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Abstract. Through the combination of theory and experiment, the natural characteristics of the 
fiber metal laminates thin plates under cantilever boundary are analyzed and verified. Based on 
the mechanics of composites and classical laminated plate theory, the theoretical model is 
established. The orthogonal polynomial method and the energy method are used to solve the 
natural characteristics. Meanwhile the calculation process is proposed. And then, the natural 
characteristics of a TA2/TC500 fiber metal laminates thin plate are tested. It is found that 
comparing the calculation results of the frequencies with the test ones, the errors are within the 
range of 3.4 % to 4.5 %, the trends of modal shapes are consistent as well, thus the effectiveness 
of above method has been verified.  
Keywords: FMLs thin plates, cantilever boundary, orthogonal polynomial method, natural 
characteristics. 

1. Introduction 

Fiber metal laminates (FMLs) are new types of composite materials, which are composed of 
fiber reinforced layers and metal layers alternately [1-3]. Due to FMLs contained both of the 
advantages of metal materials, such as good toughness, strong impact resistance, high damage 
tolerance etc., and composite materials, such as high specific strength and specific stiffness, 
corrosion resistance and fatigue resistance, they have widely used in the wing, tail and hatch of 
advanced aircraft [4-6]. Since the above composite materials and the typical structural parts such 
as beams, plates and shells are often used in harsh environment, it is easy to produce problems 
such as excessive vibration, fatigue failure and fatigue wear. Therefore, it is necessary to study 
the vibration characteristics of FMLs thin plates which have important engineering and academic 
significances in the field of theoretical analysis, dynamic design and fault diagnosis [7]. 

The natural characteristics, such as natural frequencies and modal shapes, are the basis of 
in-depth study on the vibration characteristics of structural system. So far, a lot of researches on 
natural characteristics of FMLs thin plates had been done. Harras [8] et al. established a theoretical 
model of GLARE 3 fiber metal laminated thin plate under clamped boundary condition and the 
natural characteristics were obtained. Utilizing the experimental technology, Botelho [9] analyzed 
the damping characteristics of aluminum plate, carbon fiber/resin composite plate and glass 
fiber/aluminum alloy FMLs plate. Based on the first-order shear deformation theory, Shooshtari 
and Razavi [10] deduced the nonlinear ordinary differential equations of the fiber metal laminated 
thin plate by employing the Galerkin method. Meanwhile, the linear and nonlinear natural 
characteristics of the structure were analyzed. Payeganeh [11] et al. studied the dynamic 
characteristics of FMLs plate under low-speed impact, and it was found that parameters such as 
the lamination sequences, aspect ratios, impact speeds, and mass had significant effect on the 
dynamic characteristics of FMLs plate. Using Ritz method and ABAQUS finite element method, 
Ghasemi [12] et al. obtained the dimensionless natural frequency of fiber-reinforced metal 
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laminates under simply supported boundary condition. Then, the influences of geometric 
parameters and different distributions of metal layers on the vibration parameters were analyzed. 
Rahimi [13] et al. proposed a three-dimensional elastic analysis theory of FMLs based on the state 
space differential quadrature method. And the dimensionless frequency of the annular FMLs plate 
was calculated. Employing Navier method and Hamilton principle, Mahi [14] et al. presented the 
energy equation of various thin plates by using Ritz method. Then the natural frequencies the 
corresponding plates under different boundaries were solved. Iriondo [15] et al. studied the 
damping characteristics of the traditional FMLs plate and the self reinforced polypropylene FMLs 
plate by utilizing the resonance experiment under forced vibration. Sayyad and Ghugal [16] used 
the triangle shear method and the theory of normal deformation to establish a dynamic model of 
multi-layer laminates under simple boundary conditions based on the virtual work principle. Li 
[17] et al. studied natural frequencies of C-Ti FMLs beams and plates under cantilever boundary 
condition by employing experiments and ABAQUS finite element method. Meanwhile, the 
influences of different sizes and different numbers of metal layers on their natural frequencies 
were analyzed. However, the theoretical derivation had not been done. 

It can be found from the available literatures that the researches on the natural characteristics 
of FMLs thin plate under cantilever boundary were not enough, and most of the literatures had not 
been verified by experiments. Therefore, it is necessary to conduct further research on its natural 
characteristics. In this paper, a theoretical model of FMLs under cantilever boundary condition is 
established based on composite mechanics and classic laminate plate theory. The natural 
characteristics of the FMLs thin plates are solved by utilizing the orthogonal polynomial method 
and the energy method. As an example, to demonstrate the feasibility of the proposed model, the 
experimental test of a TA2/TC500 laminated thin plate is implemented. The calculated and 
measured results show a good consistency. 

2. Theoretical solution of the natural characteristics of the fiber metal laminates thin plates 
under the cantilever boundary 

2.1. Theoretical model  

FMLs thin plate is made of metal material and 𝑛-layer orthotropic fiber and matrix composite 
fiber reinforced material. Its theoretical model is shown in Fig. 1. In Fig. 1, a rectangular 
coordinate system is established with the middle plane as the reference plane. The length of the 
thin plate is 𝑎 and the width is 𝑏. The sides of the 𝑦𝑜𝑧 plane are fixed. The thickness of the metal 
layer is ℎଵ while the thickness of the fiber layer is ℎଶ. Therefore, the total thickness of the thin 
plate is ℎ = 3ℎଵ + 2ℎଶ , the angle between the longitudinal direction of the fiber and the 𝑥 
direction is 𝜃. Its material parameters are expressed as follows, 𝐸ଵ is the elastic modulus of the 
metal, 𝜐ଵ is the Poisson’s ratio of the metal, and 𝐸ଶଵ, 𝐸ଶଶ and 𝐺ଵଶ are the Young’s modulus of the 
fiber layer along the fiber direction, vertical fiber direction and in-plane shear in the fiber layer 
respectively, 𝜐ଵଶ and 𝜐ଶଵ are the Poisson’s ratios along the fiber direction and the vertical fiber 
direction, respectively, and 𝜌ଵ and 𝜌ଶ represent the densities of the metal layer and the fiber layer, 
respectively. 

y 1

 
Fig. 1. Theoretical model of the FMLs thin plate under cantilever boundary 
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Due to the model is a symmetric structure, based on Kirchhoff hypothesis and classical thin 
plate theory, its displacement components 𝑢 , 𝑣 , 𝑤  along the 𝑥 , 𝑦 , and 𝑧  directions can be 
expressed as [18]: 

𝑢ሺ𝑥,𝑦, 𝑧, 𝑡ሻ = 𝑢଴ሺ𝑥,𝑦, 𝑡ሻ − 𝑧 ∂𝑤଴ሺ𝑥,𝑦, 𝑡ሻ∂𝑥 ,𝑣ሺ𝑥,𝑦, 𝑧, 𝑡ሻ = 𝑣଴ሺ𝑥,𝑦, 𝑡ሻ − 𝑧 ∂𝑤଴ሺ𝑥,𝑦, 𝑡ሻ∂𝑦 ,𝑤ሺ𝑥,𝑦, 𝑧, 𝑡ሻ = 𝑤଴ሺ𝑥,𝑦, 𝑡ሻ,  (1)

where 𝑢଴, 𝑣଴ and 𝑤଴ represent the displacement of the middle plane of the thin plate respectively, 
and 𝑡 represents the time. 

The strain at any point of the thin plate can be expressed by displacement [18]: 

𝜀௫ = ∂𝑢∂𝑥 = ∂𝑢଴∂𝑥 − 𝑧 ∂ଶ𝑤଴∂𝑥ଶ ,𝜀௬ = ∂𝑣∂𝑦 = ∂𝑣଴∂𝑦 − 𝑧 ∂ଶ𝑤଴∂𝑦ଶ ,𝛾௫௬ = ∂𝑢∂𝑦 + ∂𝑣∂𝑥 = ∂𝑢଴∂𝑦 + ∂𝑣∂𝑥 − 2𝑧 ∂ଶ𝑤଴∂𝑥 ∂𝑦 ,𝜀௭ = 𝛾௬௭ = 𝛾௫௭ = 0,
 (2)

where, 𝜀௫ , 𝜀௬ , 𝜀௭  and 𝛾௬௭ , 𝛾௫௭  and 𝛾௫௬  represent the line strain and shear strain in 𝑥 , 𝑦  and 𝑧 
directions respectively. 

Therefore, the stress-strain relationship should be represented as [18]: 

൥𝜎௫𝜎௬𝜎௭ ൩ = ൥𝑄ଵଵ 𝑄ଵଶ 0𝑄ଶଵ 𝑄ଶଶ 00 0 𝑄଺଺൩ ൥ 𝜀௫𝜀௬𝛾௫௬൩, (3)

where, for the metal layer, 𝑄ଵଵ = 𝑄ଶଶ = ாభଵିజభమ, 𝑄ଵଶ = 𝑄ଶଵ = జభாభଵିజభమ, 𝑄଺଺ = ாభଶሺଵାజభሻ; for fiber layer, 𝑄ଵଵ = ாమభଵିజభమజమభ, 𝑄ଵଶ = 𝑄ଶଵ = జభమாమమଵିజభమజమభ = జమభாమభଵିజభమజమభ, 𝑄ଶଶ = ாమమଵିజభమజమభ, 𝑄଺଺ = 𝐺ଵଶ. 
In the fiber layer, when the angle between the fiber direction and the 𝑥-axis is 𝜃, by using the 

rotation axis formula, the stress-strain relationship of the 𝑘-th layer fiberboard is obtained as 
follows: 

൥𝜎௫𝜎௬𝜎௭ ൩(௞) = ቎𝑄തଵଵ 𝑄തଵଶ 𝑄തଵ଺𝑄തଶଵ 𝑄തଶଶ 𝑄തଶ଺𝑄തଵ଺ 𝑄തଶ଺ 𝑄ത଺଺቏ ൥
𝜀௫𝜀௬𝛾௫௬൩, (4)

where: 
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𝑄ଵଵ = 𝑄ଵଵcosସ𝜃௞ + 2(𝑄ଵଶ + 2𝑄଺଺)sinଶ𝜃௞cosଶ𝜃௞ + 𝑄ଶଶsinସ𝜃௞,𝑄ଵଶ = (𝑄ଵଵ + 𝑄ଶଶ − 4𝑄଺଺)sinଶ𝜃௞cosଶ𝜃௞ + 𝑄ଵଶ(sinସ𝜃௞ + cosସ𝜃௞),𝑄ଶଶ = 𝑄ଵଵsinସ𝜃௞ + 2(𝑄ଵଶ + 2𝑄଺଺)sinଶ𝜃௞cosଶ𝜃௞ + 𝑄ଶଶcosସ𝜃௞,𝑄ଵ଺ = (𝑄ଵଵ − 𝑄ଶଶ − 2𝑄଺଺)sin𝜃௞cosଷ𝜃௞ + (𝑄ଵଵ − 𝑄ଶଶ + 2𝑄଺଺)sinଷ𝜃௞cos𝜃௞,𝑄ଶ଺ = (𝑄ଵଵ − 𝑄ଶଶ − 2𝑄଺଺)sinଷ𝜃௞cos𝜃௞ + (𝑄ଵଵ − 𝑄ଶଶ + 2𝑄଺଺)sin𝜃௞cosଷ𝜃௞,𝑄଺଺ = (𝑄ଵଵ + 𝑄ଶଶ − 2𝑄ଵଶ − 2𝑄଺଺)sinଶ𝜃௞cosଶ𝜃௞ + 𝑄଺଺(sinସ𝜃௞ + cosସ𝜃௞),
 (5)

where 𝑘 represents the 𝑘-th layer fiber and 𝜃௞ represents the angle between the 𝑘-th layer fiber 
and the 𝑥-axis direction. 

2.2. Energy equations  

In the bending vibration of thin plates, the kinetic energy and strain energy of the metal layer 
of the model can be expressed as follows: 

𝐸௠ଵ = 12න න 𝜌ଵ ቈ൬𝜕𝑢𝜕𝑡൰ଶ + ൬𝜕𝑣𝜕𝑡൰ଶ + ൬𝜕𝑤𝜕𝑡 ൰ଶ቉௛/ଶ
௛మା௛భ/ଶ஺ 𝑑𝑧𝑑𝐴, (6a)

𝑈௠ଵ = 12න න ൫𝜎௫𝜀௫ + 𝜎௬𝜀௬ + 𝜎௫௬𝛾௫௬൯௛/ଶ
௛మା௛భ/ଶ஺ 𝑑𝑧𝑑𝐴, (6b)

𝐸௠ଶ = 12න න 𝜌ଵ ቈ൬𝜕𝑢𝜕𝑡൰ଶ + ൬𝜕𝑣𝜕𝑡൰ଶ + ൬𝜕𝑤𝜕𝑡 ൰ଶ቉௛/ଶ
ି௛భ/ଶ஺ 𝑑𝑧𝑑𝐴, (6c)

𝑈௠ଶ = 12න න ൫𝜎௫𝜀௫ + 𝜎௬𝜀௬ + 𝜎௫௬𝛾௫௬൯௛/ଶ
ି௛భ/ଶ஺ 𝑑𝑧𝑑𝐴, (6d)

𝐸௠ଷ = 12න න 𝜌ଵ ቈ൬𝜕𝑢𝜕𝑡൰ଶ + ൬𝜕𝑣𝜕𝑡൰ଶ + ൬𝜕𝑤𝜕𝑡 ൰ଶ቉ି௛మି௛భ/ଶ
ି௛/ଶ஺ 𝑑𝑧𝑑𝐴, (6e)

𝑈௠ଷ = 12න න ൫𝜎௫𝜀௫ + 𝜎௬𝜀௬ + 𝜎௫௬𝛾௫௬൯ି௛మି௛భ/ଶ
ି௛/ଶ஺ 𝑑𝑧𝑑𝐴. (6f)

The kinetic energy and strain energy of the fiber layer can be expressed as follows: 

𝐸௙ଵ = 12න න 𝜌ଶ ቈ൬𝜕𝑢𝜕𝑡൰ଶ + ൬𝜕𝑣𝜕𝑡൰ଶ + ൬𝜕𝑤𝜕𝑡 ൰ଶ቉௛మା௛భ/ଶ
௛భ/ଶ஺ 𝑑𝑧𝑑𝐴, (6g)

𝑈௙ଵ = 12න න ൫𝜎௫𝜀௫ + 𝜎௬𝜀௬ + 𝜎௫௬𝛾௫௬൯௛మା௛భ/ଶ
௛భ/ଶ஺ 𝑑𝑧𝑑𝐴, (6h)

𝐸௙ଶ = 12න න 𝜌ଶ ቈ൬𝜕𝑢𝜕𝑡൰ଶ + ൬𝜕𝑣𝜕𝑡൰ଶ + ൬𝜕𝑤𝜕𝑡 ൰ଶ቉ି௛భ/ଶ
ି௛మି௛భ/ଶ஺ 𝑑𝑧𝑑𝐴, (6i)

𝑈௙ଶ = 12න න ൫𝜎௫𝜀௫ + 𝜎௬𝜀௬ + 𝜎௫௬𝛾௫௬൯ି௛భ/ଶ
ି௛మି௛భ/ଶ஺ 𝑑𝑧𝑑𝐴, (6j)

where 𝐴 is the area of the thin plate. Eq. (1) and Eq. (2) are introduced into Eq. (6), then Eq. (3) 
and Eq. (4) are introduced into Eq. (6a)-(6d) and (6e)-(6f) respectively. The expressions of kinetic 
energy and strain energy of metal layer and fiber layer can be obtained through the middle 
displacement 𝑤଴: 
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𝐸௠ଵ = 12න න 𝜌ଵ ൥𝑧ଶ ቆ𝜕ଶ𝑤଴𝜕𝑥𝜕𝑡ቇଶ + 𝑧ଶ ቆ𝜕ଶ𝑤଴𝜕𝑦𝜕𝑡ቇଶ + ቆ𝜕ଶ𝑤଴𝜕𝑡 ቇଶ൩௛/ଶ
௛మା௛భ/ଶ஺ 𝑑𝑧𝑑𝐴, (7a) 

𝐸௠ଶ = 12න න 𝜌ଵ ൥𝑧ଶ ቆ𝜕ଶ𝑤଴𝜕𝑥𝜕𝑡ቇଶ + 𝑧ଶ ቆ𝜕ଶ𝑤଴𝜕𝑦𝜕𝑡ቇଶ + ቆ𝜕ଶ𝑤଴𝜕𝑡 ቇଶ൩௛భ/ଶ
ି௛భ/ଶ஺ 𝑑𝑧𝑑𝐴, (7b) 

𝐸௠ଷ = 12න න 𝜌ଵ ൥𝑧ଶ ቆ𝜕ଶ𝑤଴𝜕𝑥𝜕𝑡ቇଶ + 𝑧ଶ ቆ𝜕ଶ𝑤଴𝜕𝑦𝜕𝑡ቇଶ + ቆ𝜕ଶ𝑤଴𝜕𝑡 ቇଶ൩ି௛మି௛భ/ଶ
ି௛/ଶ஺ 𝑑𝑧𝑑𝐴, (7c) 

𝐸௙ଵ = 12න න 𝜌ଶ ൥𝑧ଶ ቆ𝜕ଶ𝑤଴𝜕𝑥𝜕𝑡ቇଶ + 𝑧ଶ ቆ𝜕ଶ𝑤଴𝜕𝑦𝜕𝑡ቇଶ + ቆ𝜕ଶ𝑤଴𝜕𝑡 ቇଶ൩௛మା௛భ/ଶ
௛భ/ଶ஺ 𝑑𝑧𝑑𝐴, (7d) 

𝐸௙ଶ = 12න න 𝜌ଶ ൥𝑧ଶ ቆ𝜕ଶ𝑤଴𝜕𝑥𝜕𝑡ቇଶ + 𝑧ଶ ቆ𝜕ଶ𝑤଴𝜕𝑦𝜕𝑡ቇଶ + ቆ𝜕ଶ𝑤଴𝜕𝑡 ቇଶ൩ି௛భ/ଶ
ି௛మି௛భ/ଶ஺ 𝑑𝑧𝑑𝐴, (7e) 

𝑈௠ଵ = 12න න 𝑧ଶ ൥𝑄ଵଵ ቆ𝜕ଶ𝑤଴𝜕𝑥ଶ ቇଶ + 2𝑄ଵଶ 𝜕ଶ𝑤଴𝜕𝑥ଶ ⋅ 𝜕ଶ𝑤଴𝜕𝑦ଶ௛/ଶ
௛మା௛భ/ଶ஺  

      +𝑄ଶଶ ቆ𝜕ଶ𝑤଴𝜕𝑦ଶ ቇଶ + 4𝑄଺଺ ቆ𝜕ଶ𝑤଴𝜕𝑥𝜕𝑦ቇଶ൩ 𝑑𝑧𝑑𝐴, (7f) 

𝑈௠ଶ = 12න න 𝑧ଶ ൥𝑄ଵଵ ቆ𝜕ଶ𝑤଴𝜕𝑥ଶ ቇଶ + 2𝑄ଵଶ 𝜕ଶ𝑤଴𝜕𝑥ଶ ⋅ 𝜕ଶ𝑤଴𝜕𝑦ଶ௛భ/ଶ
ି௛భ/ଶ஺  

      +𝑄ଶଶ ቆ𝜕ଶ𝑤଴𝜕𝑦ଶ ቇଶ + 4𝑄଺଺ ቆ𝜕ଶ𝑤଴𝜕𝑥𝜕𝑦ቇଶ൩ 𝑑𝑧𝑑𝐴, (7g) 

𝑈௠ଷ = 12න න 𝑧ଶ ൥𝑄ଵଵ ቆ𝜕ଶ𝑤଴𝜕𝑥ଶ ቇଶ + 2𝑄ଵଶ 𝜕ଶ𝑤଴𝜕𝑥ଶ ⋅ 𝜕ଶ𝑤଴𝜕𝑦ଶି௛మି௛భ/ଶ
ି௛/ଶ஺  

      +𝑄ଶଶ ቆ𝜕ଶ𝑤଴𝜕𝑦ଶ ቇଶ + 4𝑄଺଺ ቆ𝜕ଶ𝑤଴𝜕𝑥𝜕𝑦ቇଶ൩ 𝑑𝑧𝑑𝐴 (7h) 

𝑈௙ଵ = 12න න 𝑧ଶ ൥𝑄ଵଵ ቆ𝜕ଶ𝑤଴𝜕𝑥ଶ ቇଶ + 2𝑄ଵଶ 𝜕ଶ𝑤଴𝜕𝑥ଶ ⋅ 𝜕ଶ𝑤଴𝜕𝑦ଶ +௛మା௛భ/ଶ
௛భ/ଶ஺ 4𝑄ଵ଺ 𝜕ଶ𝑤଴𝜕𝑥ଶ ⋅ 𝜕ଶ𝑤଴𝜕𝑥𝜕𝑦 

      +𝑄ଶଶ ቆ𝜕ଶ𝑤଴𝜕𝑦ଶ ቇଶ + 4𝑄ଶ଺ 𝜕ଶ𝑤଴𝜕𝑦ଶ ⋅ 𝜕ଶ𝑤଴𝜕𝑥𝜕𝑦 + 4𝑄଺଺ ቆ𝜕ଶ𝑤଴𝜕𝑥𝜕𝑦ቇଶ൩ 𝑑𝑧𝑑𝐴, (7i) 

𝑈௙ଶ = 12න න 𝑧ଶ ൥𝑄ଵଵ ቆ𝜕ଶ𝑤଴𝜕𝑥ଶ ቇଶ + 2𝑄ଵଶ 𝜕ଶ𝑤଴𝜕𝑥ଶ ⋅ 𝜕ଶ𝑤଴𝜕𝑦ଶ + 4𝑄ଵ଺ 𝜕ଶ𝑤଴𝜕𝑥ଶ ⋅ 𝜕ଶ𝑤଴𝜕𝑥𝜕𝑦ି௛భ/ଶ
ି௛మି௛భ/ଶ஺  

      +𝑄ଶଶ ቆ𝜕ଶ𝑤଴𝜕𝑦ଶ ቇଶ + 4𝑄ଶ଺ 𝜕ଶ𝑤଴𝜕𝑦ଶ ⋅ 𝜕ଶ𝑤଴𝜕𝑥𝜕𝑦 + 4𝑄଺଺ ቆ𝜕ଶ𝑤଴𝜕𝑥𝜕𝑦ቇଶ൩ 𝑑𝑧𝑑𝐴. (7j) 

By adding the kinetic energy and strain energy of each layer, the total kinetic energy and strain 
energy can be obtained as: 𝐸௞ = 𝐸௠ଵ + 𝐸௠ଶ + 𝐸௠ଷ + 𝐸௙ଵ + 𝐸௙ଶ, (8a)𝑈௦ = 𝑈௠ଵ + 𝑈௠ଶ + 𝑈௡ଷ + 𝑈௙ଵ + 𝑈௙ଶ. (8b)

2.3. Solution by orthogonal polynomial method  

As the orthogonal polynomial method has clear solution principle, fast calculation speed, and 
can be applied to solve the natural characteristics of various boundaries, reference [14], using this 
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method, the mid plane displacement is expressed as: 

𝑤଴ = ෍ ෍𝐴௠௡𝑃௠(𝜉)𝑃௡(𝜂)ே
௡ୀଵ

ெ
௠ୀଵ sin(𝜔𝑡), (9)

where 𝑀 and 𝑁 are called the truncation coefficients for solution, 𝐴௠௡ is a pending parameter, 𝜔 
is the angular natural frequency, 𝑃௠(𝜉) and 𝑃௡(𝜂) are orthogonal characteristic polynomials, and 
their expression is as follows: 𝑃ଵ(𝜉) = 𝜙(𝜉),      𝑃௡(𝜂) = 𝜑(𝜂),       𝑃ଶ(𝜁) = (𝜁 − 𝐵ଶ),𝑃௞(𝜁) = (𝜁 − 𝐵௞)𝑃௞ିଵ(𝜁) − 𝐶௞𝑃௞ିଶ(𝜁),𝜁 = 𝜉, 𝜂,      𝑘 > 2,  (10)

where 𝐵௞  and 𝐶௞  are coefficient parameters, 𝜙(𝜉)  and 𝜑(𝜂)  are polynomial functions for 
determining boundary conditions, and their expression is as follows: 

𝐵௞ = ׬ 𝑊(𝜁)ሾ𝑃௞ିଵ(𝜁)ሿଶ𝜁𝑑𝜁ଵ଴׬ 𝑊(𝜁)ሾ𝑃௞ିଵ(𝜁)ሿଶ𝑑𝜁ଵ଴ ,       𝐶௞ = ׬ 𝑊(𝜁)𝑃௞ିଵ(𝜁)𝑃௞ିଶ(𝜁)𝜁𝑑𝜁ଵ଴ ׬ 𝑊(𝜁)ሾ𝑃௞ିଵ(𝜁)ሿଶ𝑑𝜁ଵ଴ ,
𝜑(𝜉) = 𝜉௣(1 − 𝜉)௤ ,       𝜑(𝜂) = 𝜂௥(1 − 𝜂)௦,        𝜁 = 𝜉, 𝜂,       𝜉 = 𝑥𝑎 ,       𝜂 = 𝑦𝑏 , (11)

where 𝑊(𝜁)  is the weighting function used in the orthogonalization process, and usually  𝑊(𝜁) = 1 ; 𝑝 , 𝑞 , 𝑟 , 𝑠  represent boundary state parameters at 𝑥 = 0, 𝑥 = 𝑎 , 𝑦 = 0, 𝑦 = 𝑏 
respectively. When the boundary state is free, the value of the corresponding boundary state 
parameter is 0; When the boundary state is a simply supported boundary, the value of the 
corresponding boundary state parameter is 1; When the boundary state is a fixed boundary, the 
corresponding boundary state parameter is 2. According to the model established in this paper, the 
boundary state parameters 𝑝, 𝑞, 𝑟, 𝑠 correspond to the boundary state. Therefore, the values of 𝑝, 𝑞, 𝑟, 𝑠 are 2, 0, 0, 0 [14]. 

By substituting Eq. (9) into Eq. (8), the expressions of maximum kinetic energy 𝐸௞௠௔௫ and 
maximum strain energy 𝑈௦௠௔௫  with undetermined parameters can be obtained by making cos(𝜔𝑡) =1 and sin(𝜔𝑡) =1, respectively: 

𝐸௞௠௔௫ = 12න න 𝜌ଵ𝜔ଶ ቐ𝑧ଶ ൭෍ ෍𝐴௠௡ 𝑑𝑃௠𝑑𝑥 𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱ଶ௛/ଶ

௛మା௛భ/ଶ஺ + 𝑧ଶ ൭෍ ෍𝐴௠௡𝑃௠ 𝑑𝑃௡𝑑𝑦ே
௡ୀଵ

ெ
௠ୀଵ ൱ଶ 

      +൭෍෍𝐴௠௡𝑃௠𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱ଶቑ𝑑𝑧𝑑𝐴 + 12න න 𝜌ଵ𝜔ଶ ቐ𝑧ଶ ൭෍ ෍𝐴௠௡ 𝑑𝑃௠𝑑𝑥 𝑃௡ே

௡ୀଵ
ெ

௠ୀଵ ൱ଶ௛భ/ଶ
ି௛భ/ଶ஺  

      +𝑧ଶ ൭෍෍𝐴௠௡𝑃௠ 𝑑𝑃௡𝑑𝑦ே
௡ୀଵ

ெ
௠ୀଵ ൱ଶ +൭෍෍𝐴௠௡𝑃௠𝑃௡ே

௡ୀଵ
ெ

௠ୀଵ ൱ଶቑ𝑑𝑧𝑑𝐴 
      + 12න න 𝜌ଵ𝜔ଶ ቐ𝑧ଶ ൭෍ ෍𝐴௠௡ 𝑑𝑃௠𝑑𝑥 𝑃௡ே

௡ୀଵ
ெ

௠ୀଵ ൱ଶି௛మି௛భ/ଶ
ି௛/ଶ஺ + 𝑧ଶ ൭෍෍𝐴௠௡𝑃௠ 𝑑𝑃௡𝑑𝑦ே

௡ୀଵ
ெ

௠ୀଵ ൱ଶ 
      +൭෍෍𝐴௠௡𝑃௠𝑃௡ே

௡ୀଵ
ெ

௠ୀଵ ൱ଶቑ𝑑𝑧𝑑𝐴 + 12න න 𝜌ଶ𝜔ଶ ቐ𝑧ଶ ൭෍ ෍𝐴௠௡ 𝑑𝑃௠𝑑𝑥 𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱ଶ௛మା௛భ/ଶ

௛భ/ଶ஺  

(12a)



STUDY ON NATURAL CHARACTERISTICS OF FIBER METAL LAMINATES THIN PLATES UNDER CANTILEVER BOUNDARY.  
YUNSHAN LIU, FENG SHANG, ZHUO XU, BANGCHUN WEN 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 915 

      +𝑧ଶ ൭෍෍𝐴௠௡𝑃௠ 𝑑𝑃௡𝑑𝑦ே
௡ୀଵ

ெ
௠ୀଵ ൱ଶ +൭෍෍𝐴௠௡𝑃௠𝑃௡ே

௡ୀଵ
ெ

௠ୀଵ ൱ଶቑ𝑑𝑧𝑑𝐴 

      + 12න න 𝜌ଶ𝜔ଶ ቐ𝑧ଶ ൭෍෍𝐴௠௡ 𝑑𝑃௠𝑑𝑥 𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱ଶି௛భ/ଶ

ି௛మି௛భ/ଶ஺ + 𝑧ଶ ൭෍ ෍𝐴௠௡𝑃௠ 𝑑𝑃௡𝑑𝑦ே
௡ୀଵ

ெ
௠ୀଵ ൱ଶ 

      +൭෍෍𝐴௠௡𝑃௠𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱ଶቑ𝑑𝑧𝑑𝐴, 

𝑈௦௠௔௫ = 12න න 𝑧ଶ ቐ𝑄ଵଵ ൭෍ ෍𝐴௠௡ 𝑑ଶ𝑃௠𝑑𝑥ଶ 𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱ଶ௛ଶ௛మା௛భଶ஺  

      +2𝑄ଵଶ ൭෍ ෍𝐴௠௡ 𝑑ଶ𝑃௠𝑑𝑥ଶ 𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱൭෍ ෍𝐴௠௡𝑃௠ 𝑑ଶ𝑃௡𝑑𝑦ଶே

௡ୀଵ
ெ

௠ୀଵ ൱ 

      +𝑄ଶଶ ൭෍ ෍𝐴௠௡𝑃௠ 𝑑ଶ𝑃௡𝑑𝑦ଶே
௡ୀଵ

ெ
௠ୀଵ ൱ଶ +4𝑄଺଺ ൭෍ ෍𝐴௠௡ 𝑑𝑃௠𝑑𝑥 𝑑𝑃௡𝑑𝑦ே

௡ୀଵ
ெ

௠ୀଵ ൱ଶቑ𝑑𝑧𝑑𝐴 

      + 12න න 𝑧ଶ ቐ𝑄ଵଵ ൭෍ ෍𝐴௠௡ 𝑑ଶ𝑃௠𝑑𝑥ଶ 𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱ଶ௛భ/ଶ

ି௛భ/ଶ஺  

      +2𝑄ଵଶ ൭෍ ෍𝐴௠௡ 𝑑ଶ𝑃௠𝑑𝑥ଶ 𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱൭෍ ෍𝐴௠௡𝑃௠ 𝑑ଶ𝑃௡𝑑𝑦ଶே

௡ୀଵ
ெ

௠ୀଵ ൱ 

      +𝑄ଶଶ ൭෍ ෍𝐴௠௡𝑃௠ 𝑑ଶ𝑃௡𝑑𝑦ଶே
௡ୀଵ

ெ
௠ୀଵ ൱ଶ +4𝑄଺଺ ൭෍ ෍𝐴௠௡ 𝑑𝑃௠𝑑𝑥 𝑑𝑃௡𝑑𝑦ே

௡ୀଵ
ெ

௠ୀଵ ൱ଶቑ𝑑𝑧𝑑𝐴 

      + 12න න 𝑧ଶ ቐ𝑄ଵଵ ൭෍෍𝐴௠௡ 𝑑ଶ𝑃௠𝑑𝑥ଶ 𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱ଶି௛మି௛భ/ଶ

ି௛/ଶ஺  

      +2𝑄ଵଶ ൭෍ ෍𝐴௠௡ 𝑑ଶ𝑃௠𝑑𝑥ଶ 𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱൭෍ ෍𝐴௠௡𝑃௠ 𝑑ଶ𝑃௡𝑑𝑦ଶே

௡ୀଵ
ெ

௠ୀଵ ൱ 

      +𝑄ଶଶ ൭෍ ෍𝐴௠௡𝑃௠ 𝑑ଶ𝑃௡𝑑𝑦ଶே
௡ୀଵ

ெ
௠ୀଵ ൱ଶ +4𝑄଺଺ ൭෍ ෍𝐴௠௡ 𝑑𝑃௠𝑑𝑥 𝑑𝑃௡𝑑𝑦ே

௡ୀଵ
ெ

௠ୀଵ ൱ଶቑ𝑑𝑧𝑑𝐴 

      + 12න න 𝑧ଶ ቐ𝑄ଵଵ ൭෍ ෍𝐴௠௡ 𝑑ଶ𝑃௠𝑑𝑥ଶ 𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱ଶ௛మା௛భ/ଶ

௛భ/ଶ஺  

      +2𝑄ଵଶ ൭෍ ෍𝐴௠௡ 𝑑ଶ𝑃௠𝑑𝑥ଶ 𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱൭෍ ෍𝐴௠௡𝑃௠ 𝑑ଶ𝑃௡𝑑𝑦ଶே

௡ୀଵ
ெ

௠ୀଵ ൱ 

      +4𝑄തଵ଺ ൭෍ ෍𝐴௠௡ 𝑑ଶ𝑃௠𝑑𝑥ଶ 𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱൭෍ ෍𝐴௠௡ 𝑑𝑃௠𝑑𝑥 𝑑𝑃௡𝑑𝑦ே

௡ୀଵ
ெ

௠ୀଵ ൱ 

      +4𝑄തଶ଺ ൭෍ ෍𝐴௠௡𝑃௠ 𝑑ଶ𝑃௡𝑑𝑦ଶே
௡ୀଵ

ெ
௠ୀଵ ൱൭෍ ෍𝐴௠௡ 𝑑𝑃௠𝑑𝑥 𝑑𝑃௡𝑑𝑦ே

௡ୀଵ
ெ

௠ୀଵ ൱ 

(12b)
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      +𝑄തଶଶ ൭෍ ෍𝐴௠௡𝑃௠ 𝑑ଶ𝑃௡𝑑𝑦ଶே
௡ୀଵ

ெ
௠ୀଵ ൱ଶ +4𝑄ത଺଺ ൭෍ ෍𝐴௠௡ 𝑑𝑃௠𝑑𝑥 𝑑𝑃௡𝑑𝑦ே

௡ୀଵ
ெ

௠ୀଵ ൱ଶቑ𝑑𝑧𝑑𝐴 

      + 12න න 𝑧ଶ ቐ𝑄ଵଵ ൭෍ ෍𝐴௠௡ 𝑑ଶ𝑃௠𝑑𝑥ଶ 𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱ଶି௛భ/ଶ

ି௛మି௛భ/ଶ஺  

      +2𝑄ଵଶ ൭෍ ෍𝐴௠௡ 𝑑ଶ𝑃௠𝑑𝑥ଶ 𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱൭෍ ෍𝐴௠௡𝑃௠ 𝑑ଶ𝑃௡𝑑𝑦ଶே

௡ୀଵ
ெ

௠ୀଵ ൱ 

      +4𝑄തଵ଺ ൭෍ ෍𝐴௠௡ 𝑑ଶ𝑃௠𝑑𝑥ଶ 𝑃௡ே
௡ୀଵ

ெ
௠ୀଵ ൱൭෍ ෍𝐴௠௡ 𝑑𝑃௠𝑑𝑥 𝑑𝑃௡𝑑𝑦ே

௡ୀଵ
ெ

௠ୀଵ ൱ 

      +4𝑄തଶ଺ ൭෍ ෍𝐴௠௡𝑃௠ 𝑑ଶ𝑃௡𝑑𝑦ଶே
௡ୀଵ

ெ
௠ୀଵ ൱൭෍ ෍𝐴௠௡ 𝑑𝑃௠𝑑𝑥 𝑑𝑃௡𝑑𝑦ே

௡ୀଵ
ெ

௠ୀଵ ൱ 

      +𝑄തଶଶ ൭෍ ෍𝐴௠௡𝑃௠ 𝑑ଶ𝑃௡𝑑𝑦ଶே
௡ୀଵ

ெ
௠ୀଵ ൱ଶ +4𝑄ത଺଺ ൭෍ ෍𝐴௠௡ 𝑑𝑃௠𝑑𝑥 𝑑𝑃௡𝑑𝑦ே

௡ୀଵ
ெ

௠ୀଵ ൱ଶቑ𝑑𝑧𝑑𝐴. 
So the energy equation can be expressed as: 𝐹 = 𝐸௞௠௔௫ − 𝑈௦௠௔௫. (13)

Take the partial derivative of the energy equation 𝐹  with respect to the undetermined 
coefficients 𝐴௠௡. Then, set it equal to 0, thus: ∂𝐹∂𝐴௠௡ = 0,     𝑚 = 1,2 …𝑀,     𝑛 = 1,2 …𝑁. (14)

Solving the generalized eigenvalue problem of the minimum pending parameters of the  
Eq. (13) can be obtained: (𝐾 −𝜔ଶ𝑀)𝑞 = 0, (15)

where 𝐾 and 𝑀 are the stiffness matrix and mass matrix of the structural system, respectively, and 
the feature vector 𝑞 = ሾ𝐴ଵଵ,𝐴ଵଶ, …𝐴௠௡ሿ். If Eq. (15) is solved, the determinant of the coefficient 
matrix of the feature vector 𝑞 is 0, that is: det(𝐾 −𝜔ଶ𝑀) = 0. (16)

The natural frequencies of the structure can be obtained by solving Eq. (16), the accuracy of 
which is determined by the values of 𝑀 and 𝑁. the larger the values of 𝑀 and 𝑁, the higher the 
accuracy of the results. In this study, setting 𝑀 = 8 and 𝑁 = 8 can satisfy the calculation  
accuracy [19]. 

Taking the obtained natural frequencies back into Eq. (15), the undetermined parameters of 𝐴௠௡ can be obtained, and taking them into Eq. (9), the modal shapes of each natural frequency 
can be obtained. 

3. Analysis process of natural characteristics of fiber metal laminates thin plate 

In this section, based on the MATLAB software, the corresponding program is written, and 
the analysis process of the natural characteristics of the FMLs thin plate under the cantilever 
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boundary condition is proposed. The flowchart is given in Fig. 2, and corresponding specific steps 
are as follows: 

1) Input the geometrical parameters and material parameters of FMLs thin plate.  
Firstly, the length, width, thickness of metal layer and fiber layer, fiber angle of each layer and 

other geometric parameters of FMLs thin plate are given. Then, the elastic modulus of metal and 
fiber, Poisson’s ratio, material density, metal elastic modulus, elastic modulus and shear modulus 
of fiber along the fiber direction and perpendicular to the fiber direction are input respectively to 
prepare for calculation. 

2) Obtain the expression of maximum kinetic energy and maximum strain energy. 
The displacement component expression Eq. (1) is substituted into the general kinetic energy 

expression Eq. (8a) and the general strain energy expression Eq. (8b), and the later generations 
are arranged into the middle plane displacement expression Eq. (14) of the orthogonal polynomial 
method. According to different boundaries, 𝑃௠(𝜉) and 𝑃௡(𝜂) are determined. After finishing, set cos(𝜔𝑡) = 1 to obtain the maximum kinetic energy 𝐸௞௠௔௫ , and set sin(𝜔𝑡) =1 to obtain the 
maximum strain energy 𝑈௦௠௔௫. 

3) Obtain the natural frequencies. 
Take the maximum kinetic energy and maximum strain energy obtained in step 2 into Eq. (13), 

and get the specific expression of energy equation 𝐹 . By solving the generalized eigenvalue 
problem of the minimum undetermined parameter, i.e. let det(𝐾 −𝜔ଶ 𝑀) =  0, the natural 
frequencies 𝜔 of FMLs can be obtained. 

4) Obtain the modal shapes. 
Taking the obtained natural frequencies 𝜔 into Eq. (15), the undetermined parameters 𝐴௠௡ 

can be obtained, and the obtained parameters can be taken back to the displacement expression 
Eq. (9) to obtain the modal shape of each order. 

max
kE max

sU

max
kE max

sU

0
mn

F
A
∂ =

∂

 
Fig. 2. The flowchart of solving the natural characteristics of FMLs plate 

4. A case study 

Taking a TA2/TC500 FMLs thin plate as the research object, the natural frequencies and modal 
shapes of the thin plates are tested under cantilever boundary condition. The length, width and 
height of the object are 200×300×2.65 mm. Among them, the thickness of the metal layer is 0.3 
mm, the density is 4.15×103 kg/m3, the elastic modulus is 108 GPa, and the Poisson’s  ratio is 0.3; 
The total thickness of a fiber layer is 0.875 mm, the elastic model of the fiber along the fiber 
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direction is 136 GPa, the elastic modulus of the vertical fiber direction is 7.92 GPa, the shear 
modulus is 3.39 GPa, Poisson’s ratio 0.3, density 1780 kg/m3, the laminate configuration is 
[(0°/90°)s/0°/(90°/0°)s]. 14 layers are laid in total, and each layer has the same thickness and fiber 
volume fraction. The short side is clamped during installation, and the clamping length is 30 mm. 

 
Fig. 3. The natural characteristics experiment system of FMLs thin plates 

In order to verify the correctness of the calculation method proposed in this paper, a test system 
is built as shown in Fig. 3. The experiment adopts the method of multi-point excitation and 
single-point response, which is carried out by a modal hammer. Before the test, the tested plate is 
equally divided into 9 parts in the length direction and 10 parts in the width direction. The exciting 
points are numbered from 1 to 110. Furthermore, the response point is set at point 33. Meanwhile, 
the test bandwidth is set as 1600 Hz, the number of spectrum lines is 4096, and the frequency 
resolution is 0.39 Hz. In order to improve the test accuracy, a force index window function is also 
added to the excitation signal, and an exponential window function is added to the response signal. 

During the test, PCB086C01 modal hammer is used to excit the FMLs plate three times at each 
exciting point, and LMS mobile front-end is used to collect the excitation signal and response 
signal. Finally, the first 7 natural frequencies and modal shapes can be obtained through the 
storage and analysis of notebook computer equipped with LMS Test. lab 14A analysis software. 
The obtained natural frequencies and modal shapes are shown in Table 1. For comparison 
purposes, the frequencies and modal shapes calculated by MATLAB software and corresponding 
errors are listed in Table 1. 

By comparing the calculation results with the experimental ones, it can be found that the errors 
between the calculation results of the natural frequency of the FMLs thin plate and the 
experimental results are 3.4 % and 4.5 %, which is within an allowable range. Meanwhile, the 
corresponding modal shapes are completely consistent. Thus, the correctness of the theoretical 
analysis method can be verified. 

5. Parameters studies 

The theoretical model has been verified in section 4. Therefore, in this section, the relationship 
between the material and geometric parameters of FMLs plate and its frequencies will be  
discussed. For the convenience of calculation, the thickness of the fiber layer is set to be 0.1 mm, 
and the laminate configuration is [0°/90°]s. 

5.1. The influence of material parameters on the natural frequency of FMLs plate 

In this section, in order to compare the relationship between different material parameters and 
the natural frequencies of the structures studied, the densities and elastic moduli of aluminum, 
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titanium and stainless steel materials are respectively selected for calculation and discussion. The 
corresponding material parameters are shown in Table 2. The length × width × thickness of the 
plate is set to be 300 × 200 × 2.9 mm. The thickness of the matal layer is 0.3mm, therefore, the 
numbers of the fiber in the fiber layers are 10. Meanwhile, the calculated results of the first 7 
orders of the natural frequencies of the FMLs plates with different material parameters are shown 
in Table 3. 

Table 1. The first 7 natural frequencies and modal shapes  
of FMLs thin plate by calculation and experiment 

Order 
Calculation 
frequency  

(Hz) 𝐴 

Test  
frequency  

(Hz) 𝐵 

Error (%) ฬ𝐴 − 𝐵𝐵 ฬ Calculation 
vibration mode 

Test 
vibration mode 

1 34.4 35.7 3.8   

2 71.9 75.1 4.5   

3 215.6 222.7 3.3   

4 296.9 309 4.1   

5 475.0 491.2 3.4   

6 603.3 624.1 3.4   

7 699.6 726.9 3.9   

Table 2. The material parameters of the FMLs plate 
Type Material Elasticity modulus (GPa) Density (kg/m3) 

Case 1 Aluminum 72 2700 
Case 2 Titanium 108 4150 
Case 3 Stainless steel 180 7800 
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Table 3. The calculated frequencies of FMLs plate with different material parameters 

Order Natural frequencies (Hz) 
Case 1 Case 2 Case 3 

1 32.2 32.5 31.8 
2 65.7 71.7 95.1 
3 195.0 202.9 198.6 
4 305.9 322.3 329.7 
5 462.5 475.4 474.3 
6 565.6 572.7 572.4 
7 667.3 693.9 697.0 

It can be found from the above results that the natural frequency of the structure is the smallest 
when the material parameters of aluminum are selected. Furthermore, when the material 
parameters of titanium and stainless steel are chosen, the difference of the natural frequencies of 
FMLs plate is very small. It may be caused by the combined effect of the modulus of elasticity 
and the density. 

5.2. The influence of geometric parameters on the natural frequency of FMLs plate 

In this section, the influence of different geometric structures on the natural frequency of FMLs 
plate is discussed by setting different metal layer thickness and fiber layer thickness. The elasticity 
modulus and density are set to be the same as them in Section 4. And the length × width × thickness 
of the plate is set to be 300 × 200 × 3.0 mm. Besides, the corresponding geometric structure 
parameters are shown in Table 4. The calculation results of natural frequencies for different 
geometric parameters are shown in Table 5. 

Table 4. The geometric construction of the FMLs plate 
Type Thickness of the  

metal layers (mm) 
Thickness of the  
fiber layers (mm) 

Numbers of the fiber  
layers 

Case 4 0 3.0 1 
Case 5 0.2 1.2 2 
Case 6 0.4 0.9 2 

Table 5. The calculated frequencies of FMLs plate with different geometric construction 

Order Natural frequencies (Hz) 
Case 4 Case 5 Case 6 

1 35.8 34.5 32.9 
2 77.4 68.8 62.5 
3 224.4 215.5 205.3 
4 338.1 320.4 308.4 
5 493.0 487.7 465.7 
6 605.2 581.7 571.2 
7 717.3 701.4 688.6 

It can be seen from the above results that with the increase of the thickness of metal layer, the 
natural frequencies of FMLs plate decrease gradually. The reason for this phenomenon may be 
that, when the total thickness is certain, the density of the metal layer is higher than that of the 
fiber layer. With the increase of the thickness of the metal layer, the thickness of the fiber layers 
gradually decreases, which leads to the increase of the overall mass and then reduces the natural 
frequency of the structure. 

6. Conclusions 

In this paper, the natural characteristics of the FMLs thin plate under cantilever boundary 
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condition are analyzed and verified by combining theory with experiment. By comparing the 
calculation results with the experimental ones of the TA2/TC500 thin plate, it can be seen that the 
errors of the natural frequencies between the calculated results and the experimental ones are  
3.4 % and 4.5 %, which are within an allowable error range. Besides, the corresponding modal 
shapes are completely consistent, which further verifies the correctness of the theoretical analysis 
method. By using the method proposed in this paper, the analysis and prediction of the natural 
characteristics of FMLs thin plate under the cantilever boundary condition can be realized. 
Meanwhile, by studying the relationship between the parameters, such as material and the 
geometric ones, and the natural frequencies in the structure, it can be found that the natural 
frequency of the structure is the smallest when the material parameters of aluminum are selected. 
And the natural frequencies of FMLs plate decrease gradually with the increase of the thickness 
of metal layer. Furthermore, the theoretical model is also applicable to the analysis of the natural 
characteristics of FMLs laminates thin plates under different boundaries conditions such as free, 
simply supported and clamped. However, the results of this paper have not analyzed and discussed 
the natural characteristics of FMLs plates with asymmetric and multi-layers. And the 
corresponding results need to be further demonstrated. 
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