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Abstract. The vibration signal of rolling bearing often has the characteristics of strong noise, 
nonlinearity and non-stationary, so the accurate fault feature information cannot be obtained 
directly from the measured vibration signal. Therefore, a fault pattern recognition method for 
rolling bearing based on complete ensemble local mean decomposition with adaptive noise 
(CELMDAN) and fuzzy entropy is deeply studied. Firstly, the reason of modal aliasing existing 
in local mean decomposition (LMD) method is explained. According to the previous methods for 
modal aliasing processed in other methods, CELMDAN method is proposed. The experiment 
proves that the proposed CELMDAN method can better handle the vibration signals with 
nonlinear and non-stationary. Then, the principle and properties of the fuzzy entropy are 
introduced in detail, and the fault feature of rolling bearing can be reflected. Finally, extreme 
learning machine (ELM) is introduced as the pattern recognition method based on the effective 
fault feature of rolling bearing. Combined with the verification of experimental signal, it is proved 
that the proposed method can extract the fault features of rolling bearing accurately and 
effectively, and the fault pattern recognition of rolling bearing can be realized.  
Keywords: rolling bearing, CELMDAN, fault pattern recognition, fuzzy entropy. 

1. Introduction 

Rolling bearing is widely used in the rotating machinery such as rail vehicle, lifting equipment 
and so on [1]. With the development of technology and the continuous expansion of modern 
production, it is developing in the direction of large-scale, complex and precise, and its number is 
growing rapidly, which results the fault probability of rotating machinery rise rapidly [2]. 
According to the statistics, 30 % of the faults in rotating machinery are caused by the damage of 
rolling bearing, and it is of great significance to study the fault pattern recognition for rolling 
bearing [3]. When rolling bearing fails, the measured vibration signal is usually complex, so the 
feature extraction and pattern recognition occupy a critical position in the analysis of vibration 
signal [4].  

In the aspect of feature extraction of vibration signals, the main idea is to quantize the fault 
feature after decomposing the original vibration signal, and empirical mode decomposition (EMD) 
is widely used. However, EMD has many problems in analyzing the vibration signal of fault 
rolling bearing. For example, the modal aliasing results the intrinsic functions with different 
frequencies are decomposed into the same scale, and affects the practicability of EMD. As a new 
time-frequency analysis method, local mean decomposition (LMD) has certain advantages 
compared with EMD. Especially from the perspective of algorithm steps and calculation results, 
the superiority of LMD can be highlighted, and the main advantages include as follows: (1) The 
signal local fluctuations can be reflected more accurately by product function (PF) components; 
(2) There are no problems of over enveloping and unenveloping; (3) Less endpoint effects and 
more accurate instantaneous frequencies. However, LMD also decomposes the vibration signal 
into a series of PF components from high-frequency to low-frequency, which is like EMD. Ideally, 
each PF component should be a single component signal, but in actually, a certain PF signal 
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component will contain the features with multiple time-scales, and a certain feature with same 
time-scale will also be decomposed into multiple PF components. The modal aliasing is mainly 
caused by the high frequency intermittent signal [5]. It directly causes the PF component not to 
correspond to the original signal, so that its time-frequency distribution has no physical meaning. 
The direct result is that the PF components are not correspond to the original vibration signal, 
which makes the time-frequency distribution of the PF component not have physical significance. 
For the widely applied method: EMD and LMD, their improved algorithms for modal aliasing and 
endpoint effect have been proposed one after another. Wang [6] applied the polynomial fitting 
method to the signal endpoints fitting. Xu [7] proposed the image extension method to solve the 
endpoint problem. For the modal aliasing problem, some predecessors tried to solve such problems 
by adding Gaussian white noise, and ensemble empirical mode decomposition (EEMD) was 
proposed under the guidance of such ideas. However, the problem of reconstruction error and 
incomplete decomposition process are reflected. For those problems, complete ensemble 
empirical mode decomposition with adaptive noise (CEEMDAN) is proposed and has achieved 
good results. Bouhalais [8] proposed a hybrid method based on CEEMDAN and an optimized 
wavelet multi-esolution analysis for the detection of rolling bearing faults under variable speed. 
The CEEMDAN was used in order to select the oscillatory mode that best reflect the impulsive 
form of the defected bearing signal. Vanraj [9] described and presented the implementation of 
CEEMDAN for fault diagnosis of simulated local defects using sound signals in a fixed-axis 
gearbox. By extracting statistical parameters from decomposed sound signals for different 
simulated faults, more accurate IMFs and fault severity were obtainwd. Therefore, based on 
predecessors’ research, this paper proposed the CELMDAN algorithm, which combines 
CEEMDAN and LMD [10]. By adding the decomposed noise signal, it is used to reduce the 
influence of modal aliasing. It is a PF component reconstruction problem of LMD. Further, it is 
the key to quantify the fault features contained in the decomposition results of CELMDAN. Some 
feature indexes are often used, such as mean value, root mean square, peak value and frequency 
center of gravity, but they are more suitable for representing stationary signals. Entropy is a 
physical quantity that expresses the disorder degree of molecular state in thermodynamics at first. 
After further research by scholars, it is applied to reflect the complexity and stability of signals, 
and the feature of non-stationary signals can be quantified. Entropy can be understood as the 
probability of occurrence of certain information. The more orderly a system is, the lower the 
entropy is. The more chaotic the system is, the greater the entropy is. When the mechanical 
vibration signal is disturbed by the impact of the fault, a new signal component is added to the 
original signal, and the complexity and stability of the entire signal change. This corresponds to 
the generation of new patterns in the definition of entropy. The more new patterns are generated 
in the signal, the greater the entropy value, that is, the greater the complexity of the original signal, 
the worse the stability. And fuzzy entropy [11] is a typical and effective feature which can be used 
as the measurement value that reflects the complexity of time series, so it can be used as the 
sensitive feature of vibration signals of rolling bearing. 

In the aspect of pattern recognition, the fault recognition technology based on mathematical 
model is the core of fault diagnosis and usually more precise [12-14]. Due to the powerful learning 
and recognition ability, neural networks are excellent pattern recognition model and have been 
widely used in the field of fault diagnosis of rolling bearing [15]. Extreme learning machine  
(ELM) is a new neural network algorithm based on single hidden layer. The weights and 
thresholds among input layer, output layer and hidden layer can be randomly generated. In the 
training process, only the number of neurons in hidden layer needs to be set, and no other 
parameters need to be adjusted. It has the advantages of simple parameter selection, fast learning 
speed and good generalization ability, and has attracted more and more attention and application. 

Therefore, in this paper, the vibration signal is decomposed by CELMDAN, then, the fuzzy 
entropy values of effective PF components are extracted to construct the training and testing 
samples. Finally, the fault pattern recognition of rolling bearing is performed through the trained 
ELM [16]. 
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2. Model establishment 

2.1. CELMDAN 

CELMDAN is proposed based on the research idea of LMD and CEEMDAN. The following 
formulas are the decomposition process of CELMDAN. Firstly, the operator 𝐸𝑗ሺ⋅ሻ is defined, 
which represents the 𝑗-th PF component of the LMD. Assuming that 𝑤 is the white noise with 
normal distribution, 𝑖 represents the times of the added noise. 𝜀 is the amplitude coefficient of 
white noise. Assuming that the original signal to be decomposed is 𝑥(𝑡), and its decomposition 
process is as follows [10, 17]:  

(1) The original signal adding white noise is 𝑥(𝑡) + 𝜀𝑤(𝑡), and it is decomposed by LMD, 
and the average of all the first order PF components is defined as the final first PF component. 
That is as follows: 

𝑃𝐹ଵ = 1𝐼 𝐸ଵ(𝑥(𝑡) + 𝜀𝑤(𝑡))ூ
ୀଵ . (1)

(2) The remaining signal 𝑟ଵ after screening out the first order PF component is as follows: 𝑟ଵ(𝑡) = 𝑥(𝑡) − 𝑃𝐹ଵ. (2)

(3) For 𝑟ଵ(𝑡) + 𝜀ଵ𝐸ଵ(𝑤(𝑡)), 𝑖 = 1,2, . . . , 𝐼, LMD is carried out. The average of all first order 
PF components is defined as the final second PF component, and that is as follows: 

𝑃𝐹ଶ = 1𝐼 𝐸ଵ(𝑟ଵ(𝑡) + 𝜀ଵ𝐸ଵ(𝑤(𝑡)))ூ
ୀଵ . (3)

(4) For 𝑘 = 2,⋯ ,𝐾, the 𝑘-th remaining signal is as follows: 𝑟(𝑡) = 𝑟ିଵ(𝑡) − 𝑃𝐹. (4)

(5) For 𝑟(𝑡) + 𝜀𝐸 ቀ𝑤(𝑡)ቁ, 𝑖 = 1,2, . . . , 𝐼, LMD is continued, Furthermore, the average of 
all first order PF components can be still obtained: 

𝑃𝐹ାଵ = 1𝐼 𝐸ଵ(𝑟(𝑡) + 𝜀𝐸(𝑤(𝑡))ூ
ୀଵ ). (5)

(6) Repeat steps (4) and (5) until the residual component does not satisfy the decomposition 
condition, then, the decomposition process is completed. The last residual component can be 
expressed as follows: 

𝑟(𝑡) = 𝑋(𝑡) −𝑃𝐹
ୀଵ , (6)

where 𝐾 is the total amount of final PF components, and the original signal can be expressed as 
follows: 
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𝑋(𝑡) = 𝑃𝐹
ୀଵ + 𝑟(𝑡). (7)

The following is the flowchart of CELMDAN algorithm. 

 
Fig. 1. The flowchart of CELMDAN algorithm 

2.2. Fuzzy entropy 

From the perspective of the analysis of vibration signals, feature extraction and pattern 
recognition occupy a critical position, and that are the core of fault diagnosis. When the rolling 
bearing fails, the measured vibration signal is often complex. The fuzzy entropy can be used as 
the measurement value that reflects the complexity of time series, so it can be used as the sensitive 
feature of vibration signals. Therefore, in this paper, the vibration signal is decomposed by 
CELMDAN, then, the fuzzy entropy values of each effective PF components are extracted to 
construct the training and testing samples. Finally, the fault pattern recognition of rolling bearing 
is performed through the trained ELM [16]. 

Define a discrete sequence ሼ𝑥(𝑘), 𝑘 = 1,2,⋯ ,𝑁ሽ, and these elements are reconstructed in 
order. 𝑚 is the embedded dimension, and the following can be obtained [18]: 𝑋(𝑖) = ሾ𝑥(𝑖), 𝑥(𝑖 + 1),⋯ , 𝑥(𝑖 + 𝑚− 1)ሿ − 𝑥(𝑖), (8)

where 𝑖 = 1,2,⋯ ,𝑁 −𝑚 + 1, 𝑥(𝑖) is the mean of [𝑥(𝑖), 𝑥(𝑖 + 1), … , 𝑥(𝑖 + 𝑚 − 1)], and it can 
be expressed as follows: 

𝑥0(𝑖) = 1𝑚𝑥(𝑖 + 𝑗)𝑚−1
𝑗=0 . (9)

The 𝑑(𝑖, 𝑗) is defined as the distance between 𝑋(𝑖) and 𝑋(𝑗), which is the largest difference 
between the two elements. Then find its absolute value: 
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𝑑(𝑖, 𝑗) = maxୀ,⋯,ିଵ(|𝑥(𝑖 + 𝑘) − 𝑥(𝑗 + 𝑘)|), (10)

where 𝑘 = 1,2,⋯ ,𝑚 − 1, 𝑖, 𝑗 = 1,2,⋯ ,𝑁 −𝑚 + 1. 
The fuzzy membership function 𝜇(𝑥, 𝑟) is defined to measure the complexity of the sequence, 

and the similarity 𝐷𝑖𝑗 between the vectors 𝑋(𝑖) and 𝑋(𝑗) is defined as follows: 

𝐷𝑖𝑗 = 𝜇൫𝑑𝑖𝑗, 𝑟൯ = exp ቈ−(ln2) ⋅ ൬ 𝑑𝑖𝑗𝑟 ⋅ 𝜎൰2, (11)

where 𝜎 is the standard deviation of the sequence, 𝑟 ∈ (0,1). 
And then, the function is defined as follows: 

𝜙𝑚(𝑁,𝑚, 𝑟) = 1𝑁 − 𝑚 ቮ 1𝑁 − 𝑚 + 1  𝐷𝑖𝑗𝑚𝑁−𝑚
𝑗=1,𝑗≠𝑖 ቮ𝑁−𝑚

𝑖=1 . (12)

The new embedding dimension is set as 𝑚 = 𝑚 + 1, and above steps are repeated, and that 
can be obtained as follows: 

𝜙𝑚+1(𝑁,𝑚, 𝑟) = 1𝑁 − 𝑚 + 1  ቮ 1𝑁 − 𝑚  𝐷𝑖𝑗𝑚+1𝑁−𝑚+1
𝑗=1,𝑗≠𝑖 ቮ𝑁−𝑚+1

𝑖=1 , (13)

where 𝑁 is the length of the data, 𝑚 is the embedded dimension, and 𝑟 is the parameter of the used 
fuzzy membership function. Therefore, the fuzzy entropy can be defined as follows: 𝐹𝑢𝑧𝑧𝑦𝐸𝑛(𝑁,𝑚, 𝑟) = limே→ஶ[ln𝜙 − ln𝜙ାଵ]. (14)

In the actual calculation process, the length of sequence is finite, so the fuzzy entropy can be 
defined as follows: 𝐹𝑢𝑧𝑧𝑦𝐸𝑛(𝑁,𝑚, 𝑟) = ln𝜙 − ln𝜙ାଵ. (15)

It can be seen from the algorithm of fuzzy entropy that the sequence mean is introduced in the 
sequence reconstruction process. When the data is fluctuating, the similarity of the fuzzy entropy 
is no longer determined by the absolute mean, and the stability of the calculation result is greatly 
enhanced. Meanwhile, the similarity measure method in calculation process of fuzzy entropy 
adopts the exponential metric method, due to the continuity of this function is better, so the fuzzy 
entropy value will also change smoothly. Therefore, the fuzzy entropy is selected in this paper as 
the fault feature of the vibration signal of rolling bearing. On the basis of the extracted fault feature, 
the fault pattern recognition of rolling bearing can be finally realized by the combining ELM 
which has the significant advantages in recognition. 

3. The introduction of experimental platform 

This experiment adopts the mechanical fault comprehensive simulation test bench of Spectra 
Quest of the United States. The test bench is connected in turn by inverter, motor, coupling, fault 
simulator, etc. The acceleration signal and the rotational speed value during the operation are 
collected by the data acquisition instrument, and the used experimental platform is shown in Fig. 2, 
and the bearing pedestal and rolling bearing are shown in Fig. 3. The setting condition of 
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experiment process is shown in Table 1. 

Table 1. The setting conditions of experiment process 
Motor speed Sampling frequency System load Sample length 
1800 r/min 10000 5 Nm 4096 

 

 
Fig. 2. Experimental platform 

 
Fig. 3. Bearing pedestal and rolling bearing 

4. The analysis of experimental results 

In order to verify the effectiveness of the proposed method in this paper, four types of rolling 
bearing vibration signals (Regular, outer ring fault, inner ring fault, rolling element fault) are 
selected for analysis. The time domain waveforms of the vibration signals are shown in Fig. 4. 
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Fig. 4. The time domain waveforms of the vibration signals 

In the experiment of this paper, 60 groups of samples were intercepted from each type of 
vibration signals, and each group of samples included 4096 data points. The obtained 4×60 groups 
of samples are processed by CELMDAN. The first 5 PF components with higher correlation with 
the original vibration signal are selected to calculate the fuzzy entropy. The fuzzy entropy matrix 
with 5×240 dimension can be obtained by decomposing all 240 groups of samples, and each type 
of vibration signal should obtain a fuzzy entropy matrix with 5×60 dimension. Generally speaking, 
the more training samples, the more data information can be used, and that is more conducive to 
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the establishment of fault diagnosis model. But if the training samples are excessive, it is also easy 
to cause the over-fitting problem of fault diagnosis model. However, it is difficult to obtain enough 
samples of various rolling bearing states, and the available samples are limited under actual 
conditions. Therefore, based on previous research experience, 60 % of the samples can be selected 
as training samples, and 40 % as testing samples. It not only can complete the training of fault 
diagnosis model based on limited samples, but also can have some testing samples to evaluate the 
performance of the trained diagnosis model. In this paper, each rolling bearing state has 
60 samples by the experiment, so the first 35 groups of samples of each type fuzzy entropy matrix 
are selected to train the ELM model, and the last 25 groups of samples of each type fuzzy entropy 
matrix are used for testing. Due to space limitations, only one sample of each type is selected for 
explanation. The decomposition results of CELMDAN for each group of sample are shown in 
Fig. 5- Fig. 8. The fuzzy entropy values obtained from each samples are shown in Table 2.  

 
Fig. 5. The first five PF components of the vibration signal of regular 

 
Fig. 6. The first five PF components of the vibration signal of outer ring fault 
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Fig. 7. The first five PF components of the vibration signal of inner ring fault 

 
Fig. 8. The first five PF components of the vibration signal of rolling element fault 

Table 2. Fuzzy entropy values obtained from the samples of different rolling bearing states 

Rolling bearing state Fuzzy feature values 
PF1 PF2 PF3 PF4 PF5 

Regular 0.0632 0.0274 0.0032 1.920e-4 –2.119e-4 
Outer ring fault 0.1077 0.0254 0.0054 4.069e-4 –1.943e-4 
Inner ring fault 0.1383 0.0374 0.0080 5.589e-4 –1.738e-4 

Rolling element fault 0.1200 0.0287 0.0051 4.135e-4 –1.897e-4 

In order to prove that it is feasible to extract the fault feature of rolling bearing by using 
CELMDAN and fuzzy entropy, 35 samples are selected for each types of rolling bearing, and their 
fuzzy entropy is calculated. The boxplots obtained from different samples of each type of rolling 
bearing are analyzed. The obtained boxplots of each type of rolling bearing are shown in  
Fig. 9 (a-d), respectively. For each type of rolling bearing, it can be seen from the Fig. 9(a-d) that 
the fault feature values extracted by CELMDAN and fuzzy entropy have better robustness, and 
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the fluctuation of their feature values is small, which is completely acceptable. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 9. The boxplots of fuzzy entropy of the first five PF components:  
a) regular, b) outer ring fault, c) inner ring fault, d) rolling element fault 

Furthermore, the pattern recognition of rolling bearing is realized by ELM. The number of 
hidden neurons in ELM is set to 20, and the labels of the training samples of different rolling 
bearing types are set to 𝜆1, 𝜆2, 𝜆3, 𝜆4, respectively. When the training process is completed, the 
recognition rate of training samples is shown in Table 3. It can be seen that the recognition rate of 
training samples is 100 %. Then, the last 25 groups of samples of each rolling bearing state are 
used for the accuracy testing of the trained ELM, and the diagnosis result of testing samples is 
shown in Table 4. 

Table 3. The recognition rate of the training samples of each rolling bearing state 
Rolling bearing 

state Regular Outer ring 
fault 

Inner ring 
fault 

Rolling element 
fault 

Recognition 
rate 

Regular 35 0 0 0 100 % 
Outer ring fault 0 35 0 0 100 % 
Inner ring fault 0 0 35 0 100 % 
Rolling element 

fault 0 0 0 35 100 % 

From Table 4, the recognition rates of regular and inner ring fault are both 100 %, while those 
of outer ring fault and rolling element fault are 92 % and 96 %, respectively. The recognition error 
results are limited to outer ring fault and rolling element fault. It can be seen from Fig. 9 that there 
are some overlaps between PF1 and PF2 positions of outer ring fault and rolling element fault. 
This may be due to sporadic similar samples generated by signal interference, and it finally leads 
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to the misdiagnosis of ELM. But in general, fuzzy entropy features effectively distinguish different 
fault patterns. The overall recognition rate of the proposed method is 97 %, and no fault samples 
are misdiagnosed as regular state. This means the situation that fault bearing is missed and 
continues to work can be avoided as much as possible. In order to further analyze the conclusions 
and prove the effectiveness of the proposed method, some experimental studies under different 
experiment conditions are carried out. The motor speed is set to 30 Hz and 20 Hz, respectively, 
and the system load is set to 2.5 Nm and 5 Nm, respectively. The vibration signals of various 
rolling bearings under different speeds and different loads are collected, and processed according 
to the above methods. The fault recognition results under different speeds and different loads are 
shown in Fig. 10. 

Table 4. The diagnosis result of the testing samples by the trained ELM 
Rolling bearing 

state Regular Outer ring 
fault 

Inner ring 
fault 

Rolling element 
fault 

Recognition 
rate 

Regular 25 0 0 0 100 % 
Outer ring fault 0 23 0 2 92 % 
Inner ring fault 0 0 25 0 100 % 
Rolling element 

fault 0 1 0 24 96 % 

 
Fig. 10. The fault recognition results under different speeds and different loads 

It can be seen from Fig. 10 that when the motor speed is 30 Hz and the load is 5 Nm, the 
average recognition rate of rolling bearing fault is the highest, reaching 97 %; when the motor 
speed is 20 Hz and the load is 2.5 Nm, the average recognition rate of rolling bearing fault is the 
lowest, reaching 93 %. Through comparison, it can also be found that the larger the load is, the 
higher the recognition rate is. The main reason is that the larger load makes the impact feature 
signal produced by rolling bearing faults more obvious, and the fault features are easier to be 
recognized. Through the above analysis, it can be proved that the proposed method has better fault 
diagnosis results of rolling bearing under constant speed and constant load. That can be applied to 
the fault diagnosis of rolling bearing under constant speed conditions, so as to avoid safety 
accidents, and the operation efficiency of equipment can also be improved. But in the actual 
working condition, there are also a lot of conditions with variable speed and variable load. For the 
fault diagnosis of rolling bearing under the condition of variable speed, the effectiveness of the 
proposed method in this paper needs to be further studied, which will also be the main research 
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directions in the future. In addition, how to realize the real-time predictive maintenance of the 
operation state of rolling bearing is also the research focus of the next step. 

5. Conclusions 

This paper introduces a bearing fault pattern recognition method based on CELMDAN and 
fuzzy entropy. By describing the phenomenon of modal aliasing in LMD and combining the 
previous research, the CELMDAN algorithm is proposed. With the help of noise in different 
decomposition stages, the modal aliasing problem can be better improved. Further from the 
perspective of pattern recognition, the fuzzy entropy is defined as the sensitive feature of the 
rolling bearing vibration signal. It is combined with the simplicity and comprehensiveness of the 
algorithm. Then the fault diagnosis and pattern recognition of rolling bearing are realized by ELM 
algorithm. Finally, based on the experiments, it is proved that CELMDAN has better 
decomposition ability, and fuzzy entropy is an effective and robust feature quantification index. 
The diagnostic recognition rate of the four types of rolling bearing states is over 92 %, and it is 
proved that the proposed method can effectively recognize the fault pattern of rolling bearing. 
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