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Abstract. This paper proposes a damage detection method based on an improved DAS imaging 
algorithm by introducing time difference due to anisotropy of composite material. First, the finite 
element characteristic frequency method is used to obtain the dispersion curve of the composite 
plate, and the validity of the dispersion curve is verified. Next, the average phase velocity of the 
Lamb wave at mixed modes in the composite plate is obtained by two-dimensional Fourier 
transform (2-D FFT). The mixed modal group velocity is calculated according to the 
corresponding phase velocity, the mean change rate of the phase velocity and the dispersion curve 
obtained by simulation. The time difference due to anisotropy of composite material is 
investigated, and the damage location is estimated by the delay-and-sum (DAS) imaging 
algorithm. Experiments on carbon fiber multilayer composite plates verify the effectiveness of the 
proposed method.  
Keywords: composite plate; mixed mode; two-dimensional Fourier transform; damage detection. 

1. Introduction 

Composite materials have many applications in aerospace, machinery and other industries due 
to the characteristics of light weight, high strength and long life [1]. In order to avoid property 
damage caused by safety accidents, material damage needs to be detected. Among the many 
detection methods, ultrasound imaging has been widely used due to its characteristics of 
non-destructive detection. 

Due to its long propagation distance, low cost, and sensitivity to various damages, Lamb waves 
as a type of ultrasound are widely used in material damage detection [2]. Zhenqing Liu et al. [3] 
used two-dimensional Fourier transform to identify the mode of Lamb wave in aluminum plates. 
Wang et al. [4] proposed a delay-and-sum (DAS) algorithm to image damage in aluminum plates. 
Haiyan Zhang et al. [5] analyzed the propagation characteristics of Lamb waves in a layered 
anisotropic composite plate using the global matrix method. Rhee et al. [6] studied the group 
velocity of Lamb waves in composite plates. Sheen et al. [7] improved the RAPID algorithm to 
study lamb wave tomographic images. Linwen Zhang et al. [8] used the finite element 
characteristic frequency method to obtain the dispersion curve of the composite plates. Sikdar et 
al. [9] studied the effect of debonding damage on Lamb wave propagation in composites at 
variable temperatures.  

Due to the characteristics of long Lamb wave propagation distance and sensitivity to damage, 
damage detection can be performed on plate-shaped composite materials. However, during 
propagation, Lamb waves have dispersion effects and multiple modes. In order to prevent modal 
aliasing, low frequency excitation signals or modal separation from the received signals are 
generally used for isotropic panels. However, because of the anisotropic characteristics of the 
layered composite plate and the variability of Lamb wave propagation between layers, the received 
signals from a multilayer composite plate are very complicated, thus it is difficult to perform 
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modal separation. This brings challenges to signal analysis and damage identification. 
This paper proposes a damage detection method based on an improved DAS algorithm without 

mode separation of Lamb waves. First, the finite element characteristic frequency method is used 
to obtain the dispersion curve of the composite plate, and the effectiveness of the dispersion curve 
of the single-layer composite plate is verified. Next, the average phase velocity of the Lamb wave 
in the mixed mode in the composite plate is obtained by two-dimensional Fourier transform. Based 
on the phase velocity and the simulated dispersion curve of the composite plate, the mean change 
rate of the mixed-mode phase velocity is calculated. Using the average mixed-mode phase velocity 
and the mean change rate of the mixed-mode phase velocity, the group velocity of the Lamb wave 
mixed mode is calculated. Due to the anisotropic characteristics of the composite plates, the time 
difference of different paths in the same direction is calculated based on the peaks of waveform. 
Damage location is estimated by improving the DAS algorithm with the effect of time difference. 
Experiments on carbon fiber multilayer composite plates are conducted to verify the effectiveness 
of this method. 

2. Imaging principle 

2.1. Finite element method for dispersion curve calculation 

2.1.1. Fundamental 

There is an essential relationship between the elastic wave and the vibration of the elastic body. 
The vibration of the elastic body is the simple resonance of the particles at different positions at 
their respective equilibrium positions. Vibration propagates through elastic media to form 
traveling waves to propagate energy. The wave equation in an elastic body is derived from the 
constitutive relationship and the equation of motion. 

The wave equation of free propagation in an infinite anisotropic elastic material, its 
displacement is expressed as: 

𝐶 𝜕ଶ𝑢𝜕𝑥𝑥 = 𝜌 𝜕ଶ𝑢𝜕𝑡ଶ , (1)

where 𝐶  is the elastic matrix, 𝑥  is the coordinate system, 𝑢  is displacement ( 𝑖 , 𝑗 , 𝑘 ,  𝑙 = 1, 2, 3). 
The simple harmonic motion of the particles at their respective equilibrium positions is: 𝑢 = 𝑢𝑒ఠ௧, (2)

where 𝑢 is the vibration amplitude, 𝜔 is the angular frequency. 
From Eqs. (1) and (2), the intrinsic equations in anisotropic materials are: (𝜌𝜔ଶ𝛿 − 𝐶𝑘𝑘)𝑢 = 0, (3)

where 𝜌 is the material density; 𝛿 is the Kronecker delta; 𝑘 is the wave number; 𝑖, 𝑘, 𝑙, 𝑚 is the 
tensor subscript. 

Therefore, using the finite element simulation method to solve the problem of the free vibration 
equation of the structure can be simplified to solve the following characteristic equation: 𝐾𝑈 − 𝜔ଶ𝑀𝑈 = 0, (4)

where 𝜔 is the characteristic frequency of the structure, 𝑈 is the displacement vector matrix of the 
vibration form corresponding to the characteristic frequency, 𝐾 is the stiffness matrix, 𝑀 is the 
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mass matrix. 
In order to analyze the propagation characteristics of ultrasonic waves in plate-like structures, 

consider the following free boundary conditions: 

𝑇 = 𝐶 𝜕𝑢𝜕𝑥 𝑛 = 0, (5)

where 𝑛 is the axial component of the normal vector 𝑛 outside the boundary unit. 
According to Bloch-Floquet theorem, the solution of the wave equation has the following form: 𝑢(𝑟, 𝑡) = 𝑒(,ିఠ௧)𝑢(𝑟), (6)

where 𝑘 = ൣ𝑘௫, 𝑘௬, 𝑘௭൧் is Bloch wave vector. 𝑢(𝑟) is a function with a spatial period and can be 
calculated as: 𝑢(𝑟 + 𝐿, 𝑡) = 𝑒ሾ⋅(ା)ିఠ௧ሿ𝑢(𝑟 + 𝐿) = 𝑢(𝑟, 𝑡)𝑒 , (7)

where 𝐿 is the lattice translation vector. 
Due to the periodicity of the infinite plate structure and displacement, it is determined that the 

acoustic wave propagation characteristics in the plate can be studied by analyzing a period (a cell). 
Therefore, according to the periodic boundary conditions in the formula, the characteristic 
frequency corresponding to different Bloch wave vectors can be solved to obtain the dispersion 
relationship of the acoustic wave propagation in the plate. 

2.1.2. Finite element characteristic frequency method 

The paper uses COMSOL MULTIPHYSICS finite element simulation software, combined 
with the finite element characteristic frequency method, to calculate the dispersion curve of the 
Lamb wave in the anisotropic composite plate [8, 10]. Considering the infinite plate structure with 
a thickness of 2𝑑 in the 𝑧 direction, in order to facilitate the calculation of the dispersion curve in 
the board, only the simulation model shown in Fig. 1 was selected. Use Floquet periodic boundary 
conditions in the 𝑥 direction (𝑎 in the figure is the distance between the source boundary and the 
target boundary). For the non-wave vector 𝑦-direction inner boundary of the plate, it also needs 
to be considered as a periodic boundary and be processed accordingly. The characteristic 
frequency is solved according to the eigenwave vector 𝑘௫  in the 𝑥  direction. Due to the 
symmetrical (antisymmetric) boundary conditions, the vibrations in the plate are symmetrical 
(antisymmetric) about the center plane in the 𝑧 direction, so that the finite element model is 
simplified to half of the original model. The symmetric and antisymmetric modes of the dispersion 
curve are obtained by setting symmetric and antisymmetric boundary conditions, respectively. 

 
Fig. 1. Dispersion curve by finite element method 
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The finite element characteristic frequency solution method is used to calculate the dispersion 
curve of the single-layer carbon fiber composite board. The mechanical properties of 0° 
single-layer carbon fiber plate with the fiber direction in the 𝑥 direction are shown in Table 1. The 
carbon fiber density is 1800 kg/m3. 𝑑 takes 0.5 mm, a takes 0.001 mm. The elastic matrix of 45° 
and 90° fiber direction is obtained by transforming the values in Table 1. The dispersion curve 
obtained by the calculation is shown in Fig. 2. 

Table 1. Material mechanical properties of carbon fiber layer 
E1 / GPa E2 / GPa E3 / GPa G12 / GPa G13 / GPa G23 / GPa 𝜐ଵଶ 𝜐ଵଷ 𝜐ଶଷ 

230 15 15 24 24 5.03 0.2 0.2 0.25 
 

 
a) 0° 

 
b) 45 ° 

 
c) 90 ° 

Fig. 2. Dispersion curve of single layer carbon fiber plate 

In order to verify the effectiveness of the dispersion curve, the simulation model shown in 
Fig. 3(a) was constructed with a plate length of 100 mm. During the experiment, the position of 
the excitation sensor remains unchanged, and a set of data is measured at a distance of 5 mm from 
the receiving sensor. According to the dispersion curve obtained from the simulation, the 
frequency of the 0°-direction excitation signal is 1 MHz, the phase velocity of the A0 mode is 
3000 m/s, and the group velocity is 3598 m/s. The frequency of the 45°-direction excitation signal 
is 2 MHz, the S0 mode phase velocity is 3230 m/s, and the group velocity is 2030m/s. The 
frequency of the 90°-direction excitation signal is 1MHz, the phase velocity of the S0 mode of 
2810 m/s and the group velocity is 2520 m/s. 

 
a) Simulation model 

 
b) Receive signals 

Fig. 3. Experimental verification 
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Take the envelope of the received signal in turn and find the peak time of the direct wave. The 
received signals with a propagation distance of 10 mm, 15 mm, and 20 mm in the 0° direction are 
shown in Fig. 3(b). The direct signal is inside the rectangular frame in the figure. The peak time 
of the direct wave obtained from the experiment is shown in Table 2. 

Table 2. Peak time of direct wave (μs) 
 10 mm 15 mm 20 mm 25 mm 30 mm 35 mm 40 mm 45 mm 50 mm 

0° 15.48 16.72 18 19.2 20.8 22.3 23.6 25 26.3 
45° 15.04  18.7 21.46 24.22 26.8 29.52   
90°  21.98 24.5 26.2 28.02 30.52 32 34.4 36.22 

The signals received at some locations in the experiment cannot distinguish the direct wave, 
and the peak time of the direct wave cannot be determined. Fit the data in Table 2 to calculate the 
group velocity. The calculated group velocity and the error from the theoretical value are shown 
in Table 3. 

Table 3. Comparison between group velocity theory and experiment Direction Theoretical value (m/s) Experimental value (m/s) Error 
0° 3598 3636.5 1.07 % 

45° 2030 2020.8 0.45 % 
90° 2520 2479.1 1.62 % 

The experimental results show that the theoretical value and the actual value are consistent, 
verifying the effectiveness of the method. 

2.1.3. Calculation of dispersion curve of the multilayer composite plate 

The finite element characteristic frequency method is used to calculate the dispersion curve of 
the multilayer composite plate. The composite plate is composed of 17 layers, of which the upper 
eight layers and the lower eight layers are carbon fiber, and the middle layer is epoxy resin. The 
thickness of the carbon fiber layer is 0.35 mm, and the thickness of the epoxy resin layer is 0.4 mm. 
The carbon fiber layers are arranged in a cross pattern (0°/90°), that is, the carbon fiber direction 
of the previous layer differs from the carbon fiber direction of the next layer by 90°. The simulation 
model is shown in Fig. 4. 

 
Fig. 4. Multilayer composite plate simulation model 

The material mechanical properties of carbon fiber layers are shown in Table 1. The Young’s 
modulus of the epoxy resin adhesive layer is 3.35 GPa, the density is 1150 kg/m3, and the 
Poisson’s ratio is 0.38. Take the fiber direction of the top layer of the multilayer composite plate 
as the 0° direction. The dispersion curve of the multilayer composite plate is shown in Fig. 5. 
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a) 0° 

 
b) 45 ° 

 
c) 90 ° 

Fig. 5. Dispersion curve of multilayer composite plate 

2.2. Basic principle of two-dimensional Fourier transform 

The Fourier transform converts the signal in the time domain to the frequency domain, and the 
frequency domain signal is transformed into the wavenumber domain by spatial Fourier transform, 
as expressed by Eq. (8): 

𝐻(𝑘, 𝑓) = න න 𝑢(𝑥, 𝑡)𝑒(௫ାன௧)𝑑𝑥𝑑𝑡ାஶ
ିஶ

ାஶ
ିஶ , (8)

where 𝑢(𝑥, 𝑡) is the signal in the time domain, 𝜔 = 2𝜋𝑓 is the angular frequency, 𝑘 is the wave 
number 𝑘 = 𝜔 𝑐⁄ , 𝑐 is the phase velocity.  

The two-dimensional Fourier transform algorithm is able to measure the amplitude and 
velocity of different modes at the same frequency [3]. Thus, it is possible to determine the velocity 
of Lamb wave without mode separation by averaging among several adjacent modes at the same 
frequency.  

2.3. Imaging method based on average group velocity and DAS algorithm 

Amplitudes in frequency domain and spatial domain for one group of the received signals on 
a non-damaged plate are obtained by two-dimensional Fourier transform, which indicates the 
energy of the received signal at a superposition of several modes. The two-thirds of the maximum 
amplitude is taken as a reference. The phase velocities in each group where the energy amplitudes 
are greater than the reference value are averaged to obtain a phase velocity for the mixed modes. 
The overall average phase velocity 𝑐 is averaged among multiple groups. 

According to the frequency thickness product in dispersion curve, the change rates of several 
modes near 𝑐 at a certain frequency thickness product are obtained. The average group velocity 𝑐 is calculated as follows: 

𝑐 = 𝑐ଶ𝑐 − Δ𝑐, (9)

where 𝑐  is the average phase velocity, and ∆𝑐തതതതത  is the average transformation rate of phase 
velocity at a certain frequency thickness product. An ∆𝑐തതതതത be calculated by Eq. (10): 

Δ𝑐 = ∑ (𝑓ௗ) 𝑑𝑐𝑑(𝑓ௗ)ୀଵ 𝑛 ,  (10)

where 𝑓ௗ  is the frequency-thickness product, and 𝑛 is the number of modes selected near the 
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average phase velocity. 
The damage detection is performed using the delay-and-sum algorithm [4], as shown in Fig. 6. 

The scattered signal is obtained by subtracting the baseline signal from the signal in the damaged 
plate. As the wave speeds at different positions along the same direction of anisotropic composite 
plate are different, a non-damaged plate is used as a calibration. The time difference between 
signals of non-damaged plate is used as a time delay in the imaging method. The pixel value 𝐴(𝑥,𝑦) of each pixel in the pixel map is as follows: 

𝐴(𝑥,𝑦) = 𝑓௫௬(𝑡 + 𝑡)ே
ୀଵ , (11)

where 𝑡 is the time difference of the 𝑛th path, 𝑁 is the number of paths, 𝑓(𝑡) is the envelope of 
the scattered signal for each path, and 𝑡 is the propagation time of the scattered signal. 𝑡 can be calculated as: 

𝑡 = 𝑟(𝑥,𝑦) + 𝑟௦(𝑥,𝑦)𝑐 , (12)

where 𝑟(𝑥,𝑦) and 𝑟௦(𝑥,𝑦) represent the distances from the grid (𝑥,𝑦) to the excitation sensor 
and the receiving sensor, respectively. 

 
Fig. 6. DAS imaging method 

3. Experiment and results  

3.1. Experimental setup 

Experiments were performed on two multilayer T700 carbon fiber composite plates of the 
same size as shown in Fig. 7(a) and Fig. 7(b). The two composite plates are both 300 mm long, 
300 mm wide and 6mm high, and the layers arrangement of the two plates are the same as 
described in Section 2.1. One plate is non-damaged, and for the other plate a PZT piezoelectric 
sheet of 14 mm diameter is isolated and debonded at the center position (15, 15) cm of the epoxy 
resin layer to represent a damage.  

The experiment setup for damage localization in composite plate is shown in Fig. 7(c). An 
arbitrary signal generator 33250A produced by Agilent is used to excite Lamb wave signals. A  
4-channel mixed signal oscilloscope DPO5034B produced by Tektronix is used to receive signals 
from the plate. All the PZT sensors used in the experiment are identical with a center frequency 
of 200 kHz. 

Signals from 21 transmitter-receiver pairs are collected for the calculation of average phase 
velocity by the 2-D FFT as shown in Fig. 8, where the red circle represents the excitation sensor 
which is fixed, and the blue circle is the reception sensor which moves along 𝑥-direction and  
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𝑦-direction, respectively.  
Two layouts of the sensors as shown in Figs. 9(a) and (b) are used to determine the damage 

position for the same damage. Fig. 9(c) shows the 6 sensing paths of each layout. Positions of 
sensors in layout 1 are: PZT1 (7.5, 7.5) cm, PZT2 (7.5, 22.5) cm, PZT3 (22.5, 22.5) cm, PZT4 
(22.5, 7.5) cm. Positions of sensors in layout 2 are: PZT1 (6.5, 9.5) cm, PZT2 (6.5, 24.5) cm, 
PZT3 (21.5, 24.5) cm, PZT4 (21.5, 9.5) cm. The detection area is divided into 800 × 800 = 640000 
grids, and the area of each grid is 0.375 × 0.375 mm2. 

 
a) Two composite plates b) Plate size 

 
c) Laboratory equipment 

Fig. 7. Experimental setup diagram 

 
a) Along 𝑥-axis direction 

 
b) Along 𝑦-axis direction 

Fig. 8. Sensor layout for calculation of group velocity 

 
a) Sensor layout 1 

 
b) Sensor layout 2 

 
c) Sensing paths layout 

Fig. 9. Sensor layout for damage localization 

3.2. Experimental results 

The two-dimensional Fourier transform of one group of signal is shown in Fig. 10(a). The 
phase velocity is calculated as 3585.6 m/s by averaging the nine sets of data. The frequency 
thickness product is 1.2 MHz∙mm. As shown in Fig. 10(b-d), from the dispersion curve, there are 
four modes whose velocities are near the average phase velocity (inside the black circle). The 
mode in 0° direction is A3. The modes in 45° direction are A2 and S2. The mode in 90° direction 
is A2. The mean change rate ∆𝑐𝑝തതതത of the four modes is calculated as -3104.3. From Eq. (9), the 
corresponding group velocity is 1921.74 m/s. 
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a) 2-D FFT for phase velocity 

 
b) 0° 

 
c) 45° 

 
d) 90° 

Fig. 10. Calculation of group velocity 

For damage localization, the excitation waveform is a 5-period sine wave modulated by a 
Hamming window, and the received signal from the non-damaged plate is used as a baseline  
signal. Fig. 11(a) shows received signals from the damaged plate and the non-damaged plate, 
respectively. The scattered signal is the subtraction between the above two received signals. Due 
to the anisotropy of the composite plate, the speeds in same directions are not exactly the same. 
From Fig. 9(c), it is seen that the directions of paths 1-2 and 3-4 in the non-damaged plate are the 
same, but the travel times at the peak amplitude of the two paths are different as shown in 
Fig. 11(b), which lead to a time difference 𝑡. There are six paths in each sensor layout in Fig. 9(c), 
and paths in the same direction are considered as a pair. Among them, since the two diagonal lines 
make a 45° angle with the fiber direction, they can be regarded as a pair. The average time 
difference of the three pairs of paths is obtained. The time difference for sensor layout 1 is  
22.22 μs, and the time difference for sensor layout 2 is 8.97 μs. 

 
a) Waveforms from damaged and non-damaged plates 

 
b) Time difference of two paths in same direction 

Fig. 11. Waveforms of received signals and calculation of time difference 

Damage position estimation by our imaging method for both the sensor layouts are shown in 
Fig. 12, where the black circles represent the actual damage locations and the white circles 
represent the damage locations estimated by our method. 

The errors between the estimated damage position and the actual damage position (15, 15) cm 
are given in Table 4. The errors may be caused by the inaccuracy calculation of the group velocity 
of the mixed modes and the disturbance of the received signals. 

Table 4. Damage positioning error 
Different layouts Estimated damage location (cm) Error (cm) 

Layout 1 (14.89, 15.98) 0.986 
Layout 2 (14.66, 15.71) 0.787 
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a) Imaging for Layout 1 

 
b) Imaging for Layout 2 

Fig. 12. Imaging results 

4. Conclusions 

This paper presents a method for damage localization on composite plate by an improved DAS 
algorithm using Lamb waves without mode speration. Phase velocity of Lamb waves in composite 
plates was determined by using two-dimensional Fourier transform. The dispersion curve is 
obtained from the finite element characteristic frequency method. The group velocity is calculated 
from several mixed modes in the dispersion curve. Damage position is estimated by the 
delay-and-sum imaging method with introducing an anisotropic time difference. The experimental 
results show that the method is effective for the localization of damage. A better imaging may be 
achieved by more sets of 2D Fourier transform signals and more accurate time difference 
calculation methods. 
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