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Abstract. The vibration of gun barrels would result in the change of impact point, which would 
further reduce the firing accuracy of weapons. In the past, the calculation model based on the Euler 
beam theory could not satisfy the accuracy requirements. Based on the Timoshenko beam theory, 
the vibration equation of the stepped beam is established by invoking continuum transfer matrix 
method. The forced vibration of the stepped beam under the inertial moving load is solved. The 
model has better precision than the Euler beam model. The endpoint of the cantilever beam is 
analyzed. It is shown that the endpoint response increases with the increasing mass and 
acceleration of moving load, so does the inertial coefficient. With the increase of moving load 
speed, the endpoint response decreases, and the inertia coefficient increases. Among the three 
parameters, the mass of moving load is the main factor affecting the inertia coefficient. 
Furthermore, both free and forced vibrations of other stepped beam shaped structures with 
arbitrary segments and boundary conditions can be explored by using the proposed method. 
Keywords: transverse vibration, stepped beam, Timoshenko beam, transfer matrix method, 
inertial moving load. 

1. Introduction 

In the process of artillery launching, the gravity and eccentricity which is caused by high speed 
projectile will induce barrel vibration. The coupling vibration between projectile and barrel is an 
important factor which affects the firing accuracy of artillery [1]. With the development of new 
artillery, it is necessary to study the barrel vibration caused by the motion of projectile. 

Zhou Ding [2] and others obtained a general solution for the lateral vibration of the barrel 
during single and continuous firing, and established a complete theory and analysis method for 
the vibration of the barrel caused by the movement in the projectile bore. Peng Xian [3] established 
the dynamic equations of the artillery system under the motion of the base, and solved them 
separately using the perturbation method and the numerical method, and proposed an analytical 
expression for calculating the deflection of the barrel end. Wei Shechun [4] and others fully 
considered the influence of the barrel on the movement and force of the projectile during the 
movement of the projectile, used VC ++ to carry out the parametric secondary development of 
ANSYS / LS-DYNA, and established a projectile launch finite element integration platform to 
Precision and efficiency of projectile launch dynamic analysis. 

Kang Xinzhong [5] treated the barrel as a conical cantilever beam, and derived the finite 
element equation of motion of the beam element based on the Dalambert principle and the 
deformed body virtual work principle, and gave the overall mass matrix, damping matrix, stiffness 
matrix and the set rule of nodal force array. Liu Ning [6] simplified the barrel into a cantilever 
beam of equal cross-section. The vibration equation of the barrel was established according to the 
Bernoulli-Euler elementary beam theory, and the vibration equation of the barrel was solved by 
modal analysis. The built model basically describes the dynamic characteristics of the system, and 
provides a simple and effective method for studying the coupling problem of projectiles. Su 
Zhongting [7] applied the finite element method and cantilever beam theory based on the idea of 
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moving load, simplified the barrel into a flexible variable-section cantilever beam, and applied the 
cylindrical coordinate system to discretize the barrel structure into standard fan-shaped elements. 
Time-varying dynamic equations of the radial vibration of the barrel under the action of moving 
projectiles. Ma Jisheng [8] treated the barrel as a cantilever beam on a kinematic support and the 
projectile as a rigid body. Based on the Kane equation Huston method, a relatively complete 
dynamic model for studying the coupling problem between projectile and barrel was established. 
Using this model, the projectile launch process can be analyzed more accurately. 

As shown in Fig. 1, the gun barrel can be simplified to a stepped beam. Many researchers have 
worked on vibration of stepped beams. Mao [9] studied the free vibration of a stepped 
Euler-Bernoulli beam composed of two uniform sections using the Adomian decomposition 
method (ADM). Each section is considered a substructure which can be modeled using ADM. 
Based on the variation method, Su [10] presented an effective formulation for vibration analysis 
of multiple-stepped functionally graded beams with general boundary conditions. Giunta [11] and 
Cicirello presented an approach to analyze jointed Euler beams with step changes in material and 
cross-section under static and dynamic loads. El-Sayed [12] and Farghaly used the normalized 
transfer matrix (NTM) to derive the exact solution of stepped Timoshenko beam. Yokoyamat [13] 
considers the effect of axial force, transverse shear deformation and rotational inertia on the 
Timoshenko beam of equal cross-section. The free vibration equation of Timoshenko beam of 
equal cross-section is derived from the Hamilton principle, and the natural frequency and mode 
of the Timoshenko beam are obtained. EI-Sayed [14] solves the natural frequency and mode of a 
single-span Timoshenko beam of equal cross-section under axial force and proposes a 
mathematical model for structural engineering. Hu [15] and Wang formed the Hamilton system 
for solving the dynamic characteristics of the cantilever Timoshenko beam on the basis of 
considering the effects of shear deformation and rotational inertia. 

 
Fig. 1. Simplified diagram of gun barrel 

The dynamic problem of beams under moving loads is also a research hot spot. Yang and Wang 
[16] studied the dynamic response and stability of an inclined beam under a moving vertical 
concentrated load. They presented the governing equation for transverse motion of the beam. It 
contained the effect of the compressive axial component of the vertical load on the bending 
stiffness capacity of the beam. Sudheesh [17, 18] analysed the forced-free responses of 
nonuniform beams under moving point loads. They presented simple approximate analytical 
formula for the forced responses of undamped nonuniform beams, which was derived using the 
fundamental mode by the Rayleigh-Ritz (R-R) method. Saif and David [19] presented a rigorous 
study on the behaviour of buried pipes under static and moving traffic loads using a robust finite 
element analysis. Olga [20] analysed the dynamic behaviour of a Rayleigh multi-span uniform 
continuous beam system that is traversed by a constant moving force. You and Yan [21] concerned 
with the mechanical responses of anisotropic multi-layered medium under harmonic moving load. 
Fang [22] established a new track-multilayer ground model to investigate railway subgrade 
dynamic responses induced by moving train load. 
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Most articles on gun barrel vibration is based on Euler beam theory. This method has a small 
scope of application which is only suitable for slender structures [23]. Based on Timoshenko beam 
theory, the transfer matrix of Timoshenko beam is derived in this paper. The equation of inertia 
moving load is obtained by analysing the motion of the moving load. The forced vibration of 
cantilever beam is solved by Newmark method. The influence of mass, speed and acceleration on 
inertia coefficient is analysed in detail. The modelling and analysis methods adopted in this paper 
are also applicable to other engineering vibration problems caused by moving loads. 

2. The vibration equation of stepped cantilever beam 

The primary suppose based on the Euler beam theory is simple. The calculated results are close 
to the true values when the beam is slender or the low-order frequency is analysed. The 
Timoshenko beam theory considers the shear deformation and the moment of inertia caused by 
the bending deformation. It guarantees the accuracy of dynamic parameters of beams when 
analyse high-order mode or deep beam model. Fig. 2 shows the force and deformation state of the 
beam micro-unit. 

 
Fig. 2. Timoshenko beam micro-unit force and deformation diagram  

In the Fig. 2, 𝑄௬ is the shear, 𝑀௭ is the moment, 𝐼௤ is the inertial force acting on the beam 
micro-unit, 𝐼଴ is the inertia moment acting on the beam micro-unit, 𝛾 is the shear angle produced 
by shear deformation on the neutral axis, 𝜃 is the angle produced by bending, 𝑦 is the transverse 
deformation of the beam micro-unit. The inertial force 𝐼௤ and the inertia moment 𝐼଴ acting on the 
beam micro-unit are as shown in the following formulas: 

𝐼௤ = −𝜇 ∂ଶ𝑦∂𝑡ଶ , (1a)𝐼଴ = −𝜌𝐼 ∂ଶ𝜃∂𝑡ଶ , (1b)

where 𝜇 is the linear density, 𝐼 is the moment of inertia, and 𝜌 is the density. According to the 
theoretical mechanics, the dynamic equilibrium equations of beam micro-unit are listed: 

𝑀௭ + ∂𝑀௭∂𝑥 𝑑𝑥 −𝑀௭ − 𝑄௬𝑑𝑥 − 𝜌𝐼𝑑𝑥 ∂ଶ𝜃∂𝑡ଶ = 0, (2a)𝑄௬ − 𝑄௬ − ∂𝑄௬∂𝑥 𝑑𝑥 − 𝜇𝑑𝑥 ∂ଶ𝑦∂𝑡ଶ = 0. (2b)

According to the material mechanics: 

𝑀௭ = 𝐸𝐼 ∂𝜃∂𝑥, (3a)
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𝑄௬ = −𝐺𝐴𝑘𝛾 = −𝐺𝐴𝑘 ൬∂𝑦∂𝑥 − 𝜃൰. (3b)

Bring Eq. (3a) and Eq. (3b) into Eq. (2a) and Eq. (2b), then obtain the transverse vibration 
equation of the Timoshenko beam: 

𝐸𝐼 ∂ଶ𝜃∂𝑥ଶ + 𝐺𝐴𝑘 ൬∂𝑦∂𝑥 − 𝜃൰ − 𝜌𝐼 ∂ଶ𝜃∂𝑡ଶ = 0, (4a)𝜇 ∂ଶ𝑦∂𝑡ଶ − 𝐺𝐴𝑘 ቆ∂ଶ𝑦∂𝑥ଶ − ∂𝜃∂𝑥ቇ = 0, (4b)

where 𝐸  is the elastic modulus, 𝐺  is the shear modulus, 𝐴 is the cross-sectional area, 𝑘 is the 
correction coefficient considering the uneven distribution of shear strain on the section. 

Separating 𝑦 and 𝜃 in Eq. (4a) and Eq. (4b) to obtain a new system of equations: 

𝐸𝐼 ∂ସ𝑦∂𝑥ସ + 𝜇 ∂ଶ𝑦∂𝑡ଶ − ൬𝜇𝐼𝐴 + 𝜇𝐸𝐼𝐺𝐴𝑘൰ ∂ସ𝑦∂𝑥ଶ ∂𝑡ଶ + 𝜇ଶ𝐼𝐺𝐴ଶ𝑘 ∂ସ𝑦∂𝑡ସ = 0, (5a)𝐸𝐼 ∂ସ𝜃∂𝑥ସ + 𝜇 ∂ଶ𝜃∂𝑡ଶ − ൬𝜇𝐼𝐴 + 𝜇𝐸𝐼𝐺𝐴𝑘൰ ∂ସ𝜃∂𝑥ଶ ∂𝑡ଶ + 𝜇ଶ𝐼𝐺𝐴ଶ𝑘 ∂ସ𝜃∂𝑡ସ = 0. (5b)

Supposing the system performs the same-frequency harmonic motion 𝑦(𝑥, 𝑡) = 𝑦(𝑥)sin𝜔𝑡. 
Where 𝜔 is the free vibration angular frequency of the system, 𝑦(𝑥) is mode shape function. Bring 𝑦(𝑥, 𝑡) into Eq. (5a): 𝑦ூ௏(𝑥) + 𝑔ଶ𝑦′′(𝑥) − 𝑎ସ𝑦(𝑥) = 0, (6)

where 𝑔 and 𝑎 are intermediate variables: 

𝑔ଶ = 𝜇𝜔ଶ𝐸𝐴 + 𝜇𝜔ଶ𝐺𝐴𝑘, (7a)𝑎ସ = 𝜇𝜔ଶ𝐸𝐼 − 𝜇ଶ𝜔ସ𝐸𝐴 ⋅ 𝐺𝐴𝑘. (7b)

Supposing the general solution of 𝑦(𝑥): 𝑦(𝑥) = 𝐶𝑒ௌ௫. (8)

Bringing Eq. (8) into Eq. (6): 𝑆ସ + 𝑔ଶ𝑆ଶ − 𝑎ସ = 0. (9)

Solving the roots of Eq. (9) are ±𝜆̅ଵ and ±𝑖𝜆̅ଶ: 

𝜆̅ଵ = 𝜆ଵ𝑙 = ඨቆ𝑎ସ + 𝑔ସ4 ቇଵ ଶൗ − 𝑔ଶ2 , (10a)

𝜆̅ଶ = 𝜆ଶ𝑙 = ඨቆ𝑎ସ + 𝑔ସ4 ቇଵ ଶൗ + 𝑔ଶ2 . (10b)

Bringing the obtained root into Eq. (8) and get the general solution of 𝑦(𝑥) as the following 
equation: 
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𝑦(𝑥) = 𝐶ଵsin𝜆̅ଶ𝑥 + 𝐶ଶcos𝜆̅ଶ𝑥 + 𝐶ଷsinh𝜆̅ଵ𝑥 + 𝐶ସcosh𝜆̅ଵ𝑥, (11)

where 𝐶ଵ  to 𝐶ସ  are undetermined constants. The fourth-order partial differential equation of 𝜃(𝑥, 𝑡)  is the same as 𝑦(𝑥, 𝑡) . Therefore, the solution of the fourth-order partial differential 
equation of 𝜃(𝑥, 𝑡) is as follow: 𝜃(𝑥) = 𝐵ଵcos𝜆̅ଶ𝑥 + 𝐵ଶsin𝜆̅ଶ𝑥 + 𝐵ଷcosh𝜆̅ଵ𝑥 + 𝐵ସsinh𝜆̅ଵ𝑥, (12)

where 𝐵ଵ to 𝐵ସ are undetermined constants. Eq. (11) and Eq. (12) are not independent. Bringing 
Eq. (11) and Eq. (12) into Eq. (4b), the relationship between 𝐵ଵ~𝐵ସ and 𝐶ଵ~𝐶ସ can be obtained by 
using the condition that the coefficients of sin𝜆̅ଶ𝑥, cos𝜆̅ଶ𝑥, sinh𝜆̅ଵ𝑥 and cosh𝜆̅ଵ𝑥 on both sides of 
the equation are equal: 

𝐵ଵ = −𝜇𝜔ଶ − 𝐺𝐴𝑘𝜆̅ଶଶ𝐺𝐴𝑘𝜆̅ଶ 𝐶ଵ, (13a)𝐵ଶ = 𝜇𝜔ଶ − 𝐺𝐴𝑘𝜆̅ଶଶ𝐺𝐴𝑘𝜆̅ଶ 𝐶ଶ, (13b)𝐵ଷ = 𝜇𝜔ଶ + 𝐺𝐴𝑘𝜆̅ଵଶ𝐺𝐴𝑘𝜆̅ଵ 𝐶ଷ, (13c)𝐵ସ = 𝜇𝜔ଶ + 𝐺𝐴𝑘𝜆̅ଵଶ𝐺𝐴𝑘𝜆̅ଵ 𝐶ସ. (13d)

Assuming intermediate variables 𝛼 and 𝛽: 

𝛼 = 𝜇𝜔ଶ − 𝐺𝐴𝑘𝜆̅ଶଶ𝐺𝐴𝑘𝜆̅ଶ , (14a)𝛽 = 𝜇𝜔ଶ + 𝐺𝐴𝑘𝜆̅ଵଶ𝐺𝐴𝑘𝜆̅ଵ , (14b)𝐵ଵ = −𝛼𝐶ଵ,     𝐵ଶ = 𝛼𝐶ଶ,      𝐵ଷ = 𝛽𝐶ଷ,      𝐵ସ = 𝛽𝐶ସ. (14c)

Bringing Eq. (11) and Eq. (12) into Eq. (3a) and Eq. (3b), then can get the following equations: 𝑄(𝑥) = −𝐺𝐴𝑘൫𝐶ଵ𝜆̅ଶcos𝜆̅ଶ𝑥 − 𝐶ଶ𝜆̅ଶsin𝜆̅ଶ𝑥 + 𝐶ଷ𝜆̅ଵcosh𝜆̅ଵ𝑥 + 𝐶ସ𝜆̅ଵsinh𝜆̅ଵ𝑥      −𝐵ଵcos𝜆̅ଶ𝑥 − 𝐵ଶsin𝜆̅ଶ𝑥 − 𝐵ଷcosh𝜆̅ଵ𝑥 − 𝐵ସsinh𝜆̅ଵ𝑥൯.  (15a)𝑀(𝑥) = 𝐸𝐼൫−𝐵ଵ𝜆̅ଶsin𝜆̅ଶ𝑥 + 𝐵ଶ𝜆̅ଶcos𝜆̅ଶ𝑥 + 𝐵ଷ𝜆̅ଵsinh𝜆̅ଵ𝑥 + 𝐵ସ𝜆̅ଵcosh𝜆̅ଵ𝑥൯. (15b)

Combining Eq. (11), (12), (15a), (15b) to establish equations: 

⎩⎪⎨
⎪⎧𝑦(𝑥) = 𝐶ଵsin𝜆̅ଶ𝑥 + 𝐶ଶcos𝜆̅ଶ𝑥 + 𝐶ଷsinh𝜆̅ଵ𝑥 + 𝐶ସcosh𝜆̅ଵ𝑥,𝜃(𝑥) = 𝐵ଵcos𝜆̅ଶ𝑥 + 𝐵ଶsin𝜆̅ଶ𝑥 + 𝐵ଷcosh𝜆̅ଵ𝑥 + 𝐵ସsinh𝜆̅ଵ𝑥,𝑄(𝑥) = 𝐺𝐴𝑘൫−𝐶ଵ𝜆̅ଶcos𝜆̅ଶ𝑥 + 𝐶ଶ𝜆̅ଶsin𝜆̅ଶ𝑥 − 𝐶ଷ𝜆̅ଵcosh𝜆̅ଵ𝑥 − 𝐶ସ𝜆̅ଵsinh𝜆̅ଵ𝑥     +𝐵ଵcos𝜆̅ଶ𝑥 + 𝐵ଶsin𝜆̅ଶ𝑥 + 𝐵ଷcosh𝜆̅ଵ𝑥 + 𝐵ସsinh𝜆̅ଵ𝑥൯,𝑀(𝑥) = 𝐸𝐼൫−𝐵ଵ𝜆̅ଶsin𝜆̅ଶ𝑥 + 𝐵ଶ𝜆̅ଶcos𝜆̅ଶ𝑥 + 𝐵ଷ𝜆̅ଵsinh𝜆̅ଵ𝑥 + 𝐵ସ𝜆̅ଵcosh𝜆̅ଵ𝑥൯.

 (16)

Listing the boundary conditions at the left end of the beam: 𝑦(0) = 𝑦଴,      𝜃(0) = 𝜃଴,      𝑄(0) = 𝑄଴,      𝑀(0) = −𝑀଴. (17)

Bringing the boundary into the Eq. (16): 
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⎩⎪⎨
⎪⎧𝑦(0) = 𝑦଴ = 𝐶ଶ + 𝐶ସ,𝜃(0) = 𝜃଴ = 𝐵ଵ + 𝐵ଷ,𝑄(0) = 𝑄଴ = 𝐺𝐴𝑘൫−𝐶ଵ𝜆̅ଶ − 𝐶ଷ𝜆̅ଵ + 𝐵ଵ + 𝐵ଷ൯,𝑀(0) = −𝑀଴ = 𝐸𝐼൫𝐵ଶ𝜆̅ଶ + 𝐵ସ𝜆̅ଵ൯.  (18)

By introducing Eq. (13a) to Eq. (13d) into the above equation. 𝐶ଵ to 𝐶ସ can be obtained: 

𝐶ଵ = −𝑄଴𝜇 𝜆̅ଶ𝜆̅ଵଶ + 𝑄଴𝐺𝐴𝑘 𝜆̅ଶ𝜔ଶ − 𝜃଴𝜆̅ଶ𝜔ଶ൫𝜆̅ଵଶ + 𝜆̅ଶଶ൯𝜔ଶ , (19a)

𝐶ଶ = 𝑀଴𝐸𝐼 + 𝑦଴𝜆̅ଵଶ + 𝜇𝑦଴𝐺𝐴𝑘𝜔ଶ൫𝜆̅ଵଶ + 𝜆̅ଶଶ൯ , (19b)

𝐶ଷ = 𝑄଴𝜇 𝜆̅ଵ𝜆̅ଶଶ − 𝑄଴𝐺𝐴𝑘 𝜆̅ଵ𝜔ଶ + 𝜃଴𝜆̅ଵ𝜔ଶ൫𝜆̅ଵଶ + 𝜆̅ଶଶ൯𝜔ଶ , (19c)

𝐶ସ = −𝑀଴𝐸𝐼 + 𝑦଴𝜆̅ଶଶ − 𝜇𝑦଴𝐺𝐴𝑘 𝜔ଶ൫𝜆̅ଵଶ + 𝜆̅ଶଶ൯ . (19d)

By taking the obtained 𝐶ଵ~𝐶ସ into the Eq. (16), the entire equations for 𝑦(𝑥), 𝜃(𝑥), 𝑄(𝑥), 𝑀(𝑥) can be obtained. Bringing the boundary conditions at the right end of the beam: 𝑦(𝑙) = 𝑦௟ ,      𝜃(𝑙) = 𝜃௟ ,       𝑄(𝑙) = −𝑄௟ ,      𝑀(𝑙) = −𝑀௟ . (20)

By introducing Eq. (20) into Eq. (16), the transverse vibration transfer matrix of the continuous 
Timoshenko beam can be obtained: 

൞𝑦௟𝜃௟𝑄௟𝑀௟ൢ = ሾ𝑇ሿ ൞𝑦଴𝜃଴𝑄଴𝑀଴ൢ, (21)

where [𝑇] is the transfer matrix: 

ሾ𝑇ሿ =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡ 𝑐଴ − 𝜎𝑐ଶ 𝑙𝑐ସ 𝑙ଷሾ(𝛽ସ − 𝜎𝜏)𝑐ଷ − 𝑐ସ𝜎ሿ𝛽ସ𝐸𝐼 − 𝑙ଶ𝑐ଶ𝐸𝐼𝛽ସ𝑐ଷ𝑙 𝑐଴ − 𝜏𝑐ଶ 𝑙ଶ𝑐ଶ𝐸𝐼 − 𝑙(𝑐ସ + 𝜎𝑐ଷ)𝐸𝐼𝛽ସ𝐸𝐼(𝑐ଵ − 𝜎𝑐ଷ)𝑙ଷ 𝛽ସ𝐸𝐼𝑐ଶ𝑙ଶ 𝑐଴ − 𝜎𝑐ଶ −𝛽ସ𝑐ଷ𝑙−𝛽ସ𝐸𝐼𝑐ଶ𝑙ଶ −𝐸𝐼(𝑐ସ𝜎 + 𝑐ହ)𝑙 −𝑙𝑐ସ 𝑐଴ − 𝜏𝑐ଶ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎤. (22)

Assuming intermediate variables 𝜎, 𝜏, 𝛽ସ and 𝑐଴-𝑐ହ: 

𝜎 = 𝜇𝜔ଶ𝑙ଶ𝐺𝐴𝑘 ,      𝜏 = 𝜇𝜔ଶ𝑙ଶ𝐸𝐴 ,     𝛽ସ = 𝜇𝜔ଶ𝑙ସ𝐸𝐼 , (23)
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⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝜆ଵଶ = −𝜎 + 𝜏2 + ඨ𝛽ସ + (𝜎 − 𝜏)ଶ4 ,
𝜆ଶଶ = 𝜎 + 𝜏2 + ඨ𝛽ସ + (𝜎 − 𝜏)ଶ4 ,
𝜆 = 1𝜆ଵଶ + 𝜆ଶଶ ,

 (24)

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧𝑐଴ = 𝜆ሾ𝜆ଵଶcosh(𝜆ଵ) + 𝜆ଶଶcos(𝜆ଶ)ሿ,𝑐ଵ = 𝜆 ቈ𝜆ଶଶ𝜆ଵ sinh(𝜆ଵ) + 𝜆ଵଶ𝜆ଶ sin(𝜆ଶ)቉ ,𝑐ଶ = 𝜆ሾcosh(𝜆ଵ) − cos(𝜆ଶ)ሿ,𝑐ଷ = 𝜆 ቈsinh(𝜆ଵ)𝜆ଵ − sin(𝜆ଶ)𝜆ଶ ቉ ,𝑐ସ = 𝜆ሾ𝜆ଵsinh(𝜆ଵ) + 𝜆ଶsin(𝜆ଶ)ሿ,𝑐ହ = 𝜆ሾ𝜆ଵଷsinh(𝜆ଵ) − 𝜆ଶଷsin(𝜆ଶ)ሿ.

 (25)

This gives the transfer matrix [𝑇] of a single beam. The transfer matrix of stepped beam can 
be obtained by multiplying multiple transfer matrices: 

⎩⎨
⎧𝑦(𝐿௡)𝜃(𝐿௡)𝑄(𝐿௡)𝑀(𝐿௡)⎭⎬

⎫ோ = ሾ𝑇௡ሿ ⋅⋅⋅ ሾ𝑇ଶሿሾ𝑇ଵሿ⎩⎨
⎧𝑦(𝐿ଵ)𝜃(𝐿ଵ)𝑄(𝐿ଵ)𝑀(𝐿ଵ)⎭⎬

⎫௅. (26)

The transfer matrix of the step beam is represented by [𝐻]: [𝐻] = [𝑇௡] ⋅⋅⋅ [𝑇ଶ][𝑇ଵ]. (27)

Bringing cantilever beam boundary conditions: 𝑦(𝐿ଵ)௅ = 0,     𝜃(𝐿ଵ)௅ = 0,     𝑀(𝐿௡)ோ = 0,     𝑄(𝐿௡)ோ = 0. (28)

The transfer matrix of cantilever beam is shown: 

൞𝑦(𝐿௡)𝜃(𝐿௡)00 ൢோ = ൦𝐻ଵଵ 𝐻ଵଶ 𝐻ଵଷ 𝐻ଵସ𝐻ଶଵ 𝐻ଶଶ 𝐻ଶଷ 𝐻ଶସ𝐻ଷଵ 𝐻ଷଶ 𝐻ଷଷ 𝐻ଷସ𝐻ସଵ 𝐻ସଶ 𝐻ସଷ 𝐻ସସ൪൞
00𝑄(𝐿ଵ)𝑀(𝐿ଵ)ൢ

௅ (29)

The coefficient determinant must be zero as the equation having non-zero solution: ฬ𝐻ଷଷ 𝐻ଷସ𝐻ସଷ 𝐻ସସฬ = 0. (30)

Solving the determinant, the natural frequency 𝜔 of the stepped beam can be obtained. The 
mode shape functions are obtained by bringing the natural frequency into the Eq. (11) and  
Eq. (12). Then normalize the mode function, the normal modes 𝜙(𝑥) and 𝜑(𝑥) can be obtained. 
Where 𝜙(𝑥) is transverse displacement mode shape function and 𝜑(𝑥) is bending angle mode 
shape function. 
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Fig. 3. Moving load acceleration analysis diagram 

As shown in the Fig. 3, since the beam itself is vibrating, the moving load has a transverse 
inertial force. When the barrel coupling is not considered, the moving load is only gravity mg. 
When considering the barrel coupling, the inertia term of the moving load needs to be increased. 
In the Fig. 3, θ is the bending angle; 𝑣 is the velocity of the moving load; 𝑎௬ is the transverse 
acceleration of the micro-unit due to the bending deformation of the beam; 𝑎ఛ is the tangential 
acceleration of the moving load; 𝑎௡  is the normal acceleration of the moving load; 𝑎௞  is the 
Coriolis acceleration caused by the interaction between rotational angular velocity and axial 
motion velocity. 

According to the knowledge of material mechanics and theoretical mechanics: 

𝑎௬ = ∂ଶ𝑦∂𝑡ଶ , (31a)𝑎ఛ = 𝑑𝑣𝑑𝑡 , (31b)𝑎௡ = 𝑣ଶ ∂ଶ𝑦∂𝑥ଶ, (31c)𝑎௞ = 2𝑣 ∂𝜃∂𝑡 . (31d)

The actual vertical acceleration of moving load is as follows: 𝑎 = 𝑎௬ + 𝑎ఛsin𝜃 + 𝑎௡cos𝜃 + 𝑎௞cos𝜃 = 𝑎௬ + 𝑎ఛ𝜃 + 𝑎௡ + 𝑎௞     = ∂ଶ𝑦∂𝑡ଶ + 𝑑𝑣𝑑𝑡 𝜃 + 𝑣ଶ ∂ଶ𝑦∂𝑥ଶ + 2𝑣 ∂𝜃∂𝑡 . (32)

The force acting on the beam by the moving load considering the inertial effect is 𝑃(𝑥, 𝑡): 

𝑃(𝑥, 𝑡) = 𝑚௬ ቊ𝑔 − ∂ଶ𝑦∂𝑡ଶ − 2 ∂𝜃∂𝑡 𝑠ሶ(𝑡)−∂ଶ𝑦∂𝑥ଶ 𝑠ሶଶ(𝑡) − 𝜃𝑠ሷ(𝑡)ቋ 𝛿൫𝑥 − 𝑠(𝑡)൯, (33)

where, 𝑚௬  represents the mass of the moving load; 𝑠(𝑡)  represents the displacement of the 
moving load. In the Eq. (33), the first term represents the gravitational acceleration. The second 
term represents the transverse acceleration. The third term represents the Coriolis acceleration. 
The fourth and fifth terms represent the normal acceleration component and the tangential 
acceleration component, respectively. 𝛿(𝑥 − 𝑠(𝑡)) is the Dirac Delta function: 
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൜𝑥 = 𝑠(𝑡),    𝛿(𝑥 − 𝑠(𝑡)) = 1,𝑥 ≠ 𝑠(𝑡),    𝛿(𝑥 − 𝑠(𝑡)) = 0. (34)

Bring 𝑦(𝑥, 𝑡) = 𝜙(𝑥)𝑞(𝑡) and 𝜃(𝑥, 𝑡) = 𝜙(𝑥)𝑞(𝑡) into the Eq. (33): 𝑃ത(𝑥, 𝑡) = 𝑚௬ ൜𝑔 −෍ [𝜙௜(𝑠)𝑞ሷ௜ஶ௜ୀଵ (𝑡) + 2𝑠ሶ(𝑡)𝜑௜(𝑠)𝑞ሶ௜(𝑡)     +𝑠ሶଶ(𝑡)𝜙௜ᇳ(𝑠)𝑞௜(𝑡) + 𝑠ሷଶ(𝑡)𝜑௜(𝑠)𝑞௜(𝑡)]𝛿൫𝑥 − 𝑠(𝑡)൯ൟ.  (35)

In Eq. (35), 𝑖 represents the 𝑖th order national frequency. By using the method of separating 
variables and the orthogonality of modal functions, the integral of the whole beam can be obtained: 𝑞ሷ௜(𝑡) + 𝜔௜ଶ𝑞௜(𝑡) = 𝑚௬ ൜𝑔 −෍ [𝜙௜(𝑠)𝑞ሷ௜ஶ௜ୀଵ (𝑡) + 2𝑠ሶ(𝑡)𝜑௜(𝑠)𝑞ሶ௜(𝑡)      +𝑠ሶଶ(𝑡)𝜙௜ᇳ(𝑠)𝑞௜(𝑡) + 𝑠ሷ ଶ(𝑡)𝜑௜(𝑠)𝑞௜(𝑡)]𝜙௜(𝑠)ሽ.  (36)

By separating and sorting out the terms of zero, primary and secondary derivatives of 
generalized coordinates in the formula, the [𝑀], [𝐾], [𝐶] matrices of the system are obtained, 
where [𝑀], [𝐾], [𝐶] are symmetric matrices. The vibration differential equation of the whole 
system is expressed as follows: 

[𝑀] ቎𝑞ሷଵ(𝑡)𝑞ሷ ...(𝑡)𝑞ሷ௜(𝑡)቏ + [𝐶] ቎𝑞ሶଵ(𝑡)𝑞ሶ ...(𝑡)𝑞ሶ௜(𝑡)቏ + [𝐾] ቎𝑞ଵ(𝑡)𝑞...(𝑡)𝑞௜(𝑡)቏ = ቎𝑚௬𝑔𝜙ଵ(𝑠)𝑚௬𝑔𝜙...(𝑠)𝑚௬𝑔𝜙௜(𝑠) ቏, (37a)[𝜙] = [𝜙ଵ(𝑠),𝜙ଶ(𝑠),𝜙ଷ(𝑠). . .𝜙௜(𝑠)]் , (37b)[𝜑] = [𝜑ଵ(𝑠),𝜑ଶ(𝑠),𝜑ଷ(𝑠). . .𝜑௜(𝑠)]் , (37c)[𝐼] = diag(1,1,1, . . . ,1)௜ , (37d)[𝑀] = [𝐼] + 𝑚௬[𝜙][𝜙]், (37e)[𝐾] = diag(𝜔௜ଶ) + 𝑚௬𝑠ሶଶ(𝑡)[𝜙′′][𝜙]் + 𝑚௬𝑠ሷ(𝑡)[𝜑][𝜙]், (37f)[𝐶] = 2𝑚௬𝑠ሶ(𝑡)[𝜑][𝜙]். (37g)

In the above Eq. (37), 𝜙௜(𝑠) and 𝜑௜(𝑠) represent the mode function of the beam where the 
moving load displacement is 𝑠. For such time-varying coefficient differential equations, it can 
only be solved by numerical method of step-by-step integration. Newmark-𝛽 method is the most 
commonly used integration method. By calculating the generalized coordinate 𝑞(𝑡) at any time, 
the dynamic response 𝑦(𝑥, 𝑡) of the stepped beam at any time can be obtained. 

3. Example analysis and discussion 

3.1. Numerical validation 

As shown in Fig. 4, a five-stepped beam with a moving load is analysed. In this section, the 
Timoshenko beam transfer matrix is compared with the Euler beam transfer matrix and FEM 
calculation results to verify the correctness of the model. 

The parameters of the cantilever beam are given in Table 1. 
Numerical solutions of Timoshenko beam model and Euler beam model are calculated by 

programming in MATLAB software. The APDL language of ANSYS software is used in the finite 
element method for parametric programming. The stepped beam uses the BEAM188 element. The 
moving load uses the birth-death element. The finite element model is shown in Fig. 5. 

The first four natural frequencies are extracted for comparison. The results are shown in the 
following Table 2. 
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Fig. 4. Five-stepped cantilever beam model diagram 

 
Fig. 5. Finite element simulation diagram 

Table 1. Model parameter table 𝐸 = 2.1×105 MPa, 𝜇௉ = 0.3, 𝜌 = 7800 kg/m3, 𝑘 = 3/4 
Section number Length (m) Inner diameter (m) Outer diameter(m) 𝐿ଵ 1.0 0.20 0.4 𝐿ଶ 1.0 0.18 0.35 𝐿ଷ 1.0 0.15 0.30 𝐿ସ 0.5 0.12 0.25 𝐿ହ 0.5 0.10 0.20 

Table 2. Frequency comparison table 

 FEM / 
Hz 

Timoshenko beam / 
Hz 

Euler beam / 
Hz 

Timoshenko deviation 
(%) 

Euler deviation 
(%) 𝜔ଵ 28.45 28.54 28.78 0.32 1.16 𝜔ଶ 118.03 119.13 123.68 0.93 4.79 𝜔ଷ 272.17 276.88 299.63 1.73 10.09 𝜔ସ 467.72 479.57 544.75 2.53 16.47 

It is shown in Table 2 that the difference of the first natural frequency is small. For the 
following three natural frequencies, the difference between Euler beam and FEM is big. As 
mentioned in the introduction, the poor calculation accuracy of Euler beams is because each 
simplified stepped beam belongs to a deep beam structure, and does not consider the section shear 
deformation and moment of inertia. Therefore, Timoshenko beam has higher accuracy than Euler 
beam.  

The mass of moving load is 10 kg, the speed is 100 m/s. It runs in the beam at a constant speed. 
The forced vibration of beam is analyzed by Newmark-𝛽  method. The step length is set to  
2×10-4 s. The Newmark coefficient 𝛾ே is 0.5, 𝛽ே is 0.25. The response of the free endpoint is 
extracted as the research object. The calculation results are shown in the following figures. 

Fig. 6 shows the time domain response of the free endpoint on the beam. With the movement 
of the moving load, the displacement of the free endpoint increases. The FEM ’s response is the 
biggest. The Euler beam’s response is the smallest. Fig. 7 shows the percentage of the difference 
between the Timoshenko beam model and the Euler beam model for FEM results. Through the 
error comparison, we can know that Timoshenko beam is more accurate than Euler beam. 

The 4 m and 8 m length beams are selected for studying the influence of the beam size on 
natural frequencies. The dimensions are shown in Table 3. 
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Fig. 6. Response contrast diagram 

 
Fig. 7. Error percentage contrast diagram 

Table 3. Beam size parameter table 
Beam length Segment length (m) Size Inner and outer diameter parameters (m) 

4 m 
𝐿ଵ = 1, 𝐿ଶ = 1, 𝐿ଷ = 1, 𝐿ସ = 0.5,  𝐿ହ = 0.5 

Thick 𝐷ଵ = 0.8, 𝐷ଶ = 0.7, 𝐷ଷ = 0.6, 𝐷ସ = 0.5, 𝐷ହ = 0.4,  𝑑ଵ = 0.4, 𝑑ଶ = 0.36, 𝑑ଷ = 0.3, 𝑑ସ = 0.24, 𝑑ହ = 0.2 

Middling 𝐷ଵ = 0.4, 𝐷ଶ = 0.35, 𝐷ଷ = 0.3, 𝐷ସ = 0.25, 𝐷ହ = 0.2 𝑑ଵ = 0.2, 𝑑ଶ = 0.18, 𝑑ଷ = 0.15, 𝑑ସ = 0.12, 𝑑ହ = 0.1 
8 m 𝐿ଵ = 2, 𝐿ଶ = 2, 𝐿ଷ = 2, 𝐿ସ = 1, 𝐿ହ =1 Slender 𝐷ଵ = 0.2, 𝐷ଶ = 0.175, 𝐷ଷ = 0.15, 𝐷ସ = 0.125, 𝐷ହ = 0.1 𝑑ଵ = 0.1, 𝑑ଶ = 0.09, 𝑑ଷ = 0.075, 𝑑ସ = 0.06, 𝑑ହ = 0.05 

The first four natural frequencies are analyzed. The result is shown in Table 4. It can be seen 
that if the length of the beam is fixed, the smaller the diameter, the smaller the deviation; if the 
diameter is fixed, the longer the length of the model, the smaller the deviation. The slender the 
size of the beam, the higher the accuracy of the calculation. The accuracy of the Timoshenko beam 
model is 3-5 times higher than Euler beam which is greater for higher order natural frequencies. 
For the slender beam, both theoretical models can solve the problem well. However, if it is a short 
thick beam or under the high-order natural frequency, the Euler beam model is no longer 
applicable. For a 4m thick beam, the maximum length-to-diameter ratio of a single segment 
reached 0.8, the error of the fourth-order frequency of Timoshenko beam is more than 5 %. 
Therefore, in actual calculation, the diameter of the beam should not be simplified too thick, which 
makes the calculation accuracy worse. 

3.2. Study the effect of moving load single variable on beam vibration 

The stepped cantilever beam model in Table 1 is selected for analysis. Moving loads can be 
divided into considering-inertia-effect and considering-gravity-only. The response of the free 
endpoint is extracted for analysis. The inertia coefficient 𝜆ூ  is defined: 

𝜆ூ = ቆቤ𝑦ூ − 𝑦௚𝑦௚ ቤቇ × 100 %. (38)

In the Eq. (38), 𝑦ூ  represents the response of the free endpoint when the moving load 
considering inertia effect moving to the free endpoint; 𝑦௚ is the response of the free endpoint when 
the moving load only considering gravity moving to the free endpoint. 

3.2.1. The impact of moving load mass on response results  

The influence of mass on the response of the cantilever beam is studied by changing the mass 
of moving load. The moving load moves uniformly on the beam at the speed of 100 m/s. The mass 
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of the moving load ranges from 5 kg to 500 kg, which the increment is 5 kg. When the moving 
load moves to the free endpoint, the response of the free endpoint is selected as the research object. 
The curves obtained are as follows. 

Table 4. Size effect on frequency table 

Beam 
length Size FEM 

(Hz) 
Timoshenko 
beam (Hz) 

Euler beam 
(Hz) 

Timoshenko 
deviation (%) 

Euler 
deviation 

(%) 

4 m 

Thick 

55.16 55.62 57.57 0.83 4.37 
210.2 215.94 247.36 2.73 17.68 

444.56 464.18 599.25 4.41 34.80 
709.51 749.94 1089.49 5.70 53.56 

Middling 

28.45 28.54 28.78 0.32 1.16 
118.03 119.13 123.68 0.93 4.79 
272.17 276.88 299.63 1.73 10.09 
467.72 479.57 544.75 2.53 16.47 

Slender 

14.34 14.36 14.39 0.14 0.35 
61.07 61.24 61.84 0.28 1.26 
145.9 146.65 149.81 0.51 2.68 

260.73 262.77 272.37 0.78 4.46 

8 m 

Thick 

14.23 14.26 14.39 0.21 1.12 
59.02 59.54 61.84 0.88 4.78 

136.09 138.37 149.81 1.68 10.08 
233.86 239.66 272.37 2.48 16.47 

Middling 

7.17 7.18 7.2 0.14 0.42 
30.53 30.61 30.92 0.26 1.28 
72.95 73.33 74.91 0.52 2.69 

130.36 131.39 136.19 0.79 4.47 

Slender 

3.59 3.59 3.6 0.00 0.28 
15.4 15.42 15.46 0.13 0.39 
37.19 37.25 37.45 0.16 0.70 
67.31 67.46 68.09 0.22 1.16 

It can be seen from Fig. 8, the forced vibration response of the free endpoint increases with the 
increase of moving load mass. The vibration response of the load with inertia effect is smaller than 
the response only considering gravity, which accords with the result of Eq. (35). As can be seen 
in Fig. 9, the inertia coefficient increases with the increase of mass. It means that if the mass of 
moving load is large, the effect of inertia must be considered.  

 
Fig. 8. Mass-response contrast diagram 

 
Fig. 9. Mass-inertia coefficient diagram 
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3.2.2. The impact of moving load speed on response results 

The influence of speed on the response of the cantilever beam is studied by changing the speed 
of moving load. The moving load moves uniformly on the beam. The mass of the moving load is 
10 kg. The speed of the moving load ranges from 150 m/s to 750 m/s, which the increment is 
5 m/s. When the moving load moves to the free endpoint, the response of the free endpoint is 
selected as the research object. The curves obtained are as follows. 

It can be seen from Fig. 10, the forced vibration response of the free endpoint decreases 
gradually with the increase of speed. The vibration response of the load with inertia effect is 
smaller than the response only considering gravity. It can be known from Eq. (33) that as the speed 
increases, the amplitude of the excitation force decreases, so the forced response at the free end 
decreases. As can be seen in Fig. 11, the inertia coefficient increases with the increase of velocity. 
This means that if the speed of moving load is fast, the effect of inertia must be considered. 

 
Fig. 10. Speed-response contrast diagram 

 
Fig. 11. Speed-inertia coefficient diagram 

3.2.3. The impact of moving load acceleration on response results 

The influence of acceleration on the response of the cantilever beam is studied by changing 
the acceleration of moving load. The mass of the moving load is 10 kg. The speed is 100 m/s. The 
acceleration of the moving load ranges from 0 m/s2 to 2000 m/s2, which the increment is 10 m/s2. 
When the moving load moves to the free endpoint, the response of the free endpoint is selected as 
the research object. The curves obtained are as follows. 

 
Fig. 12. Acceleration-response contrast diagram 

 
Fig. 13. Acceleration-inertia coefficient diagram 

It can be seen from Fig. 12, the forced vibration response of the free endpoint increases with 
the increase of moving load acceleration. The vibration response of load with inertia effect is 
smaller than that without inertia effect. As can be seen from Fig. 13, with the increase of the 
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acceleration, the inertia effect coefficient increases accordingly, which means the effect of inertia 
must be considered if the acceleration of moving load is large. In the range of 0-1000 m/s2, the 
slope of inertia coefficient curve is close to horizontal. At this time, the acceleration has little 
influence on the inertia effect. When the acceleration exceeds 1000 m/s2, the slope of the curve 
suddenly increases. The acceleration has a great influence on the inertia effect. 

3.3. Comparison of double variables of moving load 

3.3.1. The impact of the mass and speed of moving load on response results  

Assume that the moving load performs a uniform motion on the beam. Change the mass and 
the speed of the moving load. Record the inertia coefficient when the moving load moves to the 
free endpoint. The results are shown in Fig. 14. 

It can be seen from Fig. 14 that both mass and speed affect the value of inertia coefficient. 
With the mass increases, the value of inertia coefficient increases accordingly. And the same is 
true of speed to the value of inertia coefficient. The change of mass can significantly change the 
inertia coefficient. It can be seen from the figure that when the speed is 150 m/s, the inertia 
coefficient of 100 kg mass is more than twice that of 50 kg mass. 

Also, in Fig. 14, when the mass of moving load is large, the influence of inertial effect on 
vibration response cannot be neglected regardless of the speed. When the mass of moving load is 
small, the effect of inertia on vibration response at low speed is negligible. However, when the 
moving load whose mass is 50 kg and speed is 120 m/s, the inertia coefficient exceed 5 %. The 
inertia effect to the vibration response influence can’t be neglected in this situation. 

 
Fig. 14. Inertial coefficient of moving load with different mass and speed 

3.3.2. The impact of the mass and acceleration of moving load on response results 

The acceleration analyzed in this paper is uniform acceleration. The influence of inertia effect 
on vibration response is considered when the moving load performs uniform acceleration motion. 
Consider the uniform acceleration movement with an initial velocity of 100 m/s. Record the inertia 
coefficient of the free endpoint. Take the acceleration and mass as variables. Collect multiple sets 
of data for analysis. The results of uniform acceleration motion are shown in Fig. 15. 

As can be seen from Fig. 15, when the mass of the moving load is small, the curve is close to 
horizontal. At this time, the effect of acceleration on inertia coefficient is negligible. When the 
mass of the moving load is 10 kg and 20 kg, the inertia coefficient does not exceed 2 %. However, 
when the mass of the moving load is large, the slope of the curve increases observably. At this 
time, the influence of acceleration on inertia coefficient cannot be ignored. The inertia coefficient 
increases consistently with the increase of the speed and the mass. Acceleration has little effect on 
inertia coefficient in this example. It is only effective at changing the inertia influence coefficient 
when the mass is large. 
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Fig. 15. Inertial coefficient of moving load with different mass and acceleration 

4. Conclusions 

Based on the stepped Timoshenko beam model, the transverse vibration response of the 
cantilever beam under inertial moving loads is analyzed. The conclusions are followed below. 

1) Based on Timoshenko beam theory, the transverse vibration transfer matrix is derived in 
this paper. The equation of the inertia moving load is obtained by analyzing the motion of the 
moving load. The accuracy of this method is verified by comparing with the Euler beam model 
and the FEM model. This method can provide theoretical basis for gun barrel vibration. 

2) The mass, velocity and acceleration of the moving load all affect the inertia coefficient. The 
inertia coefficient increases with the increasing mass, velocity and acceleration. This also means 
that the inertia effect of the moving load must be considered when these three parameters exceed 
the setting limits. The mass of the moving load is a major factor affecting the inertia coefficient 
relative to speed and acceleration. 
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