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Abstract. In order to solve the problem of obtaining accurate data for an intact beam, a 
baseline-free damage identification approach, based on the difference in the energy consumption 
of a beam, has been presented in this paper. An energy model was established in order to illustrate 
that the difference in the energy consumption is mainly due to the respiration effect of cracks, and 
that the energy consumption of a beam bending downward can be utilized as a replacement for 
the baseline data. Thus, the standard data and the comparative data can be separated from the 
measurement data. Based on this data, a statistical damage factor that can be used to locate and 
quantify the damage in a beam has been defined. Finally, an identification algorithm was 
established and has been experimentally verified for use with pre-damaged reinforced concrete 
beams. The experimental results have illustrated that the location and singularity of a singular 
point in the damage indicator sequence can locate the damage and quantify the severity of the 
damage in a beam, respectively. 
Keywords: damage identification, non-baseline data, energy consumption model, breaking-crack, 
pre-damaged beam. 

1. Introduction 

A crack in a beam is a common and primary form of damage that is responsible for the beam’s 
initial breakdown, and can seriously degrade its structural health and the in-service lifetime of an 
entire bridge. In this context, a method to efficiently identify damage in beams and monitor the 
structural health of bridges has become an important yet timely topic in the field of bridge 
engineering [1-3]. 

Generally, one common method that is used to identify any possible damage in beams is to 
collect their dynamic characteristics, e.g., the frequencies, mode damping, and the modal shapes 
of the beam based on vibration, and then to achieve identification of the damage by making a 
direct comparison with characteristics extracted from undamaged beams. It is obvious that the 
prerequisite for this strategy is easily-accessible modal parameters, namely the baseline data, of 
intact beams; acquiring this data is still a challenge given the huge number of beams that are used 
in the engineering field [4]. In order to overcome this problem, a reference state can also be 
theoretically derived from a finite element model. However, the inappropriate application of FEM 
inevitably results in the reference state deviating considerably from those measured in the intact 
state, this reducing thus the reliability of vibration-based damage identification methods. 
Therefore, it is highly necessary to develop a new damage-identification method on the condition 
of vanishing baseline data [5]. 

As early as 1996, an attempt [6] was made to utilize the experimental modal data and modal 
parameters of the finite element model in order to estimate the base-line modal parameters, and 
conducted damage localization research on a continuous beam. Later, using the gapped smoothing 
method, [7] a reference state was constructed in the literature by fitting the curvature mode shape 
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and locating a delamination in a composite beam; based on this method, the damage in the metallic 
splint-core of a truss structure could be detected with reasonable accuracy [8], fully indicating that 
damage identification can be achieved even without baseline data. By replacing the curvature of 
an ideal beam with smoothed polynomials, [9] a non-baseline method for damage identification 
in plate structures was also reported in the literature. Moreover, by strongly relying on the nodal 
characteristics of different modal shapes, [10] a reference state for non-baseline damage 
identification was established; this method could also be used to locate the damage as well as 
quantitatively evaluate it. Baneen et al. [11] improved the existing modal strain energy method by 
minimizing the effect of noise on the measurement data. A baseline-free damage identification 
process of a steel beam was carried out with the modification of using a fitted curvature. Prawin 
et al. [12] utilized the nonlinear harmonics and inter modulations in the response to establish a 
damage indicator based on singular spectrum analysis. They also carried out numerical simulation 
and experimental studies to detect a breaking crack, as well as localization and characterization 
using singular spectrum analysis. Qiu et al. [13] obtained the health information of a beam by 
comparing pitch-catch pairs with different propagation distance. Based on distance compensation, 
they illustrated a damage identification approach for plate-like structures. In 2019 [14], a 
non-baseline method was reported for identifying damage in a truss by integrating displacement 
and strain measurements. Han et al. [15] proposed a baseline-free sparse array system based on 
the fundamental shear horizontal (SH0) wave. This system was used for damage identification of 
isotropic plates. Randhawa et al. [16] obtained the curvature mode shape using the finite difference 
of the displacement mode shape, and then obtained the data of an intact beam by smoothing the 
finite difference approximation with cubic polynomials. The key aim of these studies was the use 
of a specific algorithm to manually establish a proper reference state; in order to make the 
reference data algorithm-dependent and deviate from the realistic characteristic of a structure. 
Thus, in order to improve the accuracy and reliability of non-baseline damage identification, 
establishing a reference state from the as-measured dynamic signal is highly desirable. 

In this work, a non-baseline data method for damage identification has been reported, based 
on an energy-consumption model. By applying this method to several deliberately damaged  
beams, it has been demonstrated in this paper that the proposed method can correctly identify the 
properties of the as-made damage in the beams, thus providing a reliable method for damage 
identification in a beam structure on the condition of vanishing standard baseline data. 

The rest of this paper has been organized as follows: In Section 2, an explanation of the energy- 
consumption model and damage identification, without baseline data, has been given, the specific 
experiment has been detailed in Section 3, and finally the paper has been summarized in Section 4. 

2. The theory of damage identification without baseline data  

2.1. Replacement of the baseline data 

The fundamental principle of the proposed method to identify a breathing-crack in a damaged 
beam has been schematically illustrated in Fig. 1. In a static state, a crack in a damaged beam 
which is slightly bent due to gravity has a finite width 𝑤ଶ and depth 𝑑; when the beam curves 
downward, the crack tends to open due to the tensile force acting on it and displays an enlarged 
width 𝑤ଷ. Considering that the severity of the damage of the beam will not significantly change 
instantly without strong external excitation, the crack depth 𝑑 can be approximately regarded to 
be a constant. Conversely, when a beam curves upward, the compressive force tends to gradually 
cause the crack to close, displaying a shrinking width 𝑤ଵ and crack depth 𝑑′. The value of 𝑑′ will 
decrease as the upward-curving amplitude increases: it will be greater than 0 and less than 𝑑. 
Obviously, the crack width in these cases satisfies the relation 𝑤ଵ < 𝑤ଶ < 𝑤ଷ. Thus, through a 
single measurement, in contrast to the symmetrical dynamic characteristics of an intact beam, an 
asymmetrical dynamic characteristic should be expected for a damaged beam. Specifically, due 
to the barely varying value of 𝑑 , a relatively stable characteristic can be expected for a 
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downward-curving beam; while for an upward-curving beam, the varying crack depth results in a 
varying response from the damaged beam. Following this feature, it may be feasible to construct 
a reference state for non-baseline identification by employing the stable dynamic characteristics 
of a downward-curving beam and achieve damage identification by taking the response of an 
upward-curving beam as the control case. 

 
Fig. 1. Schematic diagram of the bending shape of a beam 

2.2. Energy-consumption model and damage indicator 

In order to search for a specific damage indicator, the transverse damped vibration of an 
Euler-Bernoulli beam should be considered; the system’s energy 𝐸𝑁, based on the law of the 
conservation of energy, can be written as: 𝐸𝑁 = 𝑉௠௔௫ + 𝑊ௗ, (1)

where, 𝑉௠௔௫ is the maximum potential energy, 𝑊ௗ is the energy consumed by the work due to the 
damping reflection. 𝑉௠௔௫ can be given as [17]: 

𝑉௠௔௫ = 12𝐴்𝐾𝐴, (2)

where, 𝐴 is the modal shape, 𝑇 denotes the transpose of the matrix, 𝐾 is the stiffness of the system. 
For intact beams, the stiffness 𝐾 is a constant; however, for damaged beams, the stiffness not only 
decreases but is also variable. A schematic diagram of the local stiffness of a damaged beam with 
a breathing-crack is shown in Fig. 2. 

 
Fig. 2. Schematic diagram of the dynamic response attenuation and energy of a beam 

The stiffness expression can be given in another form [18] as: 

𝐸𝐼ሺ𝑥ሻ = 𝐸଴𝐼 ⎝⎛1 − 𝑠𝛼cosଶ ቌ𝜋2ቌ |𝑥 − 𝑙௖|𝛽𝐿2 ቍ௠ቍ⎠⎞ ,    ൬𝑙௖ − 𝛽𝐿2 ൰ < 𝑥 < ൬𝑙௖ + 𝛽𝐿2 ൰, (3)
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where, 𝐸 (𝐸଴) is the Young’s modulus of the damaged (intact) beams, and 𝐼 is the moment of 
inertia, 𝐸𝐼 (𝐸଴𝐼) is the stiffness of the beam in a damaged (intact) state, 𝐿 is the length of the beam, 𝑚 describes the trend of the Young’s modulus in the damaged area of the beam, 𝑥 is the local 
position coordinate, 𝑙௖ is the position of the center of the crack, 𝛼 is the degree of damage with 
the value range from 0 (intact beam) to 1 (completely broken beam), 𝛽 is the area affected by the 
damage with the value range from 0 (no affect) to 1 (the entire beam is affected), and 𝑠 is the 
degree of crack closure with the value range from 0 (the crack is completely closed) to 1 (the crack 
is completely opened). Since the vibration of the beam is generally elastic, for an intact beam, 𝑠 
is always 0 before any cracks appear. For a beam with a breathing-crack, if the beam curves 
downward, 𝑠 will always be 1. Correspondingly, if the beam is bent upward, 𝑠 will be less than 1 
and will be time-varying. 

Given the contribution of any possible damping, the energy of the beam should be gradually 
attenuated. In order to see more clearly what could be expected from this feature for damage 
identification, the way in which the concept of the attenuation coefficient is introduced has been 
borrowed here [17]. A representatively attenuated response (e.g. displacement) has been plotted 
in Fig. 3 by taking the expression 𝑓 = sin ሺ0.15𝜋𝑡ሻexp ሺ−0.03𝑡ሻ as an illustrative example.  

 
Fig. 3. Schematic diagram of the attenuated dynamic response  

and the maximum potential energy of a beam 

It can be easily seen that as 𝑡 increases, a series of peaks and valleys can be observed and, due 
to the damping, the amplitude of these peaks and valleys are different from time to time. At the 
peaks, the beam is curved upward and acquires a local maximum upward bend; while at the valleys 
the beam is curved downward and also acquires a local minimum downward bend. For a given 
periodic value of 𝑛, the strong deformation at the peak or valley gives rise to a local maximum 
potential energy 𝑉୫ୟ୶ ሺ௡,௨/ௗሻ with the subscript 𝑢/𝑑 for the upward or downward curving. It is 
evident that, due to the damping, there is an observable difference in two neighboring values 𝑉୫ୟ୶ ሺ௡,௨ሻ (𝑉୫ୟ୶ ሺ௡,ௗሻ). Here the energy consumption ∆𝐸𝑁 can be used to describe this difference, 
which can be given as: ∆𝐸𝑁ሺ௡,௨/ௗሻ = 𝑉୫ୟ୶ቀ௡,௨ௗቁ − 𝑉୫ୟ୶ቀ௡ାଵ,௨ௗቁ. (4)

For a homogenous, intact beam, the asymptotic line of the peaks and valleys is symmetrical 
with respect to the zero-line and ∆𝐸𝑁ሺ௡,௨ሻ should have little difference from its downward curving 
counterpart; e.g., the external damping arising from the damper. However, for a damaged beam, 
there is an observable difference between ∆𝐸𝑁ሺ௡,௨ሻ and ∆𝐸𝑁ሺ௡,ௗሻ due to the respiration effect of 
the internal cracks. This can be explained by the change in the stiffness of the beam. According to 
Eq. (3), since the value of 𝑠 is always 1 when the beam curves downward, the stiffness can be 
regarded to be constant; while the stiffness of the beam is time-varying due to time-varying value 
of 𝑠 when the beam is bent upward. As a physical parameter that reflects the bending performance 
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of the beam, the change in the stiffness will affect the transverse displacement of the beam when 
it vibrates. The change in the maximum lateral displacement of the system determines the change 
in the maximum potential energy of the system, which reflects the change of the system’s energy. 
That is to say, the difference between the stiffness of the beam in different bending states is 
positively correlated with the change in energy during adjacent periods. In the following section, 
this difference between the 𝑛-th periodic and the (𝑛 + 1)-th periodic has been denoted as 𝜀௡ , 
which can be written as: 𝜀௡ = ห∆𝐸𝑁(௡,௨) − ∆𝐸𝑁(௡,ௗ)ห. (5)

For an intact beam, the value of 𝜀௡ should be zero; while for a damaged beam, a non-zero 
value would be expected. In addition, in order to reduce the effect of any possible error on 𝜀௡ and 
considering the instability of the dynamic response, the statistically averaged value of 𝜀௡ has been 
employed here as the damage factor 𝐷௝ for each test point (see Fig. 4(a)), given by: 

𝐷௝ = ඨ∑ (𝜀௜)ଶ௜ୀ௡ିଵ௜ୀଵ𝑛 − 2 , (6)

where, 𝑗 is the order of the test points. Starting with Eq. (6), it can be concluded that a larger value 
of 𝐷௝ should be observed, due to the position-dependent stiffness, for the test points that more 
closely approach the center of the crack. Due to the respiratory effect of the crack, a larger value 
of 𝐷௝ with a specified test point should also be observed for the asymmetry of a much larger energy 
consumption. It should be noted that: (1) according to Fig. 2, only the local stiffness in the 
damaged area is reduced, therefore only the data that is detected by the test points in the damaged 
area is able to reflect the damage; (2) in the damaged area, the stiffness of the area close to the 
center of the fracture is significantly decreased, while the stiffness of the area far away changed 
much less noticeably. Therefore, the sensitivity of the data that was obtained from the test points 
in the region that was relatively far away from the damage is relatively weak. Thus, according to 
the analysis of 𝐷௝, the damage can then be located and evaluated. 

3. Experimental study on pre-damaged reinforced concrete beams 

3.1. Artificially cracked reinforced concrete beams and the measurement system 

The experiments were conducted on four reinforced concrete beams with dimensions of 
600 cm × 25 cm × 50 cm; three of the beams were prefabricated with artificial cracks and all the 
beams were simply supported. The density of the beams was 2.5×103 kg/m3 and the thickness of 
the concrete cover was 4 cm. Each beam had two pressed longitudinal stirrups and three tensioned 
longitudinal stirrups with a diameter of 2 cm. The diameter and configuration spacing of the 
stirrups were 0.8 cm and 20 cm respectively. The stirrup grade, the concrete’s compressive 
strength and the elastic modulus were HRB335, 32 MPa and 30 kN/mm2, respectively. The 
structural schematic diagram of the beams and the details of the artificial cracks have been shown 
in Fig. 4 and Table 1 respectively. 

Table 1. Details of the test specimens 
 #1 Beam #2 Beam #3 Beam #4 Beam 

Crack location Mid-span Mid-span A quarter of the beam’s length No damage 
Crack depth (cm) 2.5 10 2.5 0 
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a) Structural diagram and distribution of the test points on the beam 

 
b) Artificial crack 

 
c) Reinforced concrete beam 

Fig. 4. Structural diagram and images of the reinforced concrete beam 

In order to record the dynamic response of the beam to an external shock, an array of sensors 
was evenly arranged in a line at the bottom of the beam from one end to the other, as shown in 
Fig. 4(a). The purpose this layout was to verify the feasibility of using this method in 
one-dimensional simple structure damage identification. A total of 11 sensors were set up on each 
beam. The distance between two adjacent sensors was 50 cm, and the distance between the two 
boundaries is 12.5 cm. Each sensor contained two strain gauges; one was the measuring 
instrument and the other was the compensator. The parameters of the strain gauges are shown in 
Table 2. 

Table 2. Parameters of the BX120-100AA strain gauge 
Resistance 

value 
Length and width 

of the base 
Length and width of 

the wire grid 
Supply 
voltage 

Sensitivity 
coefficient Strain limit 

120 Ω 108 mm×6 mm 100 mm×3 mm 3 V-10 V 2.0 ± 1 %  20000 με/m 

The initial non-zero strain, caused by the self-deformation of the beam, and other random 
factors can be eliminated by initialization of the test system. In other words, when the beam is 
static, the strain measured at all test points was set to 0. 

Since it is very difficult to produce a real breathing crack in a beam, artificial cracks (shown 
in Fig. 4(b)) were simulated by the manual addition of a piece of cardboard at a specific location 
when the beam was manufactured. As the coupling between the concrete and the cardboard is 
weaker than that between concrete and concrete, the tensile stress on the cardboard will be 
significantly reduced (even to 0) when the beam curves downward. From the point of view of a 
stress state, the damage produced is similar to that of an actual breathing-crack. Conversely, when 
the beam curves upward, the concrete on either side of the cardboard can be considered to be in 
approximate direct contact as the cardboard is very thin. Therefore, it is expected that the 
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experimental data obtained from this setup can reasonably represent the damage in a beam with 
an actual crack. The length and thickness of the cardboard that was used was 25 cm and 0.05 cm 
respectively. By artificially imposing an external shock with a 10 kg hammer (as shown in 
Fig. 4(c)), a random impulse excitation was simulated in order to eliminate the interference of an 
external force on the energy consumption caused by the damping and ensure that the as-measured 
dynamic response would be recorded in-situ by a computer. 

3.2. Damage identification based on the 1st-order dynamic strain response 

3.2.1. Extraction and separation of the dynamic response 

Taking the dynamic response that was measured from the 6th test point of the #1# beam as an 
example, Fig. 5(a) depicts the as-measured signal from the #1 beam. It can be easily observed that 
the signal showed a certain asymmetry with respect to the zero-line; the maximum value of the 
peaks was approximately 17 while the minimum value of the valleys was approximately -12. In 
addition, the roughness of the signal waveform makes the periodicity difficult to ascertain. In order 
to distinguish the dynamic response components of the signal, firstly the spectrum (as shown in 
Fig. 5(b)) was obtained using the Fast Fourier Transform of the signal. In Fig. 5(b), a series of 
spectral peaks can be seen in the spectrum, which can be divided into two categories; ones with a 
Gaussian Shape and others with a pulse shape. Among these peaks, the pulsed peaks showed a 
remarkable regularity, that is, their frequencies were all integer multiples of 50 Hz. This indicates 
that these components were harmonic noise and had to be eliminated before the following analysis 
was carried out. It was obvious that the remaining peaks represent the natural frequencies that 
corresponded to each order of the vibration signals. Similarly, the dynamic response that was 
measured from the 6th test points and their spectrums for beams #2, #3 and #4 have been 
demonstrated in Fig. 5(c) to Fig. 5(h). Among these, the signal quality for beam #2 was the best 
(as shown in Fig. 5(c)) due to the weaker harmonic component (as shown in Fig. 5(d)). However, 
the characteristic of the signal’s asymmetry (maximum 60, minimum 40) cannot be concealed by 
either the periodicity or the relatively smooth waveform. In contrast, the signal in Fig. 5(g) was 
the most cluttered, although the symmetry of the amplitude was good. Compared with the 
spectrum in Fig. 5(h), it is not difficult to see that the clutter in the signal was mainly caused by 
interference from excessive harmonic noise. The rest, both the response and the spectrum 
characteristics of beam #3 were all similar to those of beam #1. According to the figures above, 
the dynamic responses of the three beams, in total, have shown a certain asymmetry; and the 
beams where this occurred happened to be the damaged beams. This result seems to confirm the 
above mentioned inconsistency in the vibration of the damaged beam; in both the upward-curving 
and downward-curving beam. However, whether this inconsistency is due to an intrinsic dynamic 
response or interference from noise will need to be confirmed by further work. Due to the 
coexistence of multiple-order vibration signals and the interference from the harmonic noise, the 
as-measured signal displayed a complex pattern. Directly identifying any underlying damage from 
this date is a challenge. In general, in order to obtain the intrinsic dynamic response components 
from the complex signals to allow for subsequent analysis, a filter is needed. In view of the 
complexity of the traditional design of a filter and the feasibility of damage identification using 
the 1st order signal [19], wavelet decomposition was carried out in this paper. 

Due to the irregular shape of the spectrum peak (as illustrated in the subfigure of Fig. 5(d)), it 
is difficult to determine the bandwidth of each order of the natural frequency. Therefore, the 
common binary wavelet decomposition was employed to extract the intrinsic signal based on the 
wavelet toolbox in MATLAB. Based on the fact that the 1st-order signal possesses the most energy 
of the complete dynamic response signal [20, 21], the target extracted through wavelet 
decomposition was determined to be the 1st-order signal. According to the principle of binary 
wavelet decomposition [22], the Frequency Range, 𝐹𝑅, of each node can be obtained from Eq. (7): 
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𝐹𝑅 = 2ି௞𝐹௦, (7)

where, 𝑘 is the order of decomposition and 𝐹௦ is the maximum analytical frequency. According to 
Fig. 5, the 1st-order natural frequencies of the four beams were 21.52 Hz, 19.6 Hz, 20.97 Hz and 
23.45 Hz respectively. As the maximum analytical frequency of all the four group signals were 
1000 Hz, it was necessary to perform a five-layer decomposition to extract the 1st-order signals. 
After decomposition, the frequency range of the approximate nodes was 0 Hz-31.25 Hz 
(Highlighted with a red dotted box in the figures). Obviously, the signal in the approximation node 
was the 1st-order response; this is because the waveform of the signal that is obtained by wavelet 
decomposition is related to the basic wavelet. In order to obtain a signal that is as smooth as 
possible and facilitate extraction of the peaks, the DB6 wavelet with good smoothness was 
selected as the basic wavelet during decomposition. The four 1st-order signals have been 
illustrated in Fig. 6. 

 
a) Dynamic response of the #1 Beam 

 
b) Spectrum of the #1 Beam 

 
c) Dynamic response of the #2 Beam 

 
d) Spectrum of the #2 Beam 

 
e) Dynamic response of the #3 Beam 

 
f) Spectrum of the #3 Beam 

 
g) Dynamic response of the #4 Beam 

 
h) Spectrum of the #4 Beam 

Fig. 5. Dynamic response and spectrum of the 6th point on each  
of the four beams based on the strain measurement 
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a) #1 Beam 

 
b) #2 Beam 

 
c) #3 Beam 

 
d) #4 Beam 

Fig. 6. 1st order responses and peaks/valleys array of the four beams 

In Fig. 6, the 1st-order responses (black lines) that were extracted by wavelet decomposition 
have been shown, which not only separated the other order responses but also filtered out the 
harmonic noise, compared with the original dynamic responses. Among them, the improvement 
in the signals of beams #1 and #2 was the most significant, while that of beams #3 and #4 was 
slightly worse. Although the local signals for beams #3 and #4 were chaotic, on the whole, the 
four group signals were smoother and periodic. According to the attenuation trend of the signals, 
it is not difficult to see that the reason for the local clutter was the occurrence of multiple hits in 
one excitation. However, this did not affect the identification of the peaks and valleys which were 
utilized to calculate the maximum potential energy. The triangles and circles in Fig. 6 are the series 
of peaks and valleys that were identified with the maximum or minimum in every 50 data points. 
Although there was still some asymmetry between the sequences of the peaks and the sequences 
of the valleys of these four beams, it was no longer apparent. The results illustrated that, on the 
one hand, the signals obtained through wavelet decomposition can truly reflect the intrinsic 
vibration of the beams, and on the other hand, these beams have potential damage according to 
the previous inference. 

3.2.2. The replacement of potential energy and damage identification 

Since the potential energy cannot be calculated from the strain data, the wavelet energy was 
chosen as an alternative to determine the energy of the system. The wavelet energy 𝐸௪ can now 
be given as [23]: 

𝐸௪ = න 𝑓ଶ(𝑡)𝑑𝑡ାஶ
ିஶ . (8)

Eq. (8) describes the energy of one wavelet node. Therefore, the maximum potential energy 𝑉௠௔௫ (௝,௨/ௗ) was calculated from the sequence of the peaks and valleys. The damage indicator 𝐷௝ 
was obtained by substituting the data from the sequences of the peaks/valleys into Eq. (8), Eq. (5) 
and Eq. (6). The calculated values of 𝐷௝ of the four beams based on the 1st-order response have 
been depicted in Fig. 7. 
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In Fig. 7, the blue curve denotes the value of 𝐷௝ for beam #1. All the eleven values of 𝐷௝ were 
greater than 0, among which, 𝐷଺ was the largest while the others successively decreased with the 
increase of the distance from the 6th point. This illustrates that there were differences in energy 
consumption at all eleven test points and that the consumption at the 6th point was most  
significant. According to the inference introduced in section 2, this indicated that the crack was 
located near the 6th test point. The purple curve denoting the 𝐷௝ of beam #2, shown in Fig. 7, is 
similar to the blue curve. The main difference between them is that not only is the 𝐷௝ on the purple 
curve larger than that on the blue curve, but also the 𝐷଺ of beam #2 was significantly larger than 
that of beam #1. This suggests that a crack also exists near the 6th point on beam #2, and the depth 
of the crack is greater than that in beam #1. The 𝐷௝ of beam #3 is denoted by the red curve. In the 
red curve 𝐷ଷ displayed an obvious singularity which was greater than all the other 𝐷௝. In addition, 
the curve formed by the other 𝐷௝ took the shape of an arch. The reason for the arch is that the 
amplitude of the beam at its mid-span is the largest in general. This feature is further amplified by 
the square effect when calculating the wavelet energy. However, the arched distribution of the 
difference in the energy consumption cannot conceal the abnormal increase of the local energy 
consumption caused by the change in the local stiffness. Therefore, the singularity of 𝐷ଷ indicates 
that a crack appeared near the 3rd point on beam #3. As the singularity of this 𝐷ଷ is close to that 
of 𝐷଺ on beam #1, this indicates that the crack depth in beam #3 is close to that of beam #1. 
Differing from the first three curves, although the 𝐷௝ on the brown curve of beam #4 are all greater 
than 0, they are all small values and some are close to 0 (e.g. 𝐷ଵ, 𝐷଼ and 𝐷ଵଵ). The arched feature 
of this curve is not obvious; this indicated that the difference in the energy consumption of each 
point is very small. These characteristics indicate that there was no crack in beam #4. By 
comparing the details in Table 3, these identification results obtained from the information of the 
four curves have been proved to be true. On the other hand, according to the position of these 
singular points, the cracks have been located. 

 
Fig. 7. 𝐷௝ curves of the four beams based on the 1st order responses 

Therefore, because the singularity of a singular point can reflect the severity of any damage, 
if the singularity is reflected by the Relative Error (RE) between the singular points and the 
standard points, the RE can also quantify such damage. Eq. (3) and the curves in Fig. 7 have all 
illustrated that the local characteristics of the damaged beam near the end point are consistent with 
that of a healthy beam. Since the 11th points on all of the three damaged beams were all the points 
that were farthest away from the singular points, the 𝐷ଵଵ were selected as the standard with which 
to compare with that of the singular points in order to evaluate the damage. The quantitative results 
have been listed in Table 3. 

Although the local properties near the endpoints of the beam are considered to be 
approximately equal to that of a healthy beam; however the three 𝐷ଵଵ show a significant difference 
in Table 3. On the one hand, this difference is due to the inconsistent excitation intensities, and on 
the other hand, it is because of the different intrinsic characteristics of the beams caused by an 
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error (e.g. the uniformity of the concrete, a variable curing environment, etc.) during production. 
Surprisingly, the REs of beam #1 and beam #3, which were 3.1 and 2.9 respectively, were close 
(a difference of only 0.2). While, the RE of beam #2, which was 13.2, was about 4 times as large 
as those of beams #1 and #3. The relationship of these REs is consistent with that of the depths of 
the cracks in the three beams. Considering the possible errors that have been mentioned above, 
this result reasonably indicates that damage can be quantified by utilizing the method that has been 
described in this paper. 

Table 3. The details of the quantitative evaluation 
 𝐷௝ 𝐷ଵଵ RE 

#1 Beam (𝑗 = 6) 0.1661 0.03967 3.1 
#2 Beam (𝑗 = 6) 0.8192 0.0575 13.2 
#3 Beam (𝑗 = 3) 0.2462 0.06347 2.9 

3.2.3. Discussion on the distribution of the test points 

The experimental results in the previous section have shown that the method that has been 
proposed in this paper is able to better identify the damage in a beam. However, in this experiment, 
one of the measuring points was located at the exact point where the crack was; in the real world 
this would not be possible. In this section, in order to discuss the influence of the distribution of 
the test points on the identification results, the data from the special test points (the test points at 
the damaged region) in the previous experiment have been deleted in order to simulate unknown 
damage; this will verify the applicability of the baseline-free damage identification method. The 
data that was deleted originated from the 6th point of both beam #1 and beam #2, and the 3rd point 
of beam #3. According to the curve of the local stiffness in Fig. 2, the change in the local stiffness 
is continuous; therefore, the change in the difference of the energy consumption at the different 
positions should also be continuous. Obviously, the data obtained from limited discrete test points 
cannot accurately reflect the continuity of the changes in 𝐷௝. Therefore, curve fitting was chosen 
as a common method that can be used to solve this problem. Using MATLAB’s “Curve Fitting” 
toolbox, the 𝐷௝ of the four beams were fitted with a 4th-order polynomial. The fitting curves are 
shown in Fig. 8: 

 
Fig. 8. Fitted 𝐷௝ curves of the four beams based on the 1st order responses 

In Fig. 8, all four curves appear arched, which is similar to the result in Fig. 7. However, the 
curvature of each line is significantly different. Among the four curves, the curve with the least 
obviously arched feature is the 𝐷௝ fitting curve of beam #4 (brown line). The peak of the brown 
curve appears near the 6th point, and its maximum value is about 0.04, which is very close to 0. 
The brown curve, centered on the 6th point, shows good symmetry and the whole curve is very 
close to being a straight line. These characteristics have illustrated that the differences in the 
energy consumption at a single point are very small and the differences in the energy consumption 
at the different points are very close. This result indicates that there is likely no damage in beam 4. 
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The curves of beam #1 (blue curve) and beam #2 (purple curve) both show an obvious arch. Their 
similarity lies in the peaks all appearing near the 6th point, with the peak point as the center of the 
graph; the curves on both sides also show good symmetry. The shapes of the two curves indicate 
that: (1) there are significant energy consumption differences in these two beams, which indicates 
that both beams may be damaged; (2) the difference in the energy consumption at a symmetrical 
position on both sides of the 6th point shows good symmetry, indicating that the damage may have 
occurred near the 6th point. The difference between the two curves lies in their different bending 
characteristics, with the curve of beam #2 (purple line) having greater curvature. This indicates 
that the difference in the energy consumption of a single point on beam #2 is larger and the 
variation in the energy consumption between the different points is more obvious; therefore, the 
damage in beam #2 is more severe than that in beam #1. The most obviously arched curve is the 𝐷௝ curve of beam #3 (red line). The peak of the red line appears near the 5th point, which indicates 
that the damage to beam #3 may occur near the 5th point. However, unlike the other three curves, 
the curves on both sides of the red curve, centered on the black dotted line (near the 5th point), 
have obvious asymmetry. Among them, the curve to the left of the black dotted line decays faster, 
indicating that the location of the damage is to the left of the 5th point. Although there is an error 
between this result and the result from the previous section, this result is acceptable, considering 
that the data of the test point nearest to the damage has been deleted. Since the identification results 
of the other three beams are basically the same as those in the previous section, the damage 
location and damage evaluation can be found qualitatively by using this approach, even if no test 
point is located at the damaged region. Due to the deletion of the data from the specific test points, 
there are no obvious singularities in the three curves of the damaged beams (Beam #1, Beam #2 
and Beam #3) in Fig. 8. The data from the points (peaks) with the maximum curvature in the 
curves were used as a substitute for the data from the singularities for quantitative analysis. The 
relevant data have been listed in the Table 4. 

Table 4. Quantitative evaluation without obvious singularities 
Beam 𝐿௣ 𝐷௣ 𝐷ଵଵ RE 

#1  5.925 0.1296 0.03628 2.6 
#2  5.623 0.1767 0.05876 2.0 
#3  5.171 0.2478 0.06264 3.0 

In Table 4, 𝐿௣ and 𝐷௣ denote the location and the 𝐷௝  of the peaks on the curves in Fig. 8, 
respectively. The 𝐿௣ of beam #1 and beam #2 are 5.925 and 5.623, respectively, which are close 
to 6. This indicates that the damage in the two beams is near the 6th point. However, they all have 
smaller values of RE than those in Table 3. Among them, the RE of beam #1 is 0.5 smaller, while 
the RE of beam #2 is 11.2 smaller than those in Table 3; therefore, the results of the damage 
quantification are not reliable. The 𝐿௣ of beam #3 is 5.171; this indicates that the damage may be 
near the 5th measuring point. There is an error between this result and the result in the previous 
section; the RE of beam #3 is 3.0, and the error of the results in Table 3 is only 0.1. The above 
results show that there is an error in the damage quantification results in the absence of 
measurement data taken near the crack. The reasons for this error may be as follows: The degree 
of damage from an artificial crack is relatively weak; therefore, affected by this, the area with an 
obvious change in stiffness is also relatively small. However, after deleting the singularity data, 
the gap was 50 cm away from the nearest test point. Therefore, the difference in the energy 
consumption at the test point on the beam is relatively small and its variation trend is relatively 
slow in the measured area. Based on the above reasons, it can be found from a re-analysis of Fig. 8 
that the curves of the three damaged beams are significantly higher than the curve of the healthy 
beam. This indicates that the existence of an artificial crack reduces the stiffness of the entire  
beam. This results in a difference in the energy consumption at each test point. The disappearance 
of the obvious singularities indicates that the region in which the local stiffness significantly 
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decreases is relatively small. It is precisely because there is no sensor in this region that the 
quantitative analysis error increased.  

Based on the above analysis, it is not difficult to reach the following conclusions: (1) It is 
possible to qualitatively identify the actual damage in a beam, even if there are only a few test 
points; (2) Based on the results of the qualitative identification, the problem of the increasing error 
in the quantitative identification can be effectively solved by adding test points to the potentially 
damaged area. This is also a common method for solving the problem of insufficient measurement 
quantity that occurs in many existing identification methods. (3) Although the method of 
increasing the measurement points increases the workload during the detection process, this task 
is obviously easier to carry out than it is to obtain baseline data. 

4. Conclusions 

In order to solve the problem of obtaining accurate baseline data of a healthy beam in practical 
detection, an energy consumption model-based damage identification method, without baseline 
data, has been proposed in this paper. According to the characteristic where a damaged beam with 
a breathing-crack has different damping values in different bending states, it can be concluded 
that the energy variation data of the beam in a downward-curving state can be utilized as a 
substitute for the baseline data. Based on this conclusion, a statistical damage indicator 𝐷௝ has 
been defined and then used for experimental verification. The identification results have illustrated 
that the elements in the 𝐷௝ sequence, based on the dynamic response of the damaged beam, are all 
greater than 0, while that of the healthy beam approaches 0. The singular point in this sequence 
means that there is a potential breathing crack near the measurement point. The position of the 
singular point in the 𝐷௝  sequence means that there is a potential breathing-crack near the 
corresponding test point, and the singularity of this point quantitatively indicates the severity of 
the damage in the damaged beam. Although the lack of measurement points near the damaged 
area can increase the error of the quantitative damage, it has little effect on the result of the 
qualitative identification. Based on the results of the qualitative identification, the addition of extra 
measurement sensors in the area of potential damage can effectively improve the increased 
quantitative error. Therefore, the methodology that has been proposed in this paper has been 
proved to be feasible. This method can be helpful in solving the problem of a lack of data on 
healthy beams in engineering monitoring. 
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