rpm and load of 1470 W, i.e. healthy state, outer race 
fault, inner race fault and ball fault with defective size of 0.3556 mm are considered. There are 48 
samples for each state and total 192 samples for all states. Each sample acquired at 48 kHz includes 
2048 points in length. 

3.1. High-dimensional feature construction 

As shown in Table 1, 12 time-domain statistical indicators and 8 frequency-domain statistical 
indicators are selected to constitute a 20-dimensional sample to characterize the bearing state. An 
original sample signal is decomposed into eight sub-band signals by three-layer db8 wavelet 
packet decomposition, and the ratio of the energy of each sub-band to the total energy of all 
sub-bands is taken as the frequency domain indicator. That is, 𝑒   = 𝐸 𝐸⁄ , 𝐸 = ∑ 𝐸଼ୀଵ , 𝐸 is the 
energy of sub-band signals. Thus, a high-dimensional feature matrix 𝐗 ∈ 𝐑ଵଽଶ×ଶ is created. 
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Fig. 1. Procedure of LCWR 

 
Fig. 2. LCWR based fault diagnosis 

Table 1. Basic size and style requirements 
Dimension Description 

1 Standard deviation 
2 Variance 
3 Skewness 
4 Kurtosis 
5 Range 
6 Minimum 
7 Maximum 
8 Sum 
9 Root mean square 
10 Median 
11 Mean 
12 Crest factor 

13-20 Energy ratio 𝑒 
3.2. Low-dimensional feature extraction 

According to Fig. 2, some of the low-dimensional feature samples extracted by LCWR are 
used as training samples to train support vector machine (SVM) while the others as test samples 
to be recognized by trained SVM. When using LCWR to extract bearing state characteristics, three 
parameters such as neighbor number 𝑘 , dimension 𝑑  and adjustment parameter 𝛽  need to be 
optimized. Because the recognition rate can be regarded as a function of three parameters 𝑘, 𝑑 
and 𝛽, these parameters interact to determine the recognition rate. By changing these parameters 
in a certain range and the corresponding recognition rate obtained, it is proved that there exist 
optimization values of parameters with the peak recognition rate. The trend of recognition rate 
with respect to a single parameter variable while the other two parameters fixed is shown in 
Fig. 3-5, respectively. Because of different parameters, the trend of recognition rate is also 
different from each other. 

From the recognition rate about the nearest neighbor number 𝑘 in Fig. 3, there is the maximum 
rate 96.43 % at 𝑘 = 8. The role of 𝑘 on recognition rate is carried out by influencing the intrinsic 
geometry structure of high-dimensional samples, the close relationship between similar samples 
and the nonlinear dimensionality reduction ability of LCWR. If 𝑘  is too small, LCWR can’t 
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maintain the intrinsic geometry of high-dimensional samples and close association between 
similar samples. If 𝑘 is too large, it weakens the nonlinear dimensionality reduction capability of 
LCWR. Hence, the low-dimensional manifold structure hiding in the high-dimensional samples 
can be found to the greatest extent and achieve the maximum rate at the optimum value 𝑘 = 8. 
However, due to the comprehensive effect of different factors affected by 𝑘, the recognition rate 
fluctuates and there are multiple turnover points rather than a monotonous trend. 

Dimension 𝑑 affects the recognition rate by mining the sensitive features of high-dimensional 
samples in the neighborhood and eliminating redundant and interference components. From  
Fig. 4, it can be seen that the maximum recognition rate is 96.43 % at 𝑑 =  3, because an 
appropriate 𝑑  makes similar samples have approximate low-dimensional features, leading to 
better clustering effect and improvement in recognition rate. Otherwise, LCWR can’t fully mine 
the sensitive features from the high-dimensional samples in neighborhood if 𝑑 is too small or the 
low-dimensional features contain redundancy and interference if 𝑑 is too large. Likewise, due to 
different factors, the recognition rate has multiple turnover points. 

Adjustment parameter 𝛽 affects the recognition rate by changing the degree of clustering and 
global geometry retention. In relationship between 𝛽 and recognition rate in Fig. 5, if 𝛽 is too 
small, the proximity of samples is low and the clustering is obvious, but the degree of retention of 
the global geometric structure is poor. If 𝛽 is too large, the global geometric structure can be 
improved but the clustering reduced. These factors cause reduction in recognition rate. As a result, 
there is an optimal 𝛽 = 0.1 where the recognition rate reaches the maximum 96.43 %. 

 
Fig. 3. Recognition rate with neighbor 𝑘 

 
Fig. 4. Recognition rate with dimension 𝑑 

 
Fig. 5. Recognition rate with parameter 𝛽 

The three-dimensional sensitive features of bearing high-dimensional characteristic samples 
reduced by LCWR according to the optimized values of 𝑘 = 8, 𝑑 = 3 and 𝛽 = 0.1 are shown in 
Fig. 6. After dimension reduction, four kinds of bearing samples have no intersection and overlap. 
Each of them has its own clustering center. The clustering effect and global geometric structure 
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are objective, displaying a distinct manifold structure. 

 
Fig. 6. Embedded 3 dimensions by LCWR (𝑘 = 8, 𝛽 = 0.1) 

3.3. Dimensionality reduction effect analysis 

LCWR is compared with LTSA, locally linear embedding (LLE) and principal component 
analysis (PCA) to verify its dimensionality reduction effect. The dimensionality reduction results 
of LTSA, LLE and PCA are shown in Fig. 7, Fig. 8, and Fig. 9, respectively. Generally speaking, 
the reduced dimensionality samples via these methods have different degrees of intersection and 
overlap, poor clustering within class, lack of clustering centers. It is difficult to mine the essential 
characteristics of the bearing state and the differences between classes. Although LTSA and LLE 
find the manifold structure of high-dimensional samples, they are unable to expand the gaps 
between dissimilar samples in neighborhood. PCA belongs to one of linear statistical distributions 
without considering the local structure of the samples. It makes the intraclass aggregation poor 
and the differences between classes unclear, which fails to reveal the non-linear manifold structure 
of the bearing state as shown in Fig. 9.  

 
Fig. 7. Embedded 3 dimensions by LTSA (𝑘 = 9) 

 
Fig. 8. Embedded 3 dimensions by LLE (𝑘 = 5) 

Combining its weight coefficient with local coordinate’s permutation, LCWR enhances the 
intraclass aggregation and the differences between classes, overcomes the shortcomings that 
LTSA and LLE can’t enlarge the gaps between dissimilar samples in neighborhood, simplifies the 
dimension while retaining the low-dimensional principal characteristics of high-dimensional 
samples, accurately reflects the relationship between signal characteristics and the bearing state, 
and effectively distinguishes four kinds of bearing states. As shown in Table 2, the features 
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extracted by various methods are sent to SVM and the recognition rate of LCWR reaches the 
highest 96.43 % despite a little more time to run LCWR than LTSA, LLE and PCA as shown in 
Table 3. Therefore, in contrast to other dimensionality reduction methods, LCWR can achieve 
higher accuracy and prove its effectiveness. 

 
Fig. 9. Embedded 3 dimensions by PCA 

Table 2. Bearing condition recognition rate with various methods (%) 

Sample LCWR  
(𝑘 = 8, 𝑑 = 3, 𝛽 = 0.1) 

LTSA  
(𝑘 = 9, 𝑑 = 3) 

LLE  
(𝑘 = 5, 𝑑 = 3) 

PCA  
(𝑑 = 3) 

NDR  
(𝑑 = 20) 

H vs. 
(O+I+B) 100 100 100 100 75 

O vs. (I+B) 93.06 93.06 95.83 97.22 66.67 
B vs. (O+I) 93.06 66.67 80.56 66.67 72.22 
I vs. (O+B) 97.22 95.83 87.50 94.44 95.83 

I vs. B 95.83 93.75 85.42 91.67 91.67 
O vs. I 100 95.83 93.75 100 95.83 
O vs. B 95.83 85.41 93.75 89.58 95.83 

Average rate 96.43 90.08 90.97 91.37 84.72 
H-healthy, O-outer race defect, I-inner race defect, B-ball defect, NDR-non dimensionality reduction 

Table 3. Running time of SVM combined with various methods (s) 

Sample LCWR  
(𝑘 = 8, 𝑑 = 3, 𝛽 = 0.1) 

LTSA  
(𝑘 = 9, 𝑑 = 3) 

LLE  
(𝑘 = 5, 𝑑 = 3) 

PCA  
(𝑑 = 3) 

NDR  
(𝑑 = 20) 

H vs. (O+I+B) 66 27 28 26 57 
O vs. (I+B) 73 27 31 26 78 
B vs. (O+I) 74 37 31 39 71 
I vs. (O+B) 69 26 26 27 58 

I vs. B 70 26 26 25 59 
O vs. I 62 24 26 24 56 
O vs. B 67 27 30 26 70 

Average time 71 28 28 28 64 

Besides, it can be founded that recognition rate of manifold dimensionality reduction using 
LCWR, LTSA, LLE and PCA (all greater than 90 %) is higher than that of the non-dimensionality 
reduction method (only 84.72 %). It is further proved that these manifold learning methods can 
filter redundancy and interference of the high-dimensional features and extract the intrinsic 
low-dimensional manifold characteristics, which can significantly improve the recognition rate of 
the bearing state as shown in Table 2. Meanwhile, these manifold learning methods except LCWR 
consume less time and get better recognition efficiency. 
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4. Conclusions 

LCWR manifold learning is proposed to remove redundancy and noise in bearing 
high-dimensional fault features and perform non-linear dimensionality reduction for improvement 
in fault diagnosis capability. Geodesic distance based weight function is used to realign local 
coordinates to eliminate redundancy and interference in high-dimensional feature samples and 
extract low-dimensional sensitive fault features. Experiments demonstrate that the intrinsic 
manifold structure of high-dimensional feature samples can be well preserved after dimensionality 
reduction by LCWR, and the extracted low-dimensional feature samples can truly represent the 
non-linear characteristics of different bearing states and the gaps between them. The 
low-dimensional feature samples are then identified by SVM, which results in a higher recognition 
rate than other methods. Thus, the effectiveness of LCWR is validated. In addition, LCWR is 
worth further studying to save running time. 
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