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Abstract. Gear meshing dynamic model is the most important part in the whole wind turbine 
system which is used to carry out operation conditions simulation in off-line case. By simulating 
the normal gear meshing and the gear meshing with broken teeth in wind turbine dynamic model 
respectively, the difference in generator current can be observed. The method we propose is to 
monitor the operating condition of the wind turbine based on the current transmitted to the 
generator end dynamically according to the meshing of the gear pair. Mechanical parameters have 
great influence on the system that will be transmitted to asynchronous generator, it works in a 
quite different approach compared with traditional method on vibration monitoring using sensors. 
Keywords: wind turbine, generator current, dynamic model, fault simulation. 

1. Introduction 

The main mechanical failure [1, 2] of wind turbines occurs on two key components of gears 
[3] and rolling bearings [4]. The measured physical quantities of conventional fault diagnosis are 
generally vibration signal [5] related parameters namely displacement, velocity and acceleration. 
However, by arranging the vibration measuring sensor at the monitoring point for detection, the 
error is relatively large. Because the position of the sensor often has a certain distance from the 
vibration source, the influence of the distance on the measurement effect is difficult to estimate 
and accurately measure [6, 7]. In addition, the vibration displacement measured by the vibration 
sensor is also affected by the vibration of other equipment in the entire unit, which is coupled and 
difficult to distinguish. Air vibrations in the monitoring space are neglected in general vibration 
measurements. However, in actual mechanical operation, high-speed rotating equipment 
sometimes needs to consider the effects of air vibration. Therefore, the signal measured during the 
vibration measurement is doped with a large amount of noise unrelated to the vibration signal. 
Relatively speaking, the current signal [8-10] during the operation of the device is much more 
stable.  

The current signal is accompanied by the entire operation of the wind turbine [11, 12], and the 
electrical parameters such as current [13-15] and voltage are important parameters of the wind 
turbine itself, and no additional sensors need to be installed. Its reliability and stability are thus 
somewhat higher than the vibration measurement process. The motor current signal analysis 
method [16] is also called Sensorless Detection Method. It was first proposed to be used in the 
research direction of asynchronous generator operation monitoring and fault diagnosis [17, 18]. 
This method of analyzing the corresponding signals by using the characteristics of the stator 
current signal of the motor has been detecting faults of the generator body, such as fault diagnosis 
of the stator [19], rotor [20] and air gap flux of the generator. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2020.21336&domain=pdf&date_stamp=2020-12-31
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2. Theoretical basis for motor current analysis method  

2.1. Planetary gear system dynamics model 

The structure of the gearbox [21] in a wind turbine is different from that of a general gearbox. 
The structure is usually composed of a sun gear, a plurality of planet gears, a ring gear, a planet 
carrier, etc., and the motion mode [22] in which the ring gear fixes the sun gear rotating around 
the central axis is the most common. The planetary gears not only rotate around their respective 
central axes, but also revolve around the central axis of the sun gear. The planetary gear train 
structure is shown in Fig. 1. 

 
Fig. 1. Planetary gear system 

 
Fig. 2. Planetary gear train equivalent  

mechanical parameters 

In this paper, a purely torsion model with concentrated parameters is used. As shown in Fig. 2, 
the gear mesh is considered as spring and damping, also each component only considers the 
vibration in the torsional direction. Among them, 𝐾௦, 𝐾, 𝐶௦, 𝐶 are the meshing stiffness 
and damping coefficient between the sun gear and the planetary gear, the planetary gear and the 
inner ring gear respectively, and 𝜃௦, 𝜃  and 𝜃  are the rotation angles of the sun gear. 𝑇 and 𝑇 
are their input torque and load torque. According to the Lagrange equation, the pure torsional 
dynamic equation of the system can be showed in Eq. (1): 

⎩⎪⎪⎨
⎪⎪⎧𝐼௦𝜃ሷ௦ + (𝐷௦ + 𝑃௦)𝑟௦ = 𝑇ே

ୀଵ ,𝐼𝜃ሷ − (𝐷௦ − 𝐷 + 𝑃௦ − 𝑃) = 0,൭𝐼 + 𝑚𝑟ଶே
ୀଵ ൱𝜃ሷ −൫𝐷௦ + 𝐷 + 𝑃௦ + 𝑃൯𝑟 = −𝑇.ே

ୀଵ
 (1)

The first equation in Eq. (1) is obtained by dynamic analysis of the sun gear, the second 
equation is obtained by dynamic analysis of each planet, and the third equation is 𝑁 planets and 
planets. A whole kinetic analysis was obtained. 𝑃௦ , 𝑃 , 𝐷௦  and 𝐷  represent the elastic 
meshing force and meshing damping force between the sun gear and the planetary gear, the 
planetary gear and the ring gear, respectively; 𝑟 represents the equivalent radius of the planet 
carrier; 𝑟௦ and 𝑟 are the Base circle radius of sun gear and the planetary gear. Assume that the 
relative displacement of the sun gear and the planet gear on the meshing line is 𝑥௦, and the 
relative displacement of the planet gear and the ring gear on the meshing line is 𝑥, resulting in 
Eq. (2) and Eq. (3): 
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൜𝑥௦ = 𝜃௦𝑟௦ − 𝜃𝑟 − 𝜃𝑟 ,𝑥 = 𝜃𝑟 − 𝜃𝑟,  (2)

⎩⎨
⎧𝑃௦ = 𝐾௦𝑥௦ ,𝑃 = 𝐾𝑥 ,𝐷௦ = 𝐶௦𝑥ሶ௦ ,𝐷 = 𝐶𝑥ሶ . (3)

Substitute Eq. (2) and Eq. (3) into Eq. (1), the dynamic equation of the dynamic system Eq. (4) 
is obtained: 𝑥ሷ + 𝐶𝑥ሶ + 𝐾𝑥 = 𝐹. (4)

Among them: 

𝑥 = ቂ𝑥௦𝑥ቃ ,       𝐶 =
⎣⎢⎢
⎢⎢⎡൬ 1𝑀௦ + 1𝑀൰𝐶௦ே
ୀଵ + 𝐶௦𝑀 ቆ 1𝑀 − 1𝑀ቇ𝐶−𝐶௦𝑀 + 𝐶௦𝐶𝑀𝑀 + 𝐶𝑀

ே
ୀଵ

ே
ୀଵ ⎦⎥⎥

⎥⎥⎤, 
𝐾 =

⎣⎢⎢
⎢⎢⎡൬ 1𝑀௦ + 1𝑀൰𝐾௦ே
ୀଵ + 𝐾௦𝑀 ቆ 1𝑀 − 1𝑀ቇ𝐾−𝐾௦𝑀 + 𝐾௦𝐾𝑀𝑀 + 𝐾𝑀

ே
ୀଵ

ே
ୀଵ ⎦⎥⎥

⎥⎥⎤ ,       𝐹 = ⎣⎢⎢
⎡ 𝑇𝑀௦𝑟௦ + 𝑇𝑀𝑟𝑇𝑀𝑟 ⎦⎥⎥

⎤, 
and 𝑀௦, 𝑀 and 𝑀 represented as the equivalent mass of the sun gear, planet gear and planet 
carrier. 

From the differential equations Eq. (4), two outputs can be obtained, which are the pitch line 
displacement caused by the meshing of the sun gear and the planetary gear, and the pitch of the 
pitch generated by the meshing of the planetary gear and the ring gear. In order to simplify the 
analysis of the movement of the planetary gear train, only the movement between the sun gear and 
the planet gears is considered here. Therefore, it can be further simplified here as the meshing 
motion between a pair of gears. The equations also show that the meshing stiffness and the external 
exciting force have a certain influence on the output of the system model. The basis of the 
identification and degree of fault diagnosis can also be determined by the change of these two 
parameters. Details of the movement of the sun gear-planetary after simplification will be detailed 
in the next section. 

2.2. Simplified sun-planet gear model 

Considering the weight of the simplified sun gear-planetary model gear set weight model, the 
gear is equivalent to a set of springs. By considering a set of intermeshing gears as the object of 
study, the mathematical expression Eq. (5) of the differential equation of the geared pair: 𝑀𝑥ሷ + 𝐶𝑥ሶ + 𝑘(𝑡)𝑥 = 𝑘(𝑡)𝐸ଵ + 𝑘(𝑡)𝐸ଶ(𝑡). (5)

In dynamic systems, the effect of static and elastic deformation on the overall system can be 
neglected under certain circumstances. Therefore, the Eq. (5) is simplified to obtain Eq. (6). After 
this section, if 𝐸(𝑡) is not specifically emphasized, the default is the relative displacement of the 
gear mesh in dynamic situations: 
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𝑀𝑥ሷ + 𝐶𝑥ሶ + 𝑘(𝑡)𝑥 = 𝑘(𝑡)𝐸(𝑡). (6)

It can be known from Eq. (6) that the type of vibration of the gear meshing is a kind of 
self-excited vibration, and the formula means that the characteristic of the vibration of the gear pair 
itself can be expressed by the excitation force function. 𝐾(𝑡)𝐸(𝑡) is a modulated signal whose 
magnitude is determined by the overall stiffness of the gear and the course of the fault function. 
The function of the meshing stiffness 𝐾(𝑡) of a normal and non-damaged gear changes with time. 
Under ideal conditions, it can be regarded as a square wave function; the variation law of 𝐸(𝑡) 
depends on the fault type of the gear, if in the event of a broken tooth fault, 𝐸(𝑡) periodically 
appears with the frequency of the gear. That is to say, the main cause of gear vibration is the periodic 
signal generated by 𝐾(𝑡) and 𝐸(𝑡) modulation. The meshing stiffness changes as the gears enter 
during the meshing of the gears, and the meshing period and the meshing frequency are also 
determined accordingly. Therefore, the change law of the meshing stiffness corresponding to the 
gears of different types and different coincidence coefficients is also different. Eq. (7) is the gear 
meshing frequency formula: 𝑓 = 𝑓ଵ𝑍ଵ = 𝑓ଶ𝑍ଶ. (7)

So far, several important parameters required for the calculation in the differential equation 
Eq. (6) have been discussed clearly. Using the MATLAB/SIMULINK model to solve the 
above-mentioned differential equation solving process, the corresponding calculation block 
diagram flow is shown in Fig. 3. 
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Fig. 3. Gear pair calculation  

Consider an example, the number of teeth of the large gear is 𝑍ଵ = 34, the number of teeth of 
the small gear is 𝑍ଶ = 23, the modulus is 𝑚 = 3, the tooth width is 𝐵 = 20 mm, and the calculated 
mass considering the motor mass is 𝑀 = 4.5 kg, 𝑘 = 200-250 kN, 𝐶 = 300 N.s/m. Fig. 4 shows 
the actual SIMULINK model. Because the time of the broken tooth failure is usually very short, 
the simulation time here takes 1 s. The input speed of the large gear end is 1200 r/min. 

 
Fig. 4. Gear pair Simulink model 
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It can be known from Eq. (6) that when 𝐸(𝑡) is set to a constant, the entire dynamic system is 
in normal motion. The simulation results obtained are shown in Fig. 5. The relative acceleration 
and relative velocity have a large change in the initial stage of the simulation, but when the whole 
dynamic system is in the state of steady state operation, both parameters approach a constant value. 

 
Fig. 5. Acceleration and speed under normal conditions 

Fig. 6 shows the time and frequency domain waveforms of the relative acceleration and relative 
velocity produced by the tooth engagement when the broken tooth fault occurs. From the time 
domain waveform, the amplitude of the relative acceleration is much higher than the relative  
speed. This is because the gear meshing requires a certain speed, and a short acceleration process 
is required in the initial simulation stage to meet the meshing condition. The amplitude-frequency 
curves (c) and (d) of Fig. 6 clearly show that both the relative acceleration and the relative velocity 
have a frequency that is less than the frequency of the frequency. The theoretical frequency is 
20 Hz, and the simulation result is 28.64 Hz, which is in line with the simulation expectation, 
indicating that the model has certain reliability. Regarding a high-frequency signal appearing in 
the relative acceleration, it is just a mutual verification of the rapid change of the acceleration in 
the time-domain waveform, which proves the condition that the meshing needs to be satisfied. 

 
Fig. 6. Time domain and frequency domain under broken tooth conditions 
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2.3. Basic principle of asynchronous generator  

Doubly fed Induction Generator are often used in wind turbines for simulation of off-line 
conditions. Therefore, it is necessary to introduce the relevant theory of asynchronous motor in 
detail in this section as the theoretical basis for the construction of the subsequent simulation 
model. According to the AC generator theory, the dynamic characteristics of an asynchronous 
generator [24] in the 𝑑-𝑞 rotating coordinate system can be described by the following equation: 

Voltage equation: 

⎩⎨
⎧𝑢௦ௗ = −𝑝𝜓௦ௗ + 𝜔௦𝜓௦ௗ − 𝑅௦𝑖௦ௗ ,𝑢௦ = −𝑝𝜓௦ + 𝜔௦𝜓௦ − 𝑅௦𝑖௦,𝑢ௗ = 𝑝𝜓ௗ + 𝜔௦𝜓ௗ + 𝑅𝑖ௗ ,𝑢 = 𝑝𝜓 + 𝜔௦𝜓 + 𝑅𝑖,  (8)

where: 𝑢௦  and 𝑢௦ௗ  are the stator cross-axis voltages respectively; 𝑖௦  and 𝑖௦ௗ  are the stator 
cross-axis currents respectively; 𝑢  and 𝑢ௗ  are the rotor cross-axis voltages respectively; 𝑖 
and 𝑖ௗ are the rotor cross-axis currents respectively; 𝑅௦, 𝑅 are fixed, Rotor resistance; 𝜓௦ and 𝜓௦ௗ are the orthogonal axis components of the stator flux linkage; 𝜓 and 𝜓ௗ are the orthogonal 
axis components of the rotor flux linkage; 𝜔௦ = 𝜔 − 𝜔, which is the angular velocity of the 𝑑-𝑞 
coordinate system relative to the rotor, where 𝜔 and 𝜔௦ are respectively For motor synchronous 
speed and rotor angular speed; p is the differential operator, 𝑝 = 𝑑/𝑑𝑡. 

Magnetic flux linkage equation: 

⎩⎨
⎧𝜓௦ௗ = 𝐿௦𝑖௦ௗ − 𝐿𝑖ௗ ,𝜓௦ = 𝐿௦𝑖௦ − 𝐿𝑖 ,𝜓ௗ = 𝐿𝑖ௗ − 𝐿𝑖௦ௗ,𝜓 = 𝐿𝑖 − 𝐿𝑖௦ ,  (9)

where: 𝐿௦ , 𝐿  and 𝐿  are the self-inductance and mutual inductance of the stator and rotor, 
respectively. 

Electromagnetic torque equation: 𝑇 = 32𝑝൫𝑖௦𝜓௦ௗ − 𝑖௦ௗ𝜓௦൯. (10)

Motion equation: 

𝑇 = 𝑇 + 𝐽 𝑑𝜔𝑑𝑡 , (11)

where: 𝑇 is the drag torque provided by the wind turbine; 𝜔 is the drag torque provided by the 
wind turbine; 𝐽 is the moment of inertia of the system 

3. Block diagram implementation of digital simulation model  

A dynamic model of the gear pair meshing has been established in Fig. 4 of Section 2.2. In 
this section, the above model is used to package the module using the sub-module packaging tool 
of MATLAB/SIMULINK. The block diagram after encapsulation is shown in Fig. 7. The normal 
operating conditions of the system and the broken tooth fault can be simulated by adjusting the 
parameters of the sub module. 
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Fig. 7. Meshing dynamic subsystem 

The twin-turbine generator model of the wind turbine is equivalent, and in the off-line 
condition, it is regarded as an asynchronous generator [23, 24]. Because the networked generator 
operating conditions are more complex, it is not conducive to the impact on the motor when the 
mechanical fault occurs, so this simplification will significantly improve the possibility of 
distinguishing the motor operating conditions. The system simulation model includes generator 
module, generator rotor variable frequency excitation module, load module, electrical parameter 
measurement module and gear fault simulation sub-module. The model of the doubly-fed 
generator is replaced by a wound-type asynchronous motor module to set the operation mode. The 
stator winding of the generator [25] is connected to the three-phase resistive load, and the PWM 
power inverter module is used to supply the generator rotor with one-way excitation, which only 
simulates the off-grid operation. The model built by the final simulation is shown in Fig. 8. 

 
Fig. 8. Completion model for system simulation 

Table 1. Asynchronous generator parameter  
Parameter Numerical value Parameter Numerical value 

Nominal power 3000 VA Stator resistance 1.9188 ohm 
Line-line voltage 220 V Stator inductance 0.2412 H 

Frequency 50 Hz Rotor resistance 2.5712 ohm 
Pole pairs 2 Rotor inductance 0.2412 H 

Initial conditions 0 Mutual inductance 0.234 H 

The basic parameters required for the simulation system are: generator rated power, rated 
voltage, rated speed, stator resistance, stator inductance, rotor resistance and inductance converted 
to the stator side, and stator and rotor mutual inductance. The coordinate system takes the 
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synchronous reference coordinate system [26]. The status is zero. The mechanical input of the 
generator is set to the speed input, and the output of the gear fault simulation sub-module and the 
superposition of an average speed are taken. Since the output of the gear failure simulation 
sub-module is only a velocity fluctuation component, the average velocity value needs to be added. 
Detailed parameters are described in the Table 1. 

4. Discussion and analysis of simulation results  

Since the key parameters are the electrical parameters of the generator, the parameters such as 
electromagnetic power and rotor speed are not concerned, so they are not analyzed in detail. In 
the variable step size ode45 ordinary differential equations solution used in Matlab 2018b, the 
relative error between the step sizes does not exceed 1e-3. Because the entire equation system is 
solved in a variable step size, the sampling frequency is automatically set in Simulink. The four 
physical parameters of rotor current, rotor voltage, stator current and stator voltage are mainly 
analyzed in the following two subsections. In the Fig. 4 of Section 2.2, the simulation sub-model 
is established. The normal working condition of the gear is different from that in the broken tooth 
state. This difference is expressed by the external exciting force and the meshing stiffness function. 

4.1. Time domain waveform of electrical parameters 

In Fig. 9(a), the normal stator current waveform [27, 28] and the waveform under the broken 
tooth fault have significant differences in amplitude. Moreover, due to the excitation frequency, 
the normal stator current waveform also exhibits a certain periodicity.  

 
Fig. 9. Generator current and voltage waveform within a second 

It can be observed from Fig. 9(a) that the effective value of the stator current amplitude in the 
broken tooth condition fluctuates within 1 A, and the range of the stator current amplitude under 
normal operating conditions exceeds this value. In Fig. 9(b), The normal working condition has a 
high stator voltage RMS at startup and gradually stabilizes within 50 V, while the stator voltage 
effective value in the fault state is about 75 V. The broken tooth fault causes the rms value of the 
stator voltage to be high. The normal rotor current in Fig. 9(c) differs greatly from the rotor current 
RMS at fault, and the normal rotor current rms value is about triple the rotor current at fault, with 
very significant differences. Fig. 9(d) shows that the rotor voltage under normal operating 
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conditions and the rotor voltage under broken teeth have very significant periodicity, the 
amplitudes are substantially the same, and slight phase shifts can be observed. 

In addition, the load on the AC generator was not analyzed in this result. In fact, the RMS of 
the resistive load line voltage amplitude is a voltage drop under normal operating conditions and 
broken tooth fault conditions, and the numerical performance is reduced from 200 V to 100 V. 
This feature can only be used as an indicator for the rational use of the system to determine the 
operating conditions of the system. 

4.2. Kernel density estimation of current signal 

As a common method in non-parametric estimation in probability theory, kernel density 
estimation (KDE) is used to estimate the unknown density function [29]. In our case, the kernel 
function we used to analyze current signals is Gaussian kernel function. Applying this method of 
estimating the density function to the stator current and the rotor current of the generator yields 
the results shown in Fig. 10. From the Gaussian kernel density estimation of the stator current, it 
is observed that the current value distribution under normal operating conditions is close to the 
Gaussian distribution, and the current distribution under the broken tooth fault has two distinct 
peaks, which are significantly different. The normal operating conditions of the stator current and 
the current distribution under the breaking condition are the difference between the single peak 
and the triple peak, respectively, and are also very easy to observe. Therefore, the above analysis 
by the characteristics of the generator current is possible as a method of fault diagnosis. 

  
Fig. 10. Kernel density estimation of stator current and rotor current 

4.3. Envelope spectrum and frequency band analysis of current signal 

The upper and lower envelope curves of the current amplitude are plotted by smoothing the 
stator and rotor currents, and the spectrum is plotted by FFT. Fig. 11(a), (c), (e), (g) are the 
envelope curves of stator current in the normal state, rotor current in the normal state, stator current 
in the broken tooth state and rotor current in the broken tooth state. The right side (b), (d), (f), (h) 
of Fig. 11 is their corresponding spectrum. The current envelope in the normal state shows a more 
pronounced periodicity than the envelope curve in the case of a broken tooth fault, but the range 
of up and down fluctuations is larger, while the envelope curve in the case of a broken tooth is 
smoother. Analyzing the spectrogram, it is easy to observe the following features. The normal 
current spectrum, the main component of both the stator and the rotor, appears lower than the 
current spectrum of the fault. The main component of the normal stator current is in the range of 
15 Hz to 35 Hz, while the frequency of the main component of the broken stator current is 35 Hz 
to 55 Hz, and the current frequency in the broken state is about 20 Hz higher than the normal 
frequency. In the same case, the rotor current shows an increase in frequency of the same principal 
component. In addition to this, the maximum amplitude of the stator current barely decreases 
under normal and broken teeth, while the amplitude of the rotor shows a significant decrease. 
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Fig. 11. Envelope curve and spectrum of stator current and rotor current 

5. Conclusions 

Wind turbine mechanical fault diagnosis can be achieved by analyzing the current of the 
generator and can be used to accurately monitor the operation conditions of the unit. From the point 
of view of the time-varying mesh stiffness of the gear tooth in the wind turbine gearbox, we explore 
it influence on the stator and rotor currents of the generator through simulation. This combination 
of a kinetic model with a circuit model for mechanical diagnosis is effective and does not require 
additional sensors to measure it. The difference in generator currents under normal and broken gear 
conditions can be used as a basis for evaluating the operation conditions of the wind turbine. 
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