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Abstract. In order to solve the problem of selection of appropriate wavelet basis function and 
clearly show the physical meaning of Empirical Mode Decomposition (EMD), an improved 
Variational Mode Decomposition (VMD) method with Long Short-Term Memory (LSTM) neural 
network is proposed. With the Cuckoo Search (CS) algorithm, the central frequency updating rules 
of VMD are optimized. And the low efficiency and local optimum problem is avoided. Meanwhile 
the decomposition layer number is found by the instantaneous frequency theory. For improving 
the prediction accuracy in traditional regression prediction methods, a LSTM neural network is 
designed for regression prediction of time sequence characteristics. The proposed method is 
implemented on actual bearings data which is derived from the bearing laboratory of Case West 
Reserve University in the United States and the University of Cincinnati Bearing Data Center. The 
experimental results showed that the improved VMD method was more robust and more accurate 
than the other traditional methods. And it has some practical value for real application and guiding 
significance for theory. 
Keywords: improved VMD, CS algorithm, LSTM neural network, fault severity assessment of 
rolling bearings. 

1. Introduction 

As a precision component, rolling bearings are widely used in rotating machinery. Because of 
the natural working conditions, the rolling bearings are particularly vulnerable. According to the 
research, about 30 % of the rotating machinery faults were caused directly or indirectly by the 
faults of rolling bearings, which brought huge economic and life losses [1, 2]. So, the performance 
assessment of rolling bearings and its maintenance according to its situation are the most important 
works to ensure the safe, stable, efficient and accurate operation of rotating machinery. It is also 
one of the most popular subjects of research in the academic and industrial area [3].  

In general, the performance assessment of rolling bearings is divided into three parts: signal 
preprocessing, features extraction and regression prediction. The main purpose of signal 
preprocessing is to eliminate noise. Traditional methods include Fourier Transform (FT), Wavelet 
Transform (WT) and Empirical Mode Decomposition (EMD), etc. [4]. However, many 
shortcomings have been found in these traditional methods. In recent years, some methods based 
on WT were developed. Hou, Zhiqiang, et al. developed a new multi-speed fault diagnostic 
approach which was presented by using self-adaptive wavelet transform components generated 
from bearings vibration signals [5]. Yongbo Li, et al. developed a method based on Tunable 
Q-factor Wavelet Transform (TQWT) to analyze early fault diagnosis [6]. Although the above 
methods achieved some better performance, the shortcomings of insufficient wavelet 
decomposition adaptive performance still exist. EMD is a method which can self-adaptive 
decompose wavelet transform functions, and many improved methods were built. Zhaohua Wu, 
et al. proposed an improved EMD method named as the Ensemble Empirical Mode 
Decomposition (EEMD), by adding a finite amount of Gaussian noise into the signal, and 
decomposed it with EMD [7]. Although the EEMD can eliminate the Modal Mixing of EMD, 
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EEMD still has the problem to clearly explain the physical meaning. Jonathan S. Smith proposed 
the Local Mean Decomposition (LMD), and used it to analyze EEG perception data [8]. Although 
each component decomposed by LMD has practical physical meaning, the sampling frequency, 
sliding span selection and endpoint effects will affect the accuracy. Dragomiretskiy K. et al. 
proposed a new signal processing method named as the Variational Mode Decomposition (VMD) 
[9]. VMD used the Non-recursive decomposition and alternating direction method of multipliers 
(ADMM) to solve the optimal value of the center frequency and bandwidth of each modal 
component. VMD has a strong adaptability, a clearly physical meaning and a strong robustness. 
Wang Y. et al. compared the EMD, EEMD, VMD and other methods, and verified that the VMD 
has better effects and no modal mixing [10]. Although the VMD has been well used in fault 
diagnosis of rolling bearings, metal defect diagnosis and speech signal processing, it also has two 
disadvantages. One is that the central frequency falls into local optimum, and the other is the 
problem of selection of the number of decomposition layers. It still has further way to go. 

Traditional methods of regression prediction include K-nearest neighbor (KNN), artificial 
neural network (ANN), and support vector regression (SVR), etc. Min-Ling Zhang, et al. used the 
multi-label KNN to analyze yeast gene, natural scene classification and automatic web page 
categorization [11], but the calculation of KNN is very complicated. Li et al. presented an 
integration method of artificial neural network and empirical mode decomposition to identify fault 
severity in rolling bearings, and the results demonstrated that the integration method had been 
successful in machine fault severity diagnosis [12], but it had been hard to obtain so lots of data 
to support the training of ANN. Elish et al. investigated and empirically evaluated and compared 
multi-layer perceptron (MLP), radial basis function (RBF), KNN and SVR, etc. and found that the 
SVR was more accurate in predicting fault density [13]. Patel et al. compared SVR with ANN and 
proved that SVR was better than ANN in regression prediction [14]. Although SVR is better than 
KNN and ANN in regression prediction, the selection of parameters in SVR has a great influence 
on the accuracy. These traditional regression prediction methods have certain effects on the 
processing of non-timing signals. However, they cannot preserve the timing correlation of signals; 
the processing of timing signals is slightly insufficient. 

 
Fig. 1. Rolling bearings performance evaluation flow chart 

In this paper, an assessment of rolling bearings performance based on improved VMD and 
Long Short-Term Memory (LSTM) has been presented. By optimizing the VMD with the Cuckoo 
Search (CS) algorithm, the center frequency can be prevented from falling into local optimum, 
and the number of decomposition layers can be determined by the instantaneous frequency theory. 
So the signal noise can be effectively reduced. As shown in Fig. 1, the flow chart of the 
performance assessment of rolling bearings is designed. Section 2 presents the processing and 
features extraction of bearings vibration signal. Section 3 presents the prediction method for 
rolling bearings life. The experiment research is given in Section 4. The conclusion is drawn in 
Section 5. 

Note: The frequency units are Hz, the amplitude/var/rms/kurtosis units are mm and the data 
units are group except for special instructions in this paper. 

2. Processing and features extraction of bearings vibration signal 

2.1. Variational mode decomposition 

VMD is a new adaptive time-frequency analysis method with a clear physical meaning [10]. 
It is an iterative solution process for a special variational model, and includes Wiener Filtering, 
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Hilbert Transform, analytical signal, frequency mixing and heterodyne demodulation concepts. 
VMD abandons the definition of the intrinsic mode function (IMF) in the EMD theory and 

redefines the IMF as shown in Eq. (1): 𝑢௞ሺ𝑡ሻ = 𝐴௞ሺ𝑡ሻcos൫𝜑௞ሺ𝑡ሻ൯, (1)

where 𝑢௞(𝑡) is the 𝑘th component of IMF, 𝐴௞(𝑡) and 𝜑௞(𝑡) are the instantaneous amplitude and 
instantaneous phase of 𝑢௞(𝑡). The function 𝜑௞(𝑡) is a non-reducing function, so the instantaneous 
frequency 𝜔௞(𝑡): = 𝑑𝜔௞(𝑡)/𝑑𝑡 ≥ 0. Since 𝐴௞(𝑡) and 𝜔௞(𝑡) vary much slower than 𝜑௞(𝑡), it can 
be assumed that 𝑢௞(𝑡) is a harmonic signal with constant amplitude and frequency during a short 
time. 

On the basis of the above, the VMD theory assumes that the input signal 𝑥(𝑡) is composed of 𝑘 IMFs with limited bandwidth and different center frequencies. The constraint is that the sum of 
the individual IMFs is equal to the input signal 𝑥(𝑡), and the variational model of the signal 
decomposition is constructed with the minimum sum of the estimated bandwidths of each IMF. 
The specific process is as follows: 

(1) Hilbert Transform. Hilbert Transform for each IMF is applied to obtain a single-side 
spectrum of 𝑢௞(𝑡): ൬𝛿(𝑡) + 𝑗𝜋𝑡൰ ∗ 𝑢௞(𝑡). (2)

(2) Frequency mixing. Mixing a pre-estimated center frequency exp(−𝑗𝜔௞𝑡) for each IMF, 
and each IMF spectrum is moved to the baseband: ൤൬𝛿(𝑡) + 𝑗𝜋𝑡൰ ∗ 𝑢௞(𝑡)൨ exp(−𝑗𝜔௞𝑡). (3)

(3) Bandwidth estimation. The 𝐿ଶ  value is calculated by Eq. (3), and the bandwidth is 
estimated for each IMF. 

(4) Constraints are introduced to establish an optimization model: 

min{௨ೖ},{ఠೖ} ൝෍ฯ∂௧ ൤൬𝛿(𝑡) + 𝑗𝜋𝑡൰ ∗ 𝑢௞(𝑡)൨ exp(−𝑗𝜔௞𝑡)ฯଶଶ௄
௞ୀଵ ൡ ,

𝑠. 𝑡.   ෍𝑢௞(𝑡) = 𝑥(𝑡)௄
௞ୀଵ ,  (4)

where 𝐾  is the number of IMF, {𝑢௞} = {𝑢ଵ,𝑢ଶ, . . . ,𝑢௄}, {𝜔௞} = {𝜔ଵ,𝜔ଶ, . . . ,𝜔௄} is the center 
frequency of 𝑢௞. 

In order to solve the above variational model, the quadratic penalty factor 𝛼 and the Lagrange 
operator 𝜆(𝑡)  are introduced, and the augmented Lagrange function 𝐿({𝑢௞}, {𝜔௞}, 𝜆)  is 
established in Eq. (5): 

𝐿({𝑢௞}, {𝑤௞}, 𝜆) = 𝛼෍ฯ∂௧ ൤൬𝛿(𝑡) + 𝑗𝜋𝑡൰ ∗ 𝑢௞(𝑡)൨ exp(−𝑗𝜔௞𝑡)ฯଶଶ௄
௞ୀଵ  

      +ะ𝑥(𝑡) −෍𝑢௞(𝑡)௄
௞ୀଵ ะଶ

ଶ + ൽ𝜆(𝑡), 𝑥(𝑡) −෍𝑢௞(𝑡)௄
௞ୀଵ ඁ, (5)
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where 𝛼 is the penalty factor, and it can guarantee the accuracy of signal under Gaussian noise. 𝜆(𝑡) is the Lagrange operator, and it can ensure the strictness of the model. Using alternating 
direction method of multipliers (ADMM) to update {𝑢௞}, {𝜔௞} and 𝜆, and to search the saddle 
point of Lagrange function. 𝑥(𝑡) is decomposed into 𝐾 IMFs: 

𝑢௞௡ାଵ = argmin௨ೖ∈௑ ቊ𝛼 ฯ∂௧ ൤൬𝛿(𝑡) + 𝑗𝜋𝑡൰ ∗ 𝑢௞(𝑡)൨ exp(−𝑗𝜔௞𝑡)ฯଶଶ  
      +ะ𝑓(𝑡) −෍𝑢௞(𝑡)௄

௞ୀଵ + 𝜆(𝑡)2 ะଶ
ଶቑ. (6)

It is converted to the frequency domain by Parseval/Plancherel Fourier Transform in Eq. (7): 𝑢_ℎ௞௡ାଵ = argmin௨_௛ೖ,௨ೖ∈௑{𝛼‖𝑗𝜔[(1 + sgn(𝜔 + 𝜔௞))𝑢_ℎ௞(𝜔 + 𝜔௞)]‖ଶଶ 
      +ะ𝑓_ℎ(𝜔) −෍𝑢_ℎ௜(𝜔)௜ + 𝜆_ℎ(𝜔)2 ะଶ

ଶቑ. (7)

The variable substitution is performed by 𝜔 = 𝜔 −𝜔௞, and then converted into a non-negative 
frequency domain. Finally, the updated expression of 𝑢_ℎ௞௡ାଵ is obtained as follows: 

𝑢௛ೖ೙శభ(ఠ) = 𝑓௛(ఠ) −∑ 𝑢௛೔(ఠ)௜ஷ௞ + ൬𝜆௛(ఠ)2 ൰1 + 2𝛼(𝜔 −𝜔௞)ଶ . (8)

Similarly, the update expression of 𝜔௞௡ାଵ can be obtained as follows: 

𝜔௞௡ାଵ = ׬ 𝜔|𝑢_ℎ௞(𝜔)|ଶ𝑑𝜔ஶ଴׬ |𝑢_ℎ௞(𝜔)|ଶ𝑑𝜔ஶ଴ . (9)

The solution process of the variational model is shown in Fig. 2. The initialization values of {𝑢௞}, {𝜔௞}, 𝜆 are 0. 

2.2. VMD based on Cuckoo search algorithm 

2.2.1. Cuckoo search algorithm 

Cuckoo Search was a self-heuristic algorithm developed by Xin-She Yang and Suash Deb in 
2009 based on the parasitic brooding behavior of cuckoos [15]. By adding Levy flight to enhance 
the global search ability, Cuckoo Search successfully avoids falling into local optimum. 

Levy flight is a random walk pattern with a step-length distribution that is heavytailed [15]. In 
this model, short-distance exploration and occasional long-distance walking can increase the 
population diversity and avoid falling into the local optimum. Generating random numbers with 
Levy flight include two steps: selection of random directions and generation of step sizes subject 
to Levy distribution. In the Mantegna algorithm, the step size 𝑠  can be calculated using the 
following variables 𝑈 and 𝑉 which obey the Gaussian distribution: 𝑠 = 𝑈|𝑉|ଵ/ఒ ,𝑈~𝑁(0,𝜎ଶ),    𝑉~𝑁(0,1), (10)
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where the variance can be calculated using Eq. (11): 

𝜎ଶ = ቎ Γ(1 + 𝜆)𝜆Γ ቀ1 + 𝜆2 ቁ • sin ቀ𝜋𝜆2 ቁ2ఒିଵଶ ቏ଵఒ. (11)
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Fig. 2. VMD flow chart 

CS is a more efficient algorithm based on the brooding behavior of the cuckoo and the Levy 
flight. The algorithm uses a balanced combination of local random walks controlled by the switch 
parameter 𝑝௔ and global exploration random walks. 

The local random walk is as shown in Eq. (12): 𝑢௞(𝑡) = 𝐴௞(𝑡)cos൫𝜑௞(𝑡)൯,      𝑥௞௧ାଵ = 𝑥௞௧ + 𝛼𝑠 • 𝐻(𝑝௔ − 𝜀) • ൫𝑥௜௧ − 𝑥௝௧൯, (12)

where • represents dot product, 𝐻(∗) is a unit step function, 𝜀 is a uniformly distributed random 
number, 𝛼 is a step size scaling factor, 𝑝௔ is a switching parameter, 𝑠 is a step size, 𝑥௜௧, 𝑥௝௧ are two 
random different solutions. 

Global exploration of random walks using Levy flight: 𝑥௞௧ାଵ = 𝑥௞௧ + 𝛼𝐿(𝑠, 𝜆), (13)𝐿(𝑠, 𝜆) = 𝜆Γ(𝜆) sin ቀ𝜋𝜆2 ቁ𝜋 1𝑠ଵାఒ, (14)

where 𝛼 is the step size scaling factor, 𝑠 is the step size, and Γ(𝜆) is a constant for a specific 𝜆. 
Through the combination of local random walks and global exploration random walks, CS can 
effectively solve the problem of local optimum. 
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2.2.2. CS-VMD algorithm 

CS-VMD algorithm uses the CS algorithm to find the optimal {𝑢௞} of the VMD, and then finds 
the optimal {𝜔௞} and 𝜆. 

The local random walk is as shown in Eq. (15): 𝑢௛ೖ೙శభ(ఠ) = 𝑢௛ೖ೙(ఠ) + 𝛼𝑠 • 𝐻(𝑝௔ − 𝜀) • ቀ𝑢௛೔೙(ఠ) − 𝑢௛ೕ೙(ఠ)ቁ, (15)

where • represents dot product, 𝐻(∗) is a unit step function, 𝜀 is a uniformly distributed random 
number, 𝛼 is a step size scaling factor, 𝑝௔  is a switching parameter, 𝑠 is a step size, 𝑢_ℎ௜௡(𝜔), 𝑢_ℎ௝௡(𝜔) are two random different solutions. 

Global exploration of random walks using Levy flight: 𝑢௛ೖ೙శభ(ఠ) = 𝑢௛ೖ೙(ఠ) + 𝛼𝐿(𝑠, 𝜆), (16)

where 𝛼 is the step size scaling factor, 𝑠 is the step size, and Γ(𝜆) is a constant for a specific 𝜆. 
CS-VMD algorithm can effectively solve the problem that the center frequency of VMD falls 

into local optimum. For clearly showing the performance of CS-VMD, a signal function is tested 
as shown in Eq. (17), and the comparison results by VMD and CS-VMD are shown in Fig. 3: 𝑥 = ൫cos(2𝜋𝑓ଵ𝑡)൯ + 14 ൫cos(2𝜋𝑓ଶ𝑡)൯ + 116 ൫cos(2𝜋𝑓ଷ𝑡)൯ + 18 ൫cos(2𝜋𝑓ସ𝑡)൯ + 110 𝑟𝑎𝑛𝑑, (17)

where 𝑓ଵ = 2, 𝑓ଶ = 24, 𝑓ଷ = 288, 𝑓ସ = 158 and 𝑟𝑎𝑛𝑑 is a random noise. 

 
a) 

 
b) 

Fig. 3. Logarithmic spectrum of signals processed by a) VMD and b) CS-VMD 

As shown in Fig. 3, the signal center frequencies processed by VMD tend to fall into local 
optimum, and modal mixing has occurred. Then it is difficult to accurately remove the noise. 
However, the CS-VMD avoids falling into local optimum, the spectrum separation is more 
accurate, and the ability to remove noise is stronger. 

In order to test the ability to remove the noise, Eqs. (18-21) are the same one but with different 
SNR, and the comparison results by VMD and CS-VMD are shown in Figs. 4-7: 𝑥 = ൫cos(2𝜋𝑓ଵ𝑡)൯ + 14 ൫cos(2𝜋𝑓ଶ𝑡)൯ + 116 ൫cos(2𝜋𝑓ଷ𝑡)൯ + 18 ൫cos(2𝜋𝑓ସ𝑡)൯ + 310 𝑟𝑎𝑛𝑑, (18)𝑥 = ൫cos(2𝜋𝑓ଵ𝑡)൯ + 14 ൫cos(2𝜋𝑓ଶ𝑡)൯ + 116 ൫cos(2𝜋𝑓ଷ𝑡)൯ + 18 ൫cos(2𝜋𝑓ସ𝑡)൯ + 510 𝑟𝑎𝑛𝑑, (19)
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𝑥 = ൫cos(2𝜋𝑓ଵ𝑡)൯ + 14 ൫cos(2𝜋𝑓ଶ𝑡)൯ + 116 ൫cos(2𝜋𝑓ଷ𝑡)൯ + 18 ൫cos(2𝜋𝑓ସ𝑡)൯ + 𝑟𝑎𝑛𝑑, (20)𝑥 = ൫cos(2𝜋𝑓ଵ𝑡)൯ + 14 ൫cos(2𝜋𝑓ଶ𝑡)൯ + 116 ൫cos(2𝜋𝑓ଷ𝑡)൯ + 18 ൫cos(2𝜋𝑓ସ𝑡)൯ + 1510 𝑟𝑎𝑛𝑑, (21)

where 𝑓ଵ = 2, 𝑓ଶ =24, 𝑓ଷ = 288, 𝑓ସ = 158 and 𝑟𝑎𝑛𝑑 is a random noise. 

 
a) 

 
b)  

Fig. 4. Logarithmic spectrum of signals processed by a) VMD and b) CS-VMD in low noise 

 
a) 

 
b) 

Fig. 5. Logarithmic spectrum of signals processed by a) VMD and b) CS-VMD in moderate noise 

 
a) 

 
b) 

Fig. 6. Logarithmic spectrum of signals processed by a) VMD and b) CS-VMD in strong noise 
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a) 

 
b) 

Fig. 7. Logarithmic spectrum of signals processed by a) VMD and b) CS-VMD in super-strong noise 

As shown in Figs. 4-7, the mode aliasing occurs in VMD under the interference of any intensity 
noise. CS-VMD performs well under moderate and low noise as shown in Figs. 4-5. Even under 
the strong noise, CS-VMD can still accurately find the center frequency as shown in Fig. 6. When 
the noise significantly exceeds the original signal, the performance of CS-VMD begins to decline, 
but it is still stronger than VMD as shown in Fig. 7. 

2.2.3. Selection problem for layer number 𝑲 

The number of decomposition layers will directly affect the performance. Once the number is 
small, the decomposed modal components will lose information or modal aliasing will occur. If 
the number is large, the excessive decomposition will occur. Therefore, Chen Dongning, et al. 
analyzed the data of the bearing laboratory of the Case Western Reserve University in the United 
States [17]. They selected the number of decomposition layers 𝐾 = 2-6 for VMD decomposition, 
and determined the 𝐾 value by observing the center frequency of each modal component, as 
shown in Table 1. 

Table 1. Center frequency corresponding to different 𝐾 
Decomposition layers 𝐾 Center frequency (Hz) 

2 2646 3499 – – – 
3 1381 2715 3509 – – 
4 505 1328 2713 3507 – 
5 503 1336 2692 3470 3510 
6 455 1232 2681 3304 3562 

The method considers that when 𝐾 ≥ 5, an excessive decomposition occurs, so 𝐾 = 4 is taken. 
In this paper, we studied VMD thoroughly and found that if there were too many 

decomposition layers, the components would be discontinuous, especially in the case of 
high-frequency components. Even though it is a high-frequency component, the average 
instantaneous frequency will be lower. Therefore, a method based on the mean value of 
instantaneous frequency is proposed to determine the number 𝐾 of decomposition layers. The 
testing data is derived from the bearing laboratory of the Case Western Reserve University in the 
United States. The Bearing Laboratory Platform of Case Western Reserve University in the USA 
includes motor, torque sensor, power meter and electronic control equipment. The bearing 
supporting motor is tested. The pitting fault is simulated on the bearing by the EDM technology. 
The fault diameter is 0.18 mm, 0.36 mm, 0.53 mm and 0.71 mm respectively, and the fault is 
simulated from weak to serious, when the sampling frequency is 12000 Hz. The decomposition 
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layer number 𝐾 = 2-7 is selected for VMD decomposition, and the mean value of the instantaneous 
frequency is calculated for each layer decomposition. The mean value of the instantaneous 
frequency can be calculated by Eq. (22): 

𝑓௞ = 1𝐿෍𝑓௞௟௅
௟ୀଵ , (22)

where 𝑓௞ is the instantaneous frequency mean value of the 𝑘th layer (𝑘 = 1, 2, …, 𝐾), 𝐿 is the 
number of sampling points of each layer component, 𝑓௞௟ is the instantaneous frequency of the 𝑙th 
sampling point of the 𝑘th layer. The first derivative of the instantaneous phase is defined as the 
instantaneous frequency, which is usually calculated by the Hilbert transform. The calculation 
method is introduced below the Eq. (1). 𝐾 is taken as the horizontal axis and 𝑓௞(𝐾) is taken as the 
vertical axis, as shown in Fig. 8. 

 
Fig. 8. Instantaneous frequency mean curve at different 𝐾 values 

It can be seen from Fig. 8 that the slope of the curve from 𝐾 = 4 to 𝐾 = 5 is much lower than 
before. 

When 𝐾 = 2, the slope of the curve is very large. When 𝐾 = 3, the slope of the curve between 𝐾 = 2 and 𝐾 = 3 decreases slightly. When 𝐾 = 4, the slope of the curve from 𝐾 = 3 to 𝐾 = 4 is not 
significantly reduced compared to 𝐾  = 3. However, when 𝐾  = 5, the slope of the curve is 
significantly reduced. When 𝐾 = 6, the slope of the curve is not significantly reduced compared 
to 𝐾 = 5. When 𝐾 = 7, the slope of the curve is not significantly reduced compared to 𝐾 = 6. 

So when 𝐾  = 5, the curve slope is significantly reduced, the phenomenon of excessive 
decomposition causes decreasing the instantaneous frequency, so 𝐾 = 4 is a reasonable number of 
decomposition layers. The use of this method can solve the problem of the number of 
decomposition layers of the VMD. 

2.3. Features extraction 

The kurtosis, root mean square, and variance features of the rolling bearings signal are 
extracted and compared as shown in Fig. 9. 

The results in Fig. 9 show the kurtosis, root mean square, and variance as features to display 
the time sequence spectrum. The right side is the partially enlarged image of the left image. It can 
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be found that there are obvious peaks in the vicinity of the 3000th series of time sequence data. It 
means that the original signal of the data set has large noise interference, but the variance feature 
is less interfered. Then the variance is selected as the feature for life prediction research of rolling 
bearings. 

 
Fig. 9. Comparison of different features of signal 

3. Prediction method for rolling bearings life 

Currently used rolling bearing life prediction methods include KNN, ANN, and SVR, etc. 
Since the state of these conventional regression methods is only related to the previous moment, 
the regression effect on the timing signals is poor. LSTM can relate the state of a certain moment 
to the state of a previous moment, and has been widely used in the field of speech recognition [18]. 
Considering that the rolling bearings vibration signal and the speech signal are both 
time-dependent one-dimensional signals, the LSTM is used for the prediction of rolling bearings 
life in this paper. 

3.1. Long short-term memory 

LSTM is an improved Recurrent Neural Network (RNN) which can efficiently process time 
sequence signals. LSTM is established by adding long and short-term memory cells to the hidden 
layer of RNN. It consists of a set of structures called as Cells. A Cell structure consists of three 
gate elements: input gate, forgetting gate, and output gate. After a data is inputted into the network 
of the LSTM, it is assessed according to the rules whether the data is useful, the data conforming 
to the algorithm authentication is left, and the data that is inconsistent is forgotten by the forgetting 
gate. Moreover, the structure can achieve a constant error flow through a constant error conveyor 
belt, thereby solving the problem of gradient disappearance [19]. The long and short-term memory 
cell structure of LSTM is shown in Fig. 10 [20]. 

Due to the introduction of long and short-term memory cells, LSTM has good memory 
capabilities. Its gate activation function is generally a sigmoid function (as shown in Eq. (23)), 
and its range is (0, 1). Input gate, forgetting gate, and output gate are multiplied by a state value. 
When the gate output is 0, multiplication with any state will be 0, which can discard unwanted 
information. When the gate output is 1, the multiplication with any state will not change, so that 
all the neuron information can be retained. Therefore, the LSTM selectively retains information 
based on state values, resulting in higher prediction accuracy: 
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𝑓(𝑧) = 11 + 𝑒ି௭. (23)

 
Fig. 10. Long and short-term memory cell structure of LSTM 

3.2. Forward transfer algorithm of LSTM 

In the phase of forward transfer, the input received by the Cell structure of LSTM at time 𝑡 
includes both the input of the neural network at that time, and the output of the hidden layer at the 
previous moment. 

In the first step, LSTM selects the discarded information through the forgetting gate, and the 
hidden state ℎ௧ିଵ at the time 𝑡 − 1 and 𝑥௧ at the input time 𝑡 are used as the input of the forgetting 
gate. After the activation function is processed, the output 𝑓௧ of the forgetting gate is obtained by 
Eq. (24): 𝑓௧ = 𝜎൫𝑊௙ ൈ [ℎ௧ିଵ, 𝑥௧] + 𝑏௙൯, (24)

where 𝑊௙  is the weight of forgotten gate, 𝑏௙ is the offset, 𝜎 is the sigmoid activation function. 
In the second step, the LSTM will select the information that needs to be saved in the neuron. 

This step is implemented through the input gate. Calculation process includes two parts. The first 
part uses the sigmoid activation function to determine the value that needs to be updated in 
Eq. (25). The second part uses the tanh function to generate a new candidate vector 𝐶_ℎ௧  in 
Eq. (26). The both parts are multiplied to update the state of the cell: 𝑖௧ = 𝜎(𝑊௜ • [ℎ௧ିଵ, 𝑥௧] + 𝑏௜), (25)𝐶௛೟ = tanh(𝑊௖ • [ℎ௧ିଵ, 𝑥௧] + 𝑏௖), (26)

where 𝑊௜  and 𝑊௖  are the corresponding weights respectively, 𝑏௜  and 𝑏௖  are the corresponding 
offsets respectively, and 𝜎 is the sigmoid activation function. 

The Cell status update also includes two parts: One part is the output product of the forgetting 
gate and the cell output at time 𝑡 − 1, and the other part is the output product of the input gate and 
the candidate vector 𝐶_ℎ௧. As shown in Eq. (27): 𝐶௧ = 𝑓௧ ൈ 𝐶௧ିଵ + 𝑖௧ ൈ 𝐶௛೟ , (27)
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the status of the output gate is finally updated, and the input of output gate is related to the current 
state of Cell. Firstly, the state of Cell at time 𝑡 − 1 is processed by the sigmoid activation function 
to obtain a partial output, and then the state of Cell at time 𝑡 is processed by the tanh function. The 
product of the two is used as the final output result as shown in Eq. (28) and (29): 𝑜௧ = 𝜎(𝑊௢ × [ℎ௧ିଵ, 𝑥௧] + 𝑏௢), (28)ℎ௧ = 𝑜௧ × tanh(𝐶௧), (29)

where 𝑊௢ is the output gate weight, ℎ௧ିଵ is the state of the cell at time 𝑡 − 1, 𝑏௢ is the offset of 
the output gate, and 𝜎 is the sigmoid activation function. 

3.3. Back propagation algorithm of LSTM 

In the phase of back propagation, LSTM uses a time-based back propagation algorithm  
(BPTT). After inputting the training samples, the forward-transfer process obtains the output of 
the neural network at time 𝑇 . By calculating the output error, the gradient is calculated  
layer-by-layer from 𝑡 = 𝑇. The specific steps of the BPTT algorithm of LSTM are as follows: 

(1) The output of each neuron and the output of the input gate, forgetting gate, output gate, and 
Cell in the LSTM module are forward calculated. 

(2) Reverse calculation of the output error for each neuron. Starting from the current time 𝑡, 
the errors of each time are calculated one-by-one, and the errors are propagated to the upper layer. 
The error 𝛿 is the partial derivative of the weighted input of the error function to the neuron 𝑗. 

(3) Gradient calculation of each weight based on the corresponding error. 
(4) Iterative update of the weights using the stochastic gradient descent. 
About the calculation part of the gradient, the key to the LSTM algorithm is to calculate the 

gradient of the Cell, including the calculation of partial derivatives for input gate, forgetting gate, 
and output gate as shown in Eq. (30): 

𝜀௦௧ = ∂𝐿∂𝑏௖௧ ∂𝑏௖௧∂𝑠௖௧ + ∂𝐿∂𝑎ఠ௧ ∂𝑎ఠ௧∂𝑠௖௧ + ∂𝐿∂𝑠௖௧ାଵ ∂𝑠௖௧ାଵ∂𝑠௖௧ + ∂𝐿∂𝑎ఝ௧ାଵ ∂𝑎ఝ௧ାଵ∂𝑠௖௧ + ∂𝐿∂𝑎௟௧ାଵ ∂𝑎௟௧ାଵ∂𝑠௖௧        = 𝜀௖௧𝑏ఠ௧ ℎᇱ(𝑠௖௧) + 𝜔௖ఠ𝛿ఠ௧ + 𝑏ఝ௧ାଵ𝜀௦௧ାଵ + 𝜔௖ఝ𝛿ఝ௧ାଵ + 𝜔௖௟𝛿௟௧ାଵ, (30)

where 𝜀௦௧ is the error gradient of the Cell output at time 𝑡, 𝜀௖௧𝑏ఠ௧ ℎ′(𝑠௖௧) is the gradient of the current 
Cell output, 𝜔௖ఠ𝛿ఠ௧  is the gradient of the output gate, 𝑏ఝ௧ାଵ𝜀௦௧ାଵ is the gradient of the Cell at the 
next moment, 𝜔௖ఝ𝛿ఝ௧ାଵ is the gradient of the forgetting gate, and 𝜔௖௟𝛿௟௧ାଵ is the gradient of the 
input gate. 

4. Experiment and experiment results 

4.1. Experiment preparation 

The failure data of the rolling bearings used in this experiment is derived from the bearing 
laboratory of the Case West Reserve University in the United States and the University of 
Cincinnati Bearing Data Center.  

The test rig consists of four bearings mounted on one shaft, as shown in Fig. 11. There are 
three data sets. Each bearing of data set 1 has two accelerometers (𝑥-axis and 𝑦-axis), and each 
bearing of data set 2 and data set 3 has one accelerometer. The sensor position is also shown in 
Fig. 11. Each data set represents bearing life data from the start of a new bearing until the bearing 
is completely damaged. In this paper, the data set 3 has been used. The sampling frequency is 
20 kHz, recorded every 10 minutes, and each time recording 1 second vibration signal, 20480×4 
data in a total of 6324 sets of data.  
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Fig. 11. Bearing test rig and sensor placement illustration 

The normal bearing signal is shown in Fig. 12, the signal of slight bearing fault is shown in 
Fig. 13, the signal of medium bearing fault is shown in Fig. 14, and the signal of serious bearing 
fault is shown in Fig. 15. 

 
Fig. 12. Normal bearing signal 

As shown in Fig. 12, the normal bearing signal has weak amplitude in the time domain 
spectrum, and only the low frequency part has obvious impulses in the frequency spectrum, which 
are the natural frequency and frequency multiplication of the bearings. 

As shown in Fig. 13, when a slight fault occurs in bearings, the amplitude of the time domain 
spectrum increases slightly, and the frequency spectrum shows more obvious impulses of the 
mid-frequency band, which indicates that the defect of the bearings is not serious, so the vibration 
frequency is generated in the mid-frequency band. 

As shown in Fig. 14, when the medium fault occurs in the bearings, the amplitude of the time 
domain spectrum increases obviously, the impulses of the mid-frequency in the frequency-domain 
spectrum are more obvious, and the impulses of the high-frequency band are obvious, which 
indicates that the bearing defect is serious. 

As shown in Fig. 15, when a serious fault occurs in the bearings, the amplitude of the time 
domain spectrum increases strongly, and the impulses of the middle and high frequency bands of 
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the frequency-domain spectrum are particularly obvious. At this time, the bearings cannot work 
properly and needs to be shut down and maintained as soon as possible. 

 
Fig. 13. Slight bearing fault signal 

 
Fig. 14. Medium bearing fault signal 

 
Fig. 15. Serious bearing fault signal 
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4.2. Experimental result 

The data was processed using the improved VMD, and the variance of each group of data was 
extracted as a feature and compared with variance feature of the original data as shown in Fig. 16. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 16. Comparison of variances of each data group before and after using improved VMD 

Fig. 16(a) and Fig. 16(b) demonstrate the variance features sequence of the original data. 
Fig. 16(c) and Fig. 16(d) show the variance features sequence of the data using the improved  
VMD. Fig. 16(b) and 16(d) are local enlargements of Fig. 16(a) and 16(d), respectively. As it can 
be seen from Fig. 16, the signal that is not processed by the improved VMD is shown in Fig. 16(b), 
and there is a significant fluctuation in the vicinity of the 3000th data group because of the large 
noise interference of the data (It may be caused by sudden changes in working state or impulse 
noise). Signals are processed using the improved VMD in Fig. 16(d), no significant fluctuations 
occurs, and the variance is also reduced after the signal has been processed by the improved VMD. 
Therefore, using the improved VMD to process the data and extract the variance as a feature can 
effectively reduce the influence of noise, and provide a guarantee for a further signal analysis. 

Vector regression is supported based on the particle swarm optimization (PSO-SVR) and 
LSTM regression prediction for the obtained feature sequence, and the results are shown in Fig. 17 
and Fig. 18. 

As shown in Figs. 17-20, there are some errors between PSO-SVR regression / ANN 
regression / KNN regression and real signal, and the regression signal also shows some 
fluctuations, which indicate that the regression effects are PSO-SVR > ANN > KNN. However, 
LSTM regression has a higher degree of fitting with the real signal, and the regression is stable, 
so LSTM regression is better than any others. Table 2 compares the absolute total errors between 
the regression methods. 

The regression data was analyzed (Fig. 21), where in Fig. 21(a) is an overall graph of 
regression data, and Fig. 21(b), 21(c), and 21(d) are local enlargements of Fig. 21(a). 

It can be seen from Fig. 21 that after denoising by the improved VMD, the Spectrum of Time 
Series of Variance has a significant rise in the vicinity of the 5078 data, and the rolling bearing 
has a slight failure. After a significant drop (vicinity of 5132), the Spectrum of Time Series of 
Variance rises sharply (vicinity of 5199), indicating that the rolling bearing has a moderate fault. 
After another significant drop, the Spectrum of Time Series of Variance rises sharply (vicinity of 
5279), indicating that the rolling bearing has experienced a serious fault. After another significant 
drop, the Spectrum of Time Series of Variance rises sharply until the end of the experiment, 
indicating that the rolling bearing has been running from a severe fault to being scrapped. Table 3 
shows the variance values under different degrees of faults. 
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Fig. 17. Regression results and errors of PSO-SVR 

    
Fig. 18. Regression results and errors of LSTM 

 
Fig. 19. Regression results and errors of ANN 

 
Fig. 20. Regression results and errors of KNN 

va
r

er
ro
r

va
r

er
ro
r



FAULT SEVERITY ASSESSMENT OF ROLLING BEARINGS METHOD BASED ON IMPROVED VMD AND LSTM.  
ZHIHUA LIANG, JIANGTAO CAO, XIAOFEI JI, PENG WEI 

1354 JOURNAL OF VIBROENGINEERING. SEPTEMBER 2020, VOLUME 22, ISSUE 6  

Table 2. Absolute total errors  
of regression methods 

Regression algorithm Absolute total errors 
LSTM regression 0.4828 

PSO-SVR regression 65.6896 
ANN regression 92.9650 
KNN regression 187.2420 

 

Table 3. Variance values under different  
degrees of faults 

Degrees of faults Variance values  
(10exp(-3)) 

Slight bearing fault 0.001541 
Medium bearing fault 7.066 
Serious bearing fault 18.41 

 

 

 
a) 

  
b) 

   
c) 

 
d) 

Fig. 21. Analysis chart of rolling bearing data 

5. Conclusions 

After a depth analysis of the VMD algorithm, it was found that the VMD algorithm had two 
shortcomings. The center frequency is easy to fall into the local optimum, and the selection of the 
decomposition layer is poorly adaptive. For these two shortcomings, the VMD center frequency 
is optimized by the CS algorithm, which can avoid falling into the local optimum. The number of 
decomposition layers can be reasonably selected by the instantaneous frequency theory. For the 
timing-related properties of rolling bearing signals, it was proposed to apply the LSTM to the life 
prediction of rolling bearings, which can effectively improve the regression accuracy of the signal. 

Finally, this paper proposes to combine the improved VMD algorithm with the LSTM as a 
method to study the performance assessment of rolling bearings, and experimenting with the 
full-life bearing data at the University of Cincinnati, USA. The experimental results show that 
compared with the traditional methods, the method has obvious advantages in the performance 
evaluation of rolling bearings. 
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