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Abstract. In this present work, the dynamic stiffness method (DSM) is used to analyze the free 
vibration of a thin functionally graded rectangular plate. Classical plate theory (CPT) is used to 
develop the dynamic stiffness matrix of a functionally graded material (FGM) plate. For free 
vibration analysis, the natural frequencies of the functionally graded material plate are estimated 
by using DSM with Wittrick-Williams algorithm for different aspect ratios and different boundary 
conditions. The present research compared the DSM natural frequencies results with those 
available in the published literature. 
Keywords: dynamic stiffness method, free vibration, functionally graded material, CPT. 

1. Introduction 

The concept of functionally graded materials was first time introduced by Yamanoushi et.al 
[1] in 1980 during the advancement of thermal resistance material for aerospace engineering 
applications. Functionally graded materials are known as a new class of composite materials, 
which is a mixture of ceramics and metal constituents. The ceramic constituents give high-
temperature resistance, whereas metal constituents enhance the mechanical performance and 
decrease the failure possibility of the structure. Leissa [2] used the Ritz method to analyze free 
vibration behaviour of the rectangular isotropic plate under applied twenty-one possible boundary 
conditions. Bercin [3] analyze free vibration and mode shape of the orthotropic plate by using 
finite element method. Bercin and Langley [4] continued to this work to develop the dynamic 
stiffness matrix for vibration analysis of plate structures. Boscolo and Banerjee [5] used DSM for 
analysis of free transverse vibration of the rectangular isotropic plate by using classical plate 
theory and first-order shear deformation theory. Chauhan et al. [6] used classical plate theory to 
analyze the free vibration of isotropic plate for different boundaries by using DSM Shen and Yang 
[7] applied CPT to investigate free vibration behavior of initially stressed elastically founded 
functionally graded material (FGM) plates under impetuous lateral loading. Baferani et al. [8] used 
Navier and Levy type solution for the free vibration analysis of functionally graded plate under 
different boundary conditions by using CPT. Kumar et al. [9] used CPT to formulate the DSM 
with Wittrick-Williams algorithm to extarct the eigen value of the FGM plates. 

In this paper, we have analyzed the free vibration behavior of functionally graded material 
plates by using dynamic stiffness method with Wittrick-Williams algorithm to extract the natural 
frequencies under different boundary conditions. 

2. Governing differential equation of the functionally graded material plate 

Fig. 1. shows a rectangular functionally graded plate of length a, width b and thickness ℎ, 
where material properties vary along with the thickness as a power-law distribution [9] as given 
by Eq. (1): 

𝑉௖ሺ𝑧ሻ ൌ ൬𝑧ℎ ൅ 12൰௞ ,     𝑉௠ሺ𝑧ሻ ൌ 1 − 𝑉௖ሺ𝑧ሻ,     ሺ−0.5ℎ ൑ 𝑧 ൑ 0.5ℎሻ, (1)
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where 𝑉௖ and 𝑉௠ denotes the volume fractions of ceramics and metal constituents, 𝑘 represent the 
power-law index that takes a positive real number in Eq. (1). 

 
Fig. 1. Material geometry and coordinates  

system of the functionally graded plate 

 
Fig. 2. Boundary conditions for 

displacements and forces for a plate element 

The displacement components of thin rectangular functionally graded plate 𝑢௢ሺ𝑥,𝑦, 𝑧ሻ, 𝑣௢ሺ𝑥,𝑦, 𝑧ሻ and 𝑤௢ሺ𝑥,𝑦, 𝑧ሻ by using classical plate theory are given by Eq. (2): 

𝑢௢ሺ𝑥,𝑦, 𝑧ሻ ൌ 𝑢ᇱሺ𝑥,𝑦ሻ − ሺ𝑧 − 𝑧଴ሻ 𝜕𝑤ᇱ𝜕𝑥 ,   𝑣௢ሺ𝑥,𝑦, 𝑧ሻ ൌ 𝑣ᇱሺ𝑥,𝑦ሻ − ሺ𝑧 − 𝑧଴ሻ 𝜕𝑤ᇱ𝜕𝑦 , 𝑤௢ሺ𝑥,𝑦, 𝑧ሻ ൌ 𝑤ᇱሺ𝑥,𝑦ሻ, (2)

where 𝑢ᇱሺ𝑥,𝑦ሻ, 𝑣ᇱሺ𝑥,𝑦ሻ and 𝑤ᇱሺ𝑥,𝑦ሻ are the mid-plate (i.e, 𝑧 ൌ 0) displacement components. 
Fig. 1. shows that the material properties are nonhomogeneous in the transverse direction, due 

to this the middle surface of the geometry has in-plane displacement, which cannot be neglected. 
Therefore, the middle surface of FGM plate geometry does not concur with the neutral surface. In 
this condition, the neutral surface must be changed to 𝑧௡ ൌ 𝑧 − 𝑧଴ , where 𝑧଴  is the distance 
between mid-surface to the neutral surface of the plate as shown in Fig. 1.  

Hamilton’s principle is used to drive the fourth-order differential equation for transverse 
deflection of a thin rectangular functionally graded plate under free vibration condition and is 
given by Eq. (3): 

𝐷௘௙௙ ቆ𝜕ସ𝑤ᇱ𝜕𝑥ସ ൅ 2 𝜕ସ𝑤ᇱ𝜕𝑥ଶ𝜕𝑦ଶ ൅ 𝜕ସ𝑤ᇱ𝜕𝑦ସ ቇ ൅ 𝜌ℎ 𝜕ସ𝑤ᇱ𝜕𝑡ସ ൌ 0. (3)

The boundary conditions for Levy-type solution in Fig. 2., are given as: 

𝑉௫:−𝐷௘௙௙ ቆ𝜕ଷ𝑤ᇱ𝜕𝑥ଷ ൅ ሺ2 − 𝜐ሻ 𝜕ଷ𝑤ᇱ𝜕𝑥𝜕𝑦ଶቇ 𝛿𝑤ᇱ,     𝑀௫௫:−𝐷௘௙௙ ቆ𝜕ଶ𝑤ᇱ𝜕𝑥ଶ ൅ 𝜐 𝜕ଶ𝑤ᇱ𝜕𝑦ଶ ቇ𝛿∅௬, (4)

where 𝐷௘௙௙ ൌ 𝐸ℎଷ 12ሺ1 − 𝜐ଶሻ⁄  is the effective bending stiffness, ℎ plate thickness, 𝐸 Young’s 
Modulus of Elasticity, 𝜐 Poisson’s ratio of the given material, 𝑉௫, 𝑀௫௫, and ∅௬ are the shear force, 
bending moment and rotation of the bending plate. 

3. Formulation of dynamic stiffness 

A levy type solution of Eq. (3) which satisfies the boundary condition of Eq. (4) can be 
expressed in the following form [8]: 𝑤ᇱሺ𝑥,𝑦, 𝑡ሻ ൌ෍ 𝑊௠ሺ𝑥ሻ𝑒௜ఠ௧ஶ௠ୀଵ sinሺ∝௠ 𝑦ሻ ,    ∝௠ൌ 𝑚𝜋𝐿 ,     ሺ𝑚 ൌ 1,2, … ,∞ሻ, (5)

where 𝜔 is unknow natural frequency. By putting Eq. (5) into Eq. (3) we get Eq. (6): 
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𝑑ସ𝑊௠𝑑𝑥ସ − 2 ∝௠ଶ 𝑑ଶ𝑊௠𝑑𝑥ଶ + ቆ∝௠ସ − 𝜌ℎ𝜔ଶ𝐷௘௙௙ ቇ𝑊௠ = 0,    ሺ𝑚 = 1,2, … ,∞ሻ. (6)

The two possible solutions of the ordinary differential Eq. (6) are obtained, depending on the 
nature of all roots. Here we show only one possible solution: 

Case 1: ∝௠ଶ ≥ 𝜔ට ூబ஽೐೑೑ ⇒ all roots are real (∝ଵ௠,−∝ଵ௠,∝ଶ௠,−∝ଶ௠): 

∝ଵ௠= ඩ∝௠ଶ + 𝜔ඨ 𝐼଴𝐷௘௙௙ ,    ∝ଶ௠= ඩ∝௠ଶ − 𝜔ඨ 𝐼଴𝐷௘௙௙. (7)

The solution is: 𝑊௠ሺ𝑥ሻ = 𝐴௠ cosh(∝ଵ௠ 𝑥) +𝐵௠ sinh(∝ଵ௠ 𝑥) + 𝐶௠ cosh(∝ଶ௠ 𝑥) +𝐷௠ sinh(∝ଶ௠ 𝑥). (8)

The displacement 𝑤ᇱ  in Eq. (8) and Eq. (5), shear force 𝑉௫ , rotation ∅௬  and the bending 
moment 𝑀௫௫ can be expressed in the following form using Eq. (4) as shown below: 𝜙௬௠(𝑥,𝑦) = 𝜙௬௠(𝑥) sin(∝௠ 𝑦), (9)𝑉௫௠(𝑥,𝑦) = 𝑉௫௠(𝑥) sin(∝௠ 𝑦), (10)𝑀௫௫௠(𝑥,𝑦) = 𝑀௫௫௠(𝑥) sin(∝௠ 𝑦). (11)

The displacements boundary conditions for the plate are: 𝑥 = 0,     𝑊௠ = 𝑊ଵ,      𝜙௬௠ = 𝜙௬ଵ, 𝑥 = 𝑏,     𝑊௠ = 𝑊ଶ,     𝜙௬௠ = 𝜙௬ଶ, (12)

similarly, the forces boundary conditions are: 𝑥 = 0,     𝑉௫௠ = −𝑉ଵ,      𝑀௫௫௠ = −𝑀ଵ, 𝑥 = 𝑏,     𝑉௫௠ = −𝑉ଶ,      𝑀௫௫௠ = 𝑀ଶ. (13)

The displacement boundary conditions are applied, i.e., putting Eq. (12) into Eqs. (8) and (9), 
the following matrix relationship is obtained: 

⎣⎢⎢
⎡𝑊ଵ𝜙௬ଵ𝑊ଶ𝜙௬ଵ⎦⎥⎥

⎤ = ൦ 1 0 1 00 −∝ଵ௠ 0 −∝ଶ௠𝐶௛ଵ 𝑆௛ଵ 𝐶ଶ 𝑆ଶ−∝ଵ௠ 𝑆௛ଵ −∝ଵ௠ 𝐶௛ଵ −∝ଵ௠ 𝑆௛ଶ −∝ଵ௠ 𝐶௛ଵ൪ ൦
𝐴௠𝐵௠𝐶௠𝐷௠൪, (14)

𝛿 = 𝐴𝐶, (15)

where 𝐶௛ଵ = cosh(∝௜௠ 𝑏), 𝑆௛ଵ = sinh(∝௜௠ 𝑏), 𝐶௜ = cos(∝௜௠ 𝑏), 𝑆௜ = sin(∝௜௠ 𝑏), (𝑖 = 1, 2). 
The force boundary conditions are applied, i.e., putting Eq. (13) into Eqs. (10) and (11), the 

following matrix relationship is obtained: 

൦ 𝑉ଵ𝑀ଵ𝑉ଶ𝑀ଶ൪ = ൦ 0 𝑅ଵ 0 𝑅ଶ𝐿ଵ 0 𝐿ଵ 0−𝑅ଵ𝑆௛ଵ −𝑅ଵ𝐶௛ଵ −𝑅ଵ𝑆ଶ −𝑅ଵ𝐶ଶ−𝐿ଵ𝐶௛ଵ −𝐿ଵ𝑆௛ଵ −𝐿ଶ𝐶௛ଵ −𝐿ଶ𝑆ଶ൪ ൦
𝐴௠𝐵௠𝐶௠𝐷௠൪, (16)

𝐹 = 𝑅𝐶, (17)
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where 𝑅௜ = 𝐷௘௙௙(∝௜௠ଷ−∝ଶ∝௜௠ (2 − 𝜈)), 𝐿௜ = 𝐷௘௙௙(∝௜௠ଶ−∝ଶ 𝜈) with 𝑖 = 1, 2. Using Eqs. (15) 
and (17), the dynamic stiffness matrix 𝐾 for functionally graded (FG) plate can be formulated by 
eliminating the constant vector 𝐶 to get Eq. (18): 𝐹 = 𝐾𝛿, (18)

where: 𝐾 = 𝑅𝐴ିଵ. (19)

By using Eq. (19), the generalized dynamic stiffness matrix (𝐾) as given by Eq. (20): 

𝑲 = ⎣⎢⎢
⎡𝑠௩௩  𝑠௩௠ 𝑓௩௩ 𝑓௩௠𝑠௠௠ −𝑓௩௠ 𝑓௠௠𝑆𝑦𝑚 𝑠௩௩  −𝑠௩௠𝑠௠௠ ⎦⎥⎥

⎤, (20)

where six variable terms 𝑠௩௩, 𝑠௩௠, 𝑠௠௠, 𝑓௩௩, 𝑓௩௠, 𝑓௠௠ can be expressed in the following form [9]. 

Table 1. Non-dimensional natural frequencies (𝜛 = 𝜔𝑎ଶඥ 𝜌௖ℎ/𝐷௖ ) for Functionally graded  
square plates with S-S-S-S and S-F-S-F boundary conditions using DSM method 

S-S-S-S 𝑚𝑛 𝑘 = 0 𝑘 = 0.2 𝑘 = 0.5 𝑘 = 1 𝑘 = 2 𝑘 = 5 𝑘 = 10 
1 1 19.7392 18.3137 16.7142 15.0610 13.6930 12.9831 12.5724 
1 2 49.3480 45.7843 41.7855 37.6525 34.2326 32.4578 31.4311 
2 1 49.3480 45.7843 41.7855 37.6525 34.2326 32.4578 31.4311 
2 2 78.9568 73.2550 66.8568 60.2440 54.7722 51.9324 50.2898 
1 3 98.6960 91.5687 83.5710 75.3050 68.4652 64.9156 62.8623 
3 1 98.6960 91.5687 83.5710 75.3050 68.4652 64.9156 62.8623 
2 3 128.3048 119.0393 108.6423 97.8965 89.0048 84.3902 81.7210 
3 2 128.3048 119.0393 108.6423 97.8965 89.0048 84.3902 81.7210 
4 1 167.7832 155.6668 142.0708 128.0186 116.3909 110.3565 106.8660 

S-F-S-F 
1 1 9.6313 8.9358 8.1553 7.34874 6.6812 6.33487 6.13450 
2 1 16.1347 14.9696 13.6621 12.3108 11.1926 10.6123 10.2767 
1 3 36.7256 34.0735 31.0975 28.0216 25.4765 24.1556 23.3916 
2 1 38.9449 36.1325 32.9767 29.7149 27.0160 25.6153 24.8051 
2 2 46.7381 43.3629 39.5756 35.6611 32.4221 30.7412 29.7688 
2 3 70.7401 65.6316 59.8993 53.9746 49.0722 46.5280 45.0564 
1 4 75.2833 69.8468 63.7463 57.4412 52.2239 49.5163 47.9501 
3 1 87.9866 81.6327 74.5029 67.1338 61.0361 57.8717 56.0412 
3 2 96.0405 89.1049 81.3224 73.2788 66.6231 63.1689 61.1709 

4. Numerical results 

The dynamic stiffness matrix is used to obtain natural frequencies of the functionally graded 
plate by applying the Wittrick-Williams algorithm [5]. The above procedure is used to formulate 
DSM and this procedure has been implemented in MATLAB program to compute the natural 
frequencies of the FGM plate for different boundary conditions with different power-law index 
(𝑘) values as shown in Tables 1-3, where 𝜌௖ and 𝐷௖ are denotes the density, bending stiffness of 
the ceramic material. The letter m denotes the number of half-sine wave in 𝑥 direction, whereas 𝑛 
represents the 𝑛th lowest frequency of a given value of 𝑚. 
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Table 2. Comparison of Non-dimensional natural frequencies (𝜛 = 𝜔𝑎ଶඥ 𝜌௖ℎ/𝐷௖ ) with results  
reported in the available published literature of the functionally graded plate 

 S-S-S-S S-C-S-C 
Mode 

𝑎𝑏 Source 𝑘 = 0 𝑘 = 0.5 𝑘 = 1 𝑘 = 2 𝑘 = 0 𝑘 = 0.5 𝑘 = 1 𝑘 = 2 

1 

1 

DSM 19.7392 16.7142 15.0610 13.6930 28.9508 24.5141 22.0894 20.0831 
Ref [11] 19.7398 16.7141 15.0609 13.6930 28.9468 24.5122 22.0840 20.0809 
Ref [10] 19.7381 16.7127 15.0595 13.6917 28.9485 24.5122 22.0874 20.0809 
Ref [8] 19.7281 16.6879 15.0357 13.6808 28.9478 24.4867 22.0743 20.0586 
Ref [2] 19.7392 – – – 28.9508 – – – 

0.5 
DSM 12.3370 10.4463 9.4131 8.5581 13.6857 11.5884 10.4422 9.4937 

Ref [8] 12.3259 10.4424 9.3849 8.5257 13.6808 11.5659 10.4093 9.484 
Ref [2] 12.3370 – – – 13.6858 – – – 

2 

1 

DSM 49.3480 41.7855 37.6525 34.2326 54.7430 46.3537 41.7689 37.9751 
Ref [11] 49.3487 41.7852 37.6530 34.2334 54.7395 46.3525 41.7667 37.9740 
Ref [10] 49.3486 41.7868 37.6446 34.2250 54.7328 46.3424 41.7600 37.9656 
Ref [8] 49.3468 41.7894 37.6387 34.2020 54.7232 46.3297 41.7364 37.9362 
Ref [2] 49.3480 – – – 54.7431 – – – 

0.5 
DSM 19.7392 16.7142 15.061 13.6930 23.6463 20.0225 18.0421 16.4034 

Ref [8] 19.7281 16.7142 15.0610 13.6931 23.6463 19.9925 18.0098 16.3905 
Ref [2] 19.7392 – – – 23.6463 – – – 

3 

1 

DSM 78.9568 66.8568 60.2440 54.7721 94.5852 80.0902 72.1685 65.6136 
Ref [11] 78.9559 66.8569 60.2428 54.7714 94.5854 80.0902 72.1687 65.6134 
Ref [10] 78.9307 66.8351 60.2243 54.7546 94.5552 80.0633 72.1435 65.5882 
Ref [8] 78.9125 66.8173 60.2088 54.6721 94.5430 80.0360 72.1382 65.5621 
Ref [2] 78.9568 – – – 94.5853 – – – 

0.5 
DSM 32.0762 27.1605 24.4741 22.2512 38.6939 32.7641 29.5234 26.8419 

Ref [8] 32.0541 27.1303 24.4536 22.2396 38.6932 32.7480 29.5096 26.8329 
Ref [2] 32.0762 – – – 38.6939 – – – 

Table 3. Comparison of Non-dimensional natural frequencies (𝜛 = 𝜔𝑎ଶඥ 𝜌௖ℎ/𝐷௖  of square  
FGM plate with published results in Chakraverty and Pradhan [12] 

S-S-S-S 𝑘 = 0 𝑘 = 0.5 𝑘 = 1.0 𝑚𝑛 DSM Ref [12] %Err DSM Ref [12] %Err DSM Ref [12] %Err 
1 1 19.7392 19.739 0.00 16.7142 17.337 3.726 15.0610 16.424 9.049 
1 2 49.3480 49.349 0.00 41.7855 43.344 3.729 37.6525 41.061 9.052 
2 1 49.3480 49.349 0.001 41.7855 43.344 3.729 37.6525 41.061 9.052 
2 2 78.9568 79.401 0.450 66.8568 69.738 4.309 60.2440 66.065 9.662 
1 3 98.6960 100.17 1.493 83.5710 87.983 5.279 75.3050 83.349 10.681 
3 1 98.6960 100.19 1.513 83.5710 87.995 5.293 75.3050 83.360 10.681 

S-F-S-F    
1 1 9.6313 9.632 0.007 8.1553 8.460 3.736 7.34874 8.014 9.052 
2 1 16.1347 16.135 0.001 13.6621 14.172 3.732 12.3108 13.425 9.050 
1 3 36.7256 37.181 1.24 31.0975 32.656 5.011 28.0216 30.936 10.400 
2 1 38.9449 38.972 0.069 32.9767 34.229 3.797 29.7149 32.427 9.127 
2 2 46.7381 47.281 1.161 39.5756 41.527 4.930 35.6611 39.340 10.316 
2 3 70.7401 72.053 1.855 59.8993 63.285 5.652 53.9746 59.952 11.074 

From Table 1, we observed that with increase in 𝑘 value, the natural frequencies decrease. This 
is because as the 𝑘 value increase, the metal constituent in the FGM plate and the stiffness of the 
plate is reduced. 

When we compared the natural frequency results of the FGM plates with those available in the 
published literature, we found that the reported natural frequencies values at 𝑘 = 0 in Tables 2-3 
are nearly same with those available in the literature [2, 11, 12]. While increasing the 𝑘 value from 
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0.5 to 1.0, the maximum error increases 5 % to 11 % as given by Chakravarty and Pradhan [12] 
in Table 3. The possible reasons for these reported results are discussed below. 

Chakravarty and Pradhan [12] have considered mid-plane surface geometry instead of the 
neutral surface for solving the effective bending stiffness (𝐷௘௙௙), which increases the percentage 
error. Due to this reason, we have observed that error is smaller for 𝑘 = 0 and higher for 𝑘 = 1. 

5. Conclusions 

The impetus of the present work is to formulate the dynamic stiffness matrix to estimate the 
natural frequencies of a thin rectangular functionally graded plate, where two different sides of 
the plate are simply supported. Classical plate theory is used to develop the dynamic stiffness 
matrix of a functionally graded material plate whereas the transcendental nature of dynamic 
stiffness matrix is solved by using Wittrick-Williams algorithm and this formulation has been 
employed into MATLAB to extract natural frequency of the FGM plate with the desired accuracy. 
The natural frequencies calculated by DSM are compared with those available in literature. 
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