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Abstract. The investigated system comprises a mass attached by a deformable link to a fixed 
foundation, and an elastic-dissipative limiter of motion of that mass. Such types of systems are 
widely used in different technological devices and machines. This paper is devoted for the 
improvement of dynamical qualities of such systems. Free and forced stationary harmonic 
vibrations as well as the qualitative parameters of motions of the system are analyzed in this paper. 
Characteristics of vibrations are determined using analytical and numerical techniques. It is 
determined that for the case of zero fastening the values of eigenfrequencies of the system do not 
depend on the amplitude of excitation. Then the system has an infinite number of multiple 
eigenfrequencies. In the case of forced harmonic excitation single valued stable motions exist in 
the vicinity of the resonance. This gives rise to some qualities of the system which are useful in 
practical applications. 
Keywords: limiter of motion, conservative system, natural frequencies, forced motions. 

1. Introduction 

This paper is focused on a nonlinear system which is characterized by two following features: 
first – the values of eigenfrequencies do not depent on the amplitude of excitation, and the second 
– an infinite number of eigenfrequencies does exist. The dynamics of such kind of systems has 
not been investigated in the existing literature. 

Essentially nonlinear systems, two-dimensional transmissions, their dynamics and vibrations 
are analysed in [1]. Dynamics of vibromotors for precision microrobots is described in [2]. 
Resonances in nonlinear vibrating systems are investigated in [3]. Impact dynamics under periodic 
and transient excitations are analysed in [4]. Stabilization of periodic nonlinear systems is 
investigated in [5]. Analysis of behaviour of mechanical systems with impacts is performed in [6]. 
Periodic orbits of mechanical systems with impacts are analysed in [7]. Behaviour of a 
vibro-impact nonlinear energy sink is investigated in [8]. The dynamics of a particle impact with 
a wall is analysed in [9]. 

The investigated system is shown in Fig. 1, where 𝑚, 𝐶  and 𝐻  are the mass of the main 
vibrating part, the coefficients of stiffness and of viscous friction respectively; while 𝐶 and 𝐻 
are the coefficients of stiffness and viscous friction of the limiter. The positions 𝑂𝑂 and 𝑂𝑂 are 
positions of static equilibrium of the contact surfaces of the main part 𝑥 and of the limiter 𝑥 
respectively. By 𝑥௦ the fastening of the system in the statical position is denoted. Positive values 
of 𝑥 and 𝑥 are counted to the right from the position 𝑂𝑂. 

The investigated system is described by the following differential equations: 𝑥ሷ  ሺℎ  ℎሻ𝑥ሶ  ሺ𝑝ଶ  𝑝ଶሻ𝑥 − 𝑝ଶ𝑥௦ ൌ 𝑓sin𝜔𝑡,     𝑥  𝑥, (1)𝑥ሷ  ℎ𝑥ሶ  𝑝ଶ𝑥 − 𝑝ଶ𝑥௦ ൌ 𝑓sin𝜔𝑡,     𝑥 ൏ 𝑥, (2)ℎ𝑥ሶ  𝑝ଶ𝑥 ൌ 0,     𝑥 ൏ 𝑥, (3)

where: 
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ℎ = 𝐻𝑚 ,     ℎ = 𝐻𝑚 ,     𝑝ଶ = 𝐶𝑚 ,     𝑝ଶ = 𝐶𝑚 ,     𝑓 = 𝐹𝑚 ,      ሶ = 𝑑𝑑𝑡. (4)

Known methods are used for analytical and numerical investigations. 

 
Fig. 1. Schematic representation of the system 

2. Free damped vibrations, that is when 𝒙𝒔 = 𝒇 = 𝟎 

Case 𝑥 = 𝑥, that is according to Eq. (1) it is assumed that this takes place in the interval: 𝑡 ∈ ሾ0,𝑇ሻ, (5)

and at 𝑡 = 0: 𝑥 = 0, 𝑥ሶ = 𝑥ሶ ି, and at 𝑡 = 𝑇 goes from the position 𝑥 = 𝑥 to the position 𝑥 < 𝑥 
and: 𝑥ሷ + 2ሺℎ + ℎሻ𝑥ሶ + ሺ𝑝ଶ + 𝑝ଶሻ𝑥 = 0, (6)

has the solution: 𝑥 = 𝐶ଵ𝑒ఒభ௧ + 𝐶ଶ𝑒ఒమ௧ , (7)

where: 𝜆ଶ + 2ሺℎ + ℎሻ𝜆 + ሺ𝑝ଶ + 𝑝ଶሻ = 0, 𝜆ଵ,ଶ = −ሺℎ + ℎሻ ± 𝑖ට𝑝ଶ + 𝑝ଶ − ሺℎ + ℎሻଶ,      𝑖 = √−1, 𝑥 = 𝑒ିሺାబሻ௧൫𝐶ଵcos√ 𝑡 + 𝐶ଶsin√ 𝑡൯, (8)

where it is denoted: 

√ = ට𝑝ଶ + 𝑝ଶ − ሺℎ + ℎሻଶ. (9)

𝐶ଵ and 𝐶ଶ are found from the initial conditions of motion Eq. (7) at 𝑡 = 0: 0 = 𝑒ିሺାబሻ⋅𝐶ଵcos√0 ⇒ 𝐶ଵ = 0, (10)𝑥ሶ ି = 𝑒ିሺାబሻ௧𝐶ଶൣ−ሺℎ + ℎሻsin√ 𝑡 + √ cos√ 𝑡൧ = 𝐶ଶ√ ⇒ 𝐶ଶ = 𝑥ሶ ି√ . (11)
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That is: 𝑥 = 𝑥ሶ ି√ 𝑒ିሺାబሻ௧sin√ 𝑡, (12)𝑥ሶ = 𝑒ିሺାబሻ௧ 𝑥ሶ ି√ ൣ−ሺℎ + ℎሻsin√ 𝑡 + √ cos√ 𝑡൧, (13)𝑥ሷ = 𝑥ሶ ି√ 𝑒ିሺାబሻ௧ൣሺℎ + ℎሻଶsin√ 𝑡 − ሺℎ + ℎሻ√ cos√ 𝑡 −ሺℎ + ℎሻ√ cos√ 𝑡 − ൫√ ൯ଶsin√ 𝑡ቃ, 𝑥ሷ = 𝑥ሶ ି√ 𝑒ିሺାబሻ௧ ቄቂሺℎ + ℎሻଶ − ൫√ ൯ଶቃ sin√ 𝑡 − 2ሺℎ + ℎሻ√ cos√ 𝑡ቅ. (14)

At 𝑡 = 𝑇 the Eq. (3) is not valid and Eqs. (2) and (5) are valid: into Eq. (2) solutions Eqs. (12) 
and (13) are substituted by assuming 𝑡 = 𝑇, that is the moment of disconnection of 𝑥 and 𝑥: 
𝑥ሷ + 2ℎ𝑥ሶ + 𝑝ଶ𝑥 = 𝑥ሶ ି√ 𝑒ିሺାబሻ்ೌ ቄቂሺℎ + ℎሻଶ − ൫√ ൯ଶቃ sin√ 𝑇 − 2ሺℎ + ℎሻ√ cos√ 𝑇       +2ℎൣ−ሺℎ + ℎሻsin√ 𝑇 + √ cos√ 𝑇൧ + 𝑝ଶsin√ 𝑇ൟ       = 𝑥ሶ ି√ 𝑒ିሺାబሻ்ೌ ቄቂሺℎ + ℎሻଶ − ൫√ ൯ଶ − 2ℎሺℎ + ℎሻ + 𝑝ଶቃ sin√ 𝑇       +ሾ−2ሺℎ + ℎሻ + 2ℎሿ√ cos√ 𝑇ൟ       = 𝑥ሶ ି√ 𝑒ିሺାబሻ்ೌ ൛ሾሺℎ + ℎሻଶ − ሺ𝑝ଶ + 𝑝ଶሻ + ሺℎ + ℎሻଶ − 2ℎሺℎ + ℎሻ + 𝑝ଶሿsin√ 𝑇       −2ℎ√ cos√ 𝑇ൟ       = 𝑥ሶ ି√ 𝑒ିሺାబሻ்ೌ ൛ሾ−𝑝ଶ + 2ℎሺℎ + ℎሻሿsin√ 𝑇 − 2ℎ√ cos√ 𝑇ൟ = 0       ⇒ tan√ 𝑇 = − 2ℎ√ 𝑝ଶ − 2ℎሺℎ + ℎሻ. 

(15)

The same 𝑇 must be obtained by substituting the solutions 𝑥ሶ  and 𝑥 at 𝑇 into Eq. (1), that is: 2ℎ𝑥ሶ + 𝑝ଶ𝑥|௫ୀ௫బ|సೌ ≡ −2ℎሺℎ + ℎሻsin√ 𝑇 + 2ℎ√ cos√ 𝑇 + 𝑝ଶsin√ 𝑇 = 0       ⇒ tan√ 𝑇 = − 2ℎ√ 𝑝ଶ − 2ℎሺℎ + ℎሻ. 
Further at 𝑡 ∈ ሺ𝑇,𝑇ሻ  motion takes place according to the Eqs. (2) and (3) with initial 

parameters: 

𝑥ሺ𝑇ሻ = 𝑥ሶ ି√ 𝑒ିሺାబሻ்ೌ sin√ 𝑇,      𝑥ሶሺ𝑇ሻ = 𝑥ሶ ି√ 𝑒ିሺାబሻ்ೌ ൣ−ሺℎ + ℎሻsin√ 𝑇 + √ cos√ 𝑇൧. (16)

The solution of Eq. (2) in the interval: 𝑡 ∈ ሺ𝑇,𝑇ሻ, (17)

where: 𝑥ሺ𝑇ሻ = 0,      𝑥ሶሺ𝑇ሻ = 𝑥ሶ ାሺ𝑇ሻ, (18)

is: 
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𝑥 = 𝑒ିሺ௧ି்ೌ ሻ ቂ𝐷ଵcosඥ𝑝ଶ − ℎଶሺ𝑡 − 𝑇ሻ + 𝐷ଶsinඥ𝑝ଶ − ℎଶሺ𝑡 − 𝑇ሻቃ, (19)

where 𝐷ଵ, 𝐷ଶ are found according to the initial conditions Eq. (14): 𝑥ሺ𝑇ሻ = 𝐷ଵ, 𝑥ሶሺ𝑇ሻ = −ℎ𝐷ଵcosඥ𝑝ଶ − ℎଶ0 − ℎඥ𝑝ଶ − ℎଶ𝐷ଶsinඥ𝑝ଶ − ℎଶ0       −𝐷ଶඥ𝑝ଶ − ℎଶcos0 = −𝐷ଵℎ − 𝐷ଶඥ𝑝ଶ − ℎଶ, 𝐷ଵ = 𝑥ሺ𝑇ሻ, 𝑥ሶሺ𝑇ሻ = −ℎ𝑥ሺ𝑇ሻ − ඥ𝑝ଶ − ℎଶ𝐷ଶ ⇒ 𝐷ଶ = − 𝑥ሶሺ𝑇ሻඥ𝑝ଶ − ℎଶ − ℎඥ𝑝ଶ − ℎଶ 𝑥ሺ𝑇ሻ. 
(20)

Eq. (20) minus Eq. (19) gives: 𝑥 = 𝑒ିሺ௧ି்ೌ ሻ ቄ𝑥ሺ𝑇ሻcosඥ𝑝ଶ − ℎଶሺ𝑡 − 𝑇ሻ       − 1ඥ𝑝ଶ − ℎଶ ሾℎ𝑥ሺ𝑇ሻ + 𝑥ሶሺ𝑇ሻሿsinඥ𝑝ଶ − ℎଶሺ𝑡 − 𝑇ሻቋ, 𝑥ሶ = 𝑒ିሺ௧ି்ೌ ሻ ቄ−ℎ𝑥ሺ𝑇ሻcosඥ𝑝ଶ − ℎଶሺ𝑡 − 𝑇ሻ       + ℎඥ𝑝ଶ − ℎଶ ሾℎ𝑥ሺ𝑇ሻ + 𝑥ሶሺ𝑇ሻሿsinඥ𝑝ଶ − ℎଶሺ𝑡 − 𝑇ሻ       −𝑥ሺ𝑇ሻඥ𝑝ଶ − ℎଶsinඥ𝑝ଶ − ℎଶሺ𝑡 − 𝑇ሻ − ሾℎ𝑥ሺ𝑇ሻ + 𝑥ሶሺ𝑇ሻሿcosඥ𝑝ଶ − ℎଶሺ𝑡 − 𝑇ሻቅ       = 𝑒ିሺ௧ି்ೌ ሻ ቄ−ሾ2ℎ𝑥ሺ𝑇ሻ + 𝑥ሶሺ𝑇ሻሿcosඥ𝑝ଶ − ℎଶሺ𝑡 − 𝑇ሻ       + ቈቆ ℎଶඥ𝑝ଶ − ℎଶ − ඥ𝑝ଶ − ℎଶቇ𝑥ሺ𝑇ሻ + ℎඥ𝑝ଶ − ℎଶ 𝑥ሶ ሺ𝑇ሻ sinඥ𝑝ଶ − ℎଶሺ𝑡 − 𝑇ሻቋ       = 𝑒ିሺ௧ି்ೌ ሻ ቄ−ሾ2ℎ𝑥ሺ𝑇ሻ + 𝑥ሶሺ𝑇ሻሿcosඥ𝑝ଶ − ℎଶሺ𝑡 − 𝑇ሻ       + ቈ −𝑝ଶඥ𝑝ଶ − ℎଶ 𝑥ሺ𝑇ሻ + ℎඥ𝑝ଶ − ℎଶ 𝑥ሶ ሺ𝑇ሻ sinඥ𝑝ଶ − ℎଶሺ𝑡 − 𝑇ሻቋ, 𝑥ሶ = 𝑒ିሺ௧ି்ೌ ሻ ቄ−ሾ2ℎ𝑥ሺ𝑇ሻ + 𝑥ሶሺ𝑇ሻሿcosඥ𝑝ଶ − ℎଶሺ𝑡 − 𝑇ሻ       + 1ඥ𝑝ଶ − ℎଶ ሾ−𝑝ଶ𝑥ሺ𝑇ሻ + ℎ𝑥ሶሺ𝑇ሻሿsinඥ𝑝ଶ − ℎଶሺ𝑡 − 𝑇ሻቋ. 

(21)

It is assumed that when 𝑡 = 𝑇: 𝑥ሺ𝑇ሻ = 0,     𝑥ሶሺ𝑇ሻ = 𝑥ሶ ିሺ𝑇ሻ,     𝑇 = 𝑇 + 𝑇. (22)

In the Eqs. (20), (21) by assuming 𝑡 = 𝑇, that is 𝑡 − 𝑇 = 𝑇: 0 = 𝑒ିሺ்ି்ೌ ሻ ቄ𝑥ሺ𝑇ሻcosඥ𝑝ଶ − ℎଶሺ𝑇 − 𝑇ሻ       − 1ඥ𝑝ଶ − ℎଶ ሾℎ𝑥ሺ𝑇ሻ + 𝑥ሶሺ𝑇ሻሿsinඥ𝑝ଶ − ℎଶሺ𝑇 − 𝑇ሻቋ, (23)

𝑥ሶ = 𝑒ିሺ்ି்ೌ ሻ ቄ−ሾ2ℎ𝑥ሺ𝑇ሻ + 𝑥ሶሺ𝑇ሻሿcosඥ𝑝ଶ − ℎଶሺ𝑇 − 𝑇ሻ       + 1ඥ𝑝ଶ − ℎଶ ሾ−𝑝ଶ𝑥ሺ𝑇ሻ + ℎ𝑥ሶሺ𝑇ሻሿsinඥ𝑝ଶ − ℎଶሺ𝑇 − 𝑇ሻቋ. (24)
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From Eq. (23) 𝑇 is determined and from Eq. (24) 𝑥ሶ ିሺ𝑇ሻ. 
The coefficient of restitution of velocity of the support is: 

𝑅 = 𝑥ሶሺ𝑇ሻ𝑥ି , (25)

by taking into account Eqs. (13) and (15): 

𝑅 = 𝑒ିሺାబሻ்ೌ√ ൣ−ሺℎ + ℎሻsin√ 𝑇 + √ cos√ 𝑇൧, (26)

or: 

𝑅 = 𝑒ିሺାబሻ்ೌcos√ 𝑇 ⋅ 𝑝ଶ𝑝ଶ − 2ℎሺℎ + ℎሻ, (27)

where 𝑇 is determined by the Eq. (15). 

3. Vibrations of the conservative system 

In this case in the Eqs. (1-3) it is assumed that: ℎ = ℎ = 𝑓 = 0,     𝑥௦ > 0. (28)

Two intervals of time are investigated: the first one: 𝑡 ∈ ሾ0,𝑇തଵሿ,      𝑥 = 𝑥, (29)

and the second one: 𝑡 ∈ ሾ𝑇തଵ,𝑇ത = 𝑇ଵ + 𝑇ଶሿ,      𝑥 < 𝑥. (30)

In case of the first interval it is assumed: 𝑡 = 0: 𝑥 = 𝑥 = 0,      𝑥ሶ = 𝑥ሶ ି > 0, (31)𝑡 = 𝑇തଵ: 𝑥 = 𝑥 = 0,    𝑥ሶ = −𝑥ሶ ି. (32)

According to the Eqs. (1), (28), (29), (30) it is obtained: 

𝑥 = −𝐷ଵcosට𝑝ଶ + 𝑝ଶ𝑡 + 𝐷ଶsinට𝑝ଶ + 𝑝ଶ𝑡 + 𝐷ଵ, (33)𝑥ሶඥ𝑝ଶ + 𝑝ଶ = 𝐷ଵsinට𝑝ଶ + 𝑝ଶ𝑡 + 𝐷ଶcosට𝑝ଶ + 𝑝ଶ𝑡, (34)

where: 

𝐷ଵ = 𝑝ଶ𝑝ଶ + 𝑝ଶ 𝑥ଵ,      𝐷ଶ = 𝑥ሶ ିඥ𝑝ଶ + 𝑝ଶ. (35)

At 𝑡 = 𝑇തଵ, by taking into account Eqs. (32-35), it is obtained: 
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tanට𝑝ଶ + 𝑝ଶ𝑇തଵ = 2𝑋௦1 − 𝑋௦ଶ, (36)

where: 𝑋௦ = 1ට1 + ቀ𝑝𝑝 ቁଶ ⋅ 𝑝𝑥௦𝑥ሶ ି . (37)

In case of the second interval by taking into account Eq. (30) it is assumed: 𝑡 = 𝑇തଵ: 𝑥 = 𝑥,      𝑥ሶ = −𝑥ሶ ି, (38)𝑡 = 𝑇തଵ + 𝑇തଶ: 𝑥 = 𝑥,      𝑥ሶ = 𝑥ሶ ି. (39)

According to the Eqs. (2), (28), (38), (39) it is obtained: 𝑥 = −𝑥௦cos𝑝ሺ𝑡 − 𝑇തଵሻ − 𝑥ሶ𝑝 sinሺ𝑡 − 𝑇തଵሻ + 𝑥௦, (40)𝑥ሶ�̅� = 𝑥௦sin𝑝ሺ𝑡 − 𝑇ଵሻ − 𝑥ሶ𝑝 cos𝑝ሺ𝑡 − 𝑇തଵሻ. (41)

At 𝑡 = 𝑇തଵ + 𝑇തଶ, by taking into account Eqs. (39-41), it is obtained: 

tan𝑝𝑇തଶ = 2 𝑝𝑥௦𝜔ቀ𝑝𝑥௦𝑥ሶ ି ቁ − 1. (42)

Period of the system: 𝑇ത = 𝑇തଵ + 𝑇തଶ, (43)

where 𝑇തଵ and 𝑇തଶ are determined according to the Eqs. (36), (37), (42). 
In separate case, when: 𝑥௦ = 0, (44)

according to the Eqs. (36), (37), (42) it is obtained: 𝑇തଵ = 𝜋𝑝 ,     𝑇തଶ = 𝜋𝑝ට1 + ቀ𝑝𝑝 ቁଶ, 
(45)

that is: 

𝑇 = ⎣⎢⎢
⎡1 + 1ට1 + ቀ𝑝𝑝 ቁଶ⎦⎥⎥

⎤ 𝜋𝑝. (46)

4. Numerical investigation of the damped system 

It is assumed that 𝑥ሺ0ሻ = 0, 𝑥ሶሺ0ሻ = 1, 𝑥ሺ0ሻ = 0, 𝑐 = 1, 𝑐 = 1. Results for ℎ = ℎ = 0.2 
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are represented by a thin line; for ℎ = ℎ = 0.1 are represented by a line of medium thickness; for ℎ = ℎ = 0.001 are represented by a thick line. The force is calculated as 𝑃 = ℎ𝑥ሶ + 𝑐𝑥. 
Results of computations at 𝑥௦ = –0.2 are depicted in Fig. 2. 

 
a) Displacement as function of time 

 
b) Velocity as function of time 

 
c) Acceleration as function of time 

 

 
d) Velocity multiplied by acceleration  

as function of time 

 
e) Phase trajectory: velocity  
as function of displacement 

 
f) Phase trajectory: acceleration  

as function of velocity 

 
g) Phase trajectory: velocity multiplied by 
acceleration as function of displacement 

 
h) Force as function of time 
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i) Displacement of support as function of time 

 
j) Velocity of support as function of time 

 
k) Phase trajectory: velocity of support as function of displacement of support 

Fig. 2. Dynamics of the system at 𝑥௦ = –0.2 

Analogously, results of computations at 𝑥௦ = 0 are depicted in Fig. 3. 

 
a) Displacement as function of time 

 
b) Velocity as function of time 

 
c) Acceleration as function of time 

 

 
d) Velocity multiplied by acceleration  

as function of time 
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e) Phase trajectory: velocity  
as function of displacement 

 
f) Phase trajectory: acceleration  

as function of velocity 

 
g) Phase trajectory: velocity multiplied by 
acceleration as function of displacement 

 
h) Force as function of time 

 

 
i) Displacement of support as function of time 

 
j) Velocity of support as function of time 

 
k) Phase trajectory: velocity of support as function of displacement of support 

Fig. 3. Dynamics of the system at 𝑥௦ = 0 

Finally, results of computations at 𝑥௦ = 0.2 are depicted in Fig. 4. 
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a) Displacement as function of time 

 
b) Velocity as function of time 

 
c) Acceleration as function of time 

 

 
d) Velocity multiplied by acceleration  

as function of time 

 
e) Phase trajectory: velocity  
as function of displacement 

 
f) Phase trajectory: acceleration  

as function of velocity 

 
g) Phase trajectory: velocity multiplied by 
acceleration as function of displacement 

 
h) Force as function of time 
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i) Displacement of support as function of time 

 
j) Velocity of support as function of time 

 
k) Phase trajectory: velocity of support as function of displacement of support 

Fig. 4. Dynamics of the system at 𝑥௦ = 0.2 

5. Numerical investigation of the conservative system 

It is assumed that 𝑥ሺ0ሻ = 0, 𝑥ሶሺ0ሻ = 1, 𝑐 = 1, 𝑐 = 1. Results for 𝑥௦ = –1 are represented by 
a thin line; for 𝑥௦ = 0 are represented by a line of medium thickness; for 𝑥௦ = 1 are represented 
by a thick line. The force is calculated as 𝑃 = 𝑐𝑥. 

 
a) Displacement as function of time 

 
b) Velocity as function of time 

 
c) Acceleration as function of time 

 

 
d) Velocity multiplied by acceleration  

as function of time 
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e) Phase trajectory: velocity  
as function of displacement 

 
f) Phase trajectory: acceleration  

as function of velocity 

 
g) Phase trajectory: velocity multiplied by 
acceleration as function of displacement 

 
h) Force as function of time 

 
Fig. 5. The dynamics of the conservative system 

Simulation results for the investigated system are presented in Fig. 5. 

6. Conclusions 

Essentially nonlinear vibro-impact systems may have a number of various regimes of motion 
in steady state regimes under harmonic excitation. That couses unstable operation of such types 
of systems. Small variations of parameters or excitation jumps from one type of regime to another 
type of regime may occur. The purpose of this paper is to avoid this disadvantage in the behaviour 
of such system. This is achieved by choosing the fastening (the difference in the positions of 
statical equilibrium of impacting surfaces) between impacting members of the system to be equal 
to zero. All this is shown by the obtained formulas and graphical relationships, which were 
obtained by analytical and numerical methods. 

On the basis of the presented results the qualities of dynamic behavior of the investigated 
essentially nonlinear vibrating system are revealed. Analytical relationships describing the motion 
of the system have been determined and are presented in the paper. Free damped vibrations, 
vibrations of the conservative system, time histories of motion as well as phase trajectories of 
motion for typical values of system parameters are presented in detail. 

That opens a potential for the applicability of such systems in a wide variety of engineering 
applications. 
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