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Abstract. Rotating hub-flexible rod system is a typical rigid-flexible coupling dynamic 
mechanism, which has a wide range of industrial applications. In this paper, a comprehensive 
nonlinear dynamical model of a rotating hub-flexible rod-concentrated mass system considering 
rigid-flexible coupling effect is established to study its dynamic properties. By employing the 
Hamilton principle and classical beam theory, a set of differential equations of motion are derived 
including the couplings of the elastic deformation of the rod and the rigid rotation of the hub. The 
additional centrifugal force, tangential force and Coriolis force due to the rigid-flexible coupling 
effect are elaborated. The derived governing partial differential equations are solved by the 
Galerkin method. The validity of the present model is verified by a comparative study. The tip 
motion trajectories of the rod for the prescribed rotation, the dynamic responses of the hub and the 
rod for an external torque acting on the hub and the dimensionless natural frequencies of the 
system for the steady-state rotation are graphically presented. The influences of parameters such 
as rotational speed ratio, concentrated mass ratio, concentrated mass location ratio and initial 
eccentricity ratio on the dynamics are discussed in detail. 
Keywords: rotating hub-flexible rod, concentrated mass, rigid-flexible coupling, dynamic 
response, free vibration. 

1. Introduction 

The dynamic problems (such as transient response and free vibration) of rotating flexible 
beams (rods) are the key research topics in a lot of engineering applications such as aerospace, 
robotics, propellers, turbine blades etc., which are crucial for design purposes, optimization and 
control. The study on the dynamic behavior and stability of these structures is an essential part of 
the design process, especially when dealing with the design of control and condition monitoring 
systems. Rotating beam (rod) structures generally include both the small elastic deflections of the 
flexible beam and the overall rotating motion of the hub, which are referred to the rigid-flexible 
coupling mechanisms. The rotating hub-flexible rod presented herein is a typical example. 
Therefore, more reliable mechanical models and their solution strategies for these coupling 
mechanisms have been required for accurate speed control and accurate operation [1-3]. 

The dynamic modeling of the rotating hub-beam (rod) structure has roughly gone through three 
stages. The dynamic model of the first stage was known as the traditional hybrid coordinate model 
[4-8], in which the small deformation hypothesis of the traditional structural dynamics was  
applied. It is assumed that the axial and lateral deformations of the beam were not coupled to each 
other. This model was generally used in the case that the large overall motion was known. In this 
case, only the influence of the overall motion of the hub on the elastic deformation of the rod was 
discussed while ignoring the influence of the flexible deformation of the rod on the rigid overall 
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motions. 
The dynamic models of the second stage were called the dynamic stiffening models, in which 

the dynamic stiffening effect was first proposed by Kane et al. [5] in 1987. It was demonstrated 
that the traditional hybrid coordinate model failed to handle the dynamics of rotary hub-rod system 
with high angular velocity. Thereafter, many models were established to capture the dynamic 
stiffening effect, which can be roughly divided into three categories. The dynamic stiffening 
models of the first category added the additional potential energy induced by centrifugal force to 
describe the centrifugal stiffening effect [9-14]. In the second type of dynamic stiffening models 
[15-22], the axial deformation is described by using the stretch deformation (i.e. a non-Cartesian 
variable) and taking into account the second-order coupling deformation caused by the transverse 
deformation. The dynamic stiffening models of the third category used a geometrically exact 
approach to describe the centrifugal stiffening effect [23-26]. Although the introduction of 
dynamic stiffening enables the dynamic model to deal with the dynamics of high-speed rotating 
beam systems, there are still limitations on understanding of the rigid-flexible coupling 
mechanism of such systems. 

The dynamic model of the third stage is the rigid-flexible coupling model (RFC model) [27], 
which is developed through the classical continuum mechanics. The RCF model considers that 
the essence of the dynamic stiffening effect is the structural dynamics of the non-inertial system. 
The coupling effect of the large overall motion of the rigid body and the elastic deformation of the 
beam results in the additional stiffness, which leads to the dynamic stiffness of the system. Liu 
and Hong [28] investigated the dynamic stiffening effect on the dynamic behaviors of a elastic 
slender beam undergoing free overall motions based on the rigid-flexible coupling theory. Cai 
et al. [29] developed the first-order approximation coupling (FOAC) model for rotary hub-beam-
tip mass system and investigated its dynamics of the system when the rotation motion was 
unknown. Based on the Timoshenko beam theory, You et al. [30] proposed the dynamic model of 
a rotary flexible hub-beam system and studied the influence of the transverse shear deformation 
on the dynamic behaviors. On the basis of a new rigid-flexible coupling dynamical model, Li and 
Zhang [31] investigated the dynamic responses and free vibrations of rotary tapered beams made 
of axially functionally graded materials by utilizing the B-spline approach. Liu et al. [32] presented 
a rigid-flexible coupling dynamic model for a rotary rigid body-flexible rod-tip mass system. 
Since the mass of the flexible rod was neglected, the model presented by Liu et al. [32] was 
actually a two-degree-of-freedom model. Recently, by utilizing the slope angle of the beam, Zhang 
et al. [33] developed a new rigid-flexible coupling dynamical model of a rotary hub-flexible beam-
tip mass system under gravity loads, and determined the natural frequencies and nonlinear 
frequency responses through the incremental harmonic balance method. 

In this study, a rigid-flexible coupling dynamical model of a rotary hub-flexible rod-movable 
concentrated mass system is developed by employing Hamilton’s principle. Based on the accurate 
geometric nonlinearity, the second-order coupling deformations caused by the transverse 
deformations are employed to capture the dynamic stiffening effect. The derived partial 
differential governing equations are solved numerically by the Galerkin method. A comparative 
study is carried out to verify the present model. The dynamic responses of the system for situations 
of a prescribed rotation and an arbitrary external torque acting on the hub are presented. The 
influences of rotational speed ratio, concentrated mass location ratio, concentrated mass ratio and 
initial eccentricity ratio on the responses are studied. Finally, the natural frequencies of the rotating 
flexible rod under steady-state rotation are calculated. 

2. Nonlinear dynamic modeling of the system 

Fig. 1 shows a rotating hub-flexible rod-concentrated mass system. The flexible rod with 
length 𝐿, cross-sectional area 𝐴, mass density 𝜌, Young’s modulus 𝐸, is attached to the rigid hub, 
which rotates about the fixed vertical axis (i.e., 𝑋-axis). Parameters 𝐽ு and 𝜃 are the rotary inertia 
and rotation angle of the hub with respect to 𝑋-axis. The 𝑂-𝑋𝑌𝑍 is the inertial reference frame, 
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whereas the 𝑜-𝑥𝑦𝑧 is the floating one that is fixed on the rod. In the present study, a concentrated 
mass 𝑚 considered can be moved along the centroid axis of the rod. 

Since a slender rod is considered herein, the classical beam theory is used to describe its 
deformations. The deformation field of a generic point 𝑃 on the deformed rod with respect to the 
floating reference frame can be expressed by: 

𝐮 = ቐ𝑢∗(𝑥,𝑦, 𝑧, 𝑡)𝑣∗(𝑥,𝑦, 𝑧, 𝑡)𝑤∗(𝑥,𝑦, 𝑧, 𝑡)ቑ = ൞𝑢(𝑥, 𝑡) − 𝑦 ∂𝑣∗(𝑥,𝑦, 𝑧, 𝑡)∂𝑥 − 𝑧 ∂𝑤∗(𝑥,𝑦, 𝑧, 𝑡)∂𝑥𝑣(𝑥, 𝑡)𝑤(𝑥, 𝑡) ൢ, (1)

where 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡) and 𝑤(𝑥, 𝑡) are the deformation components at the centroid axis along 𝑥-, 𝑦- and 𝑧- directions, respectively. 

 
Fig. 1. A rotating hub-flexible rod-mass system 

Based on the relation of the geometric nonlinearity, the axial deformation 𝑢(𝑥, 𝑡) could be 
described by using the arc-length 𝑠(𝑥, 𝑡) and the transverse deformations, as [16, 21]: 

𝑢(𝑥, 𝑡) = 𝑠(𝑥, 𝑡) − 12න ቆ∂𝑣(𝜒, 𝑡)∂𝜒 ቇଶ 𝑑𝜒௫
 − 12න ቆ∂𝑤(𝜒, 𝑡)∂𝜒 ቇଶ 𝑑𝜒௫

 , (2)

in which the terms of 0.5 (𝜕𝑣(𝜒, 𝑡) 𝜕𝜒⁄ )ଶ𝑑𝜒௫  and 0.5 (𝜕𝑤(𝜒, 𝑡) 𝜕𝜒⁄ )ଶ𝑑𝜒௫  are called as the 
non-linear second-order coupling deformations. 

Based on the von Kármán strain theory, the axial normal strain 𝜀௫௫ is given by: 

𝜀௫௫ = ∂𝑢∗∂𝑥 + 12 ቈ൬∂𝑣∗∂𝑥 ൰ଶ + ൬∂𝑤∗∂𝑥 ൰ଶ = ∂𝑠∂𝑥 − 𝑦 ∂ଶ𝑣∂𝑥ଶ − 𝑧 ∂ଶ𝑤∂𝑥ଶ . (3)

Utilizing the uniaxial stress-strain relations, the corresponding normal stress is: 𝜎௫௫ = 𝐸𝜀௫௫. (4)

Without considering the effect of gravity, the potential energy of the system can be written by: 

𝑈 = 12න න𝜎௫௫𝜀௫௫

 𝑑𝐴𝑑𝑥 = 12න 𝐸𝐴 ൬𝜕𝑠𝜕𝑥൰ଶ + 𝐸𝐼௭ ቆ𝜕ଶ𝑣𝜕𝑥ଶቇଶ + 𝐸𝐼௬ ቆ𝜕ଶ𝑤𝜕𝑥ଶቇଶ൩

  𝑑𝑥, (5)

where 𝐼௭ and 𝐼௬ are the cross section moments of inertia with respect to 𝑧 and 𝑦 axes, respectively. 
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The position vector of the point 𝑃 in the inertial reference frame can be written by: 𝐫 = 𝐀𝐫 = 𝐀(𝐫 + 𝐫ଵ + 𝐮), (6)

in which, 𝐀 is the rotation transformation matrix. 𝐫 is the position vector of the point 𝑜 in the 
inertial frame. 𝐫ଵ is the position vector of the point 𝑃 on the undeformed rod in the floating frame. 
The matrix 𝐀, the vectors 𝐫 and 𝐫ଵ are given by: 

𝐀 = cos𝜃 −sin𝜃 0sin𝜃 cos𝜃 00 0 1൩ ,     𝐫 = ሾ𝑟, 0,0ሿ் ,     𝐫ଵ = ሾ𝑥,𝑦, 𝑧ሿ் . (7)

Accordingly, the absolute velocity of the point 𝑃 can be derived by: 𝐫ሶ = 𝐀𝐫ሶ + 𝜃ሶ𝐀𝐈ሚ𝐫, (8)

where 𝜃ሶ  is the rotational speed. The matrix 𝐈ሚ can be expressed by: 

𝐈ሚ = 0 −1 01 0 00 0 0൩. (9)

Therefore, the kinetic energy of the system is: 𝑇 = 12 𝐽ு𝜃ሶ ଶ + 12න𝜌𝐫ሶ ⋅ 𝐫ሶ𝑑𝑉 . (10)

An external rotating torque 𝐸௧ is assumed to act on the hub and thus external virtual work is 
derived by: 

𝛿𝑊 = 𝐸௧𝛿𝜃 + න (𝑝௩𝛿𝑣 + 𝑝௪𝛿𝑤)𝑑𝑥
 , (11)

where 𝑝௩(𝑥, 𝑡) and 𝑝௪(𝑥, 𝑡) are the external distributed forces acted on the rod along the 𝑦 and 𝑧 
directions. 

The rigid-flexible coupling dynamic equations of the rotating hub-flexible rod system are 
derived by the following Hamilton’s principle, as: 

න (𝛿𝑇 − 𝛿𝑈 + 𝛿𝑊)𝑑𝑡௧మ௧భ = 0. (12)

Substituting Eqs. (5), (10) and (11) into Eq. (12), one can obtain the comprehensive nonlinear 
differential equations of the system: 

𝐽ு𝜃ሷ + න ൛ሾ𝐽ଵ + 𝜌𝐴(𝑟ଶ + 2𝑟𝑣 + 𝑣ଶ + 𝑤ଶ)ሿ𝜃ሷ + 2𝜌𝐴(𝑟𝑣ሶ + 𝑣𝑣ሶ + 𝑤𝑤ሶ )𝜃ሶൟ 𝑑𝑥
        = න 𝜌𝐴(𝑟𝑤ሷ + 𝑣𝑤ሷ + 𝑤𝑣ሷ) 𝑑𝑥
 + 𝐸௧ , (13a)

𝜌𝐴𝑠ሷ + 𝜕𝜕𝑥 ൬𝐸𝐴 𝜕𝑠𝜕𝑥൰ = 0, (13b)𝜌𝐴൫𝑣ሷ − 2𝜃ሶ𝑤ሶ − 𝜃ሶ ଶ𝑣 − 𝜃ሷ𝑤൯ + 𝜕ଶ𝜕𝑥ଶ ቆ𝐸𝐼௭ 𝜕ଶ𝑣𝜕𝑥ଶቇ = 𝜌𝐴𝜃ሶ ଶ𝑟, (13c)
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𝜌𝐴൫𝑤ሷ + 2𝜃ሶ𝑣ሶ − 𝜃ሶ ଶ𝑤 + 𝜃ሷ𝑣൯ + 𝜕ଶ𝜕𝑥ଶ ቆ𝐸𝐼௬ 𝜕ଶ𝑤𝜕𝑥ଶቇ = −𝜌𝐴𝜃ሷ𝑟, (13d)

where 𝐽ଵ =  𝜌(𝑦ଶ + 𝑧ଶ)𝑑𝐴 . 
The corresponding boundary conditions of the rod are give by: 
– Geometric boundary conditions: 𝑢 = 𝑣 = 𝑤 = డ௩డ௫ = డ௪డ௫ = 0 at 𝑥 = 0. 

– Force boundary conditions: డ௨డ௫ = డమ௩డ௫మ = డమ௪డ௫మ = 0 at 𝑥 = 𝐿. 
It is seen from Eq. (13) that rigid rotation of the hub and the elastic deformation of the slender 

rod are coupled with each other. This is referred to the rigid-flexible coupling effect, which leads 
to the strong nonlinearity of the system. In the rest of the present study, the axial motion of the 
rod is neglected since it is not coupled with the radial motion 𝑣 and tangential motion 𝑤 of the rod 
and the rotation of the hub. 

Then, a Dirac’s delta function is applied to take into account a movable concentrated mass on 
the rod, as follows: 𝜌∗(𝑥) = 𝜌𝐴 + 𝑚𝛿(𝑥 − 𝑏), (14)

where 𝑏 is the distance from the mass to the root of the rod. The values of the Dirac’s delta 
function are given by: 𝛿(𝜒) = ൜1, 𝜒 = 0,0, 𝜒 ≠ 0. (15)

Using 𝜌∗(𝑥) instead of 𝜌𝐴, one can rewrite the Eqs. 13(a), 13(c) and 13(d), as: 

𝐽ு𝜃ሷ + න ൛ሾ𝐽ଵ∗ + 𝜌∗(𝑟ଶ + 2𝑟𝑣 + 𝑣ଶ + 𝑤ଶ)ሿ𝜃ሷ + 2𝜌∗(𝑟𝑣ሶ + 𝑣𝑣ሶ + 𝑤𝑤ሶ )𝜃ሶൟ 𝑑𝑥
        = න 𝜌∗(𝑟𝑤ሷ + 𝑣𝑤ሷ + 𝑤𝑣ሷ) 𝑑𝑥
 + 𝐸௧ , (16a)

𝜌∗൫𝑣ሷ − 2𝜃ሶ𝑤ሶ − 𝜃ሶ ଶ𝑣 − 𝜃ሷ𝑤൯ + 𝜕ଶ𝜕𝑥ଶ ቆ𝐸𝐼௭ 𝜕ଶ𝑣𝜕𝑥ଶቇ = 𝜌∗𝜃ሶ ଶ𝑟, (16b)𝜌∗൫𝑤ሷ + 2𝜃ሶ𝑣ሶ − 𝜃ሶ ଶ𝑤 + 𝜃ሷ𝑣൯ + 𝜕ଶ𝜕𝑥ଶ ቆ𝐸𝐼௬ 𝜕ଶ𝑤𝜕𝑥ଶቇ = −𝜌∗𝜃ሷ𝑟. (16c)

The terms of 2𝜌∗𝜃ሶ𝑤ሶ  and 2𝜌∗𝜃ሶ𝑣ሶ  in Eqs. (16b) and (16c) represent the Coriolis effect of the 
rotating rod. The centrifugal stiffening effect of the rotating rod is reflected by the terms of 𝜌∗𝜃ሶ ଶ𝑣 
and 𝜌∗𝜃ሶ ଶ𝑤. The terms of 𝜌∗𝜃ሷ𝑤 and 𝜌∗𝜃ሷ𝑣 represent the tangential effect. The terms of 𝜌∗𝜃ሶ ଶ𝑟 and −𝜌∗𝜃ሷ𝑟  in right hand of the Eqs. (16b) and (16c) are, respectively, the centrifugal force and 
tangential force. Obviously, both centrifugal and tangential forces depend on the rotation of the 
hub and the initial eccentricity of the rod (i.e. 𝑟). 

The Galerkin method is employed to solve the Eq. (16) numerically, hence the deformations 
of 𝑣 and 𝑤 are approximately given by: 

𝑣(𝑥, 𝑡) = 𝑐(𝑡)𝑉(𝑥)ே
ୀଵ , (17a)

𝑤(𝑥, 𝑡) = 𝑒(𝑡)𝑊(𝑥)ே
ୀଵ , (17b)
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where 𝑁 is the number of terms of the trial functions. 𝑐(𝑡) and 𝑒(𝑡) denote the time-dependent 
generalized coordinates of the radial and tangential deformations, respectively. 𝑉(𝑥) and 𝑊(𝑥) 
are the trial functions satisfying both the natural and essential boundary conditions. In the present 
investigation, the transverse bending mode functions of a stationary cantilever Euler-Bernoulli 
beam are chosen as the trial functions, as: 

𝑉(𝑥) = 𝑊(𝑥) = cos𝜆𝑥 − cosh𝜆𝑥 − cosh𝜆𝐿 + cos𝜆𝐿sin𝜆𝐿 + sinh𝜆𝐿 (sin𝜆𝑥 − sinh𝜆𝑥), (18)

where 𝜆 is 𝑖th root of: cos𝜆𝐿cosh𝜆𝐿 + 1 = 0. (19)

Before applying the Galerkin method to discrete the obtained governing equations, the 
variational equations of motion should be derived by multiplying Eq. (16b) and (16c) by 
corresponding weighting functions for the radial and tangential deformations, as: 

𝑣ො(𝑥, 𝑡) = �̂�(𝑡)𝑉(𝑥)ே
ୀଵ , (20a)

𝑤ෝ(𝑥, 𝑡) = �̂�(𝑡)𝑊(𝑥)ே
ୀଵ , (20b)

where �̂�(𝑡) and �̂�(𝑡) are the arbitrary time-dependent functions. Applying integration by parts to 
Eqs. 16(c) and 16(d) over length 𝐿, the variational equations can be rewritten by: 

𝐽ு𝜃ሷ + න ൛ሾ𝐽ଵ∗ + 𝜌∗(𝑟ଶ + 2𝑟𝑣 + 𝑣ଶ + 𝑤ଶ)ሿ𝜃ሷ + 2𝜌∗(𝑟𝑣ሶ + 𝑣𝑣ሶ + 𝑤𝑤ሶ )𝜃ሶൟ 𝑑𝑥
        = න 𝜌∗(𝑟𝑤ሷ + 𝑣𝑤ሷ + 𝑤𝑣ሷ) 𝑑𝑥
 + 𝐸௧𝑚, (21a)

න ൣ𝜌∗൫𝑣ො𝑣ሷ − 2𝜃ሶ𝑣ො𝑤ሶ − 𝜃ሶ ଶ𝑣ො𝑣 − 𝜃ሷ𝑣ො𝑤൯൧ 𝑑𝑥
 + 𝐸𝐼௭ න 𝜕ଶ𝑣ො𝜕𝑥ଶ 𝜕ଶ𝑣𝜕𝑥ଶ 𝑑𝑥

= න 𝑝௩𝑣ො 𝑑𝑥
 + න 𝜌∗𝜃ሶ ଶ𝑟𝑣ො 𝑑𝑥

 , (21b)

න 𝜌∗൫𝑤ෝ𝑤ሷ + 2𝜃ሶ𝑤ෝ𝑣ሶ − 𝜃ሶ ଶ𝑤ෝ𝑤 + 𝜃ሷ𝑤ෝ𝑣൯ 𝑑𝑥
 + 𝐸𝐼௬ න 𝜕ଶ𝑤ෝ𝜕𝑥ଶ

 𝜕ଶ𝑤𝜕𝑥ଶ  𝑑𝑥= න 𝑝௪𝑤ෝ  𝑑𝑥
 − න 𝜌∗𝜃ሷ𝑟𝑤ෝ  𝑑𝑥

 . (21c)

Within the process of presentation of the numerical results, dimensionless analysis is 
preferable. To this end, the following dimensionless parameters are defined: 

𝜏 = 𝑡ඨ 𝐸𝐼𝜌𝐴𝐿ସ ,      𝜉 = 𝑥𝐿 ,      𝑐̅ = 𝑐𝐿 ,      �̅� = 𝑒𝐿 ,      𝛿 = 𝑟𝐿 ,      𝛼 = 𝑚𝜌𝐴𝐿 ,      𝛽 = 𝑏𝐿,       (22)

𝛾 = 𝜃ሶඨ𝜌𝐴𝐿ସ𝐸𝐼 ,      𝜂ு = 𝐽ு𝜌𝐴𝐿ଷ ,      𝐸ത௧ = 𝐸௧𝐿𝐸𝐼 ,      𝜂ଵ =  𝜌∗(𝑦ଶ + 𝑧ଶ) 𝑑𝐴 𝜌𝐴𝐿ଶ ,       
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�̅�௩ = 𝑝௩𝐿ଷ𝐸𝐼 ,      �̅�௪ = 𝑝௪𝐿ଷ𝐸𝐼 , 
where 𝛿 , 𝛼 , 𝛽 , 𝛾 , 𝐸ത௧  and 𝜂ு  represent the initial eccentricity ratio, concentrated mass ratio, 
concentrated mass location ratio, rotational speed ratio, external torque ratio and rotary inertia of 
the hub, respectively. Moreover, 𝐼 = 𝐼௭ = 𝐼௬ is fixed to be used. 

By using the above dimensionless parameters, the discretized governing equations of motion 
can be written in a dimensionless matrix form: 𝐌𝐪ഥሷ + 𝐂𝐪ഥሶ + 𝐊𝐪ഥ = 𝐟, (23)

where 𝐌, 𝐂 and 𝐊 represent the generalized mass, Coriolis and stiffness matrices, respectively. 𝐟 
and 𝐪ഥ are the generalized force and coordinate arrays, respectively: 

𝐌 = 𝑀ఏఏ 𝐌ఏ௩ 𝐌ఏ௪𝐌௩ఏ 𝐌௩௩ 0𝐌௪ఏ 0 𝐌௪௪൩ ,     𝐂 = 2𝛾 0 0 00 0 𝐂௩௪0 𝐂௪௩ 0 ൩, 
𝐊 = 0 0 00 𝐊௩௩ 00 0 𝐊௪௪൩ ,      𝐟 = 𝑓ఏ𝐟௩𝐟௪൩ ,      𝐪ഥ = 𝜃�̅�𝐞ത൩, 

(24)

in which the elements in the sub-matrices 𝐌థఝ, 𝐂థఝ, 𝐊థఝ and 𝐟థ (𝜑,𝜙 = 𝜃, 𝑣,𝑤) are given by: 

𝑀ఏఏ = 𝜂ு + 𝜂ଵ + 𝛿ଶ(1 + 𝛼) + 2𝛿ቆන 𝑉(𝜉)𝑑𝜉ଵ
 + 𝛼𝑉(𝛽)ቇ 𝑐̅ே

ୀଵ  
      +𝑀௩௩𝑐̅𝑐̅ே

ୀଵ
ே
ୀଵ + 𝑀௪௪�̅��̅�ே

ୀଵ
ே
ୀଵ , 

𝑀ఏ௩ = 𝑀௩ఏ = 𝐶௩௪�̅�ே
ୀଵ ,     𝑀ఏ௪ = 𝑀௪ఏ = 𝐶௪௩𝑐̅ே

ୀଵ + 𝛿 ቆන 𝑊(𝜉)𝑑𝜉ଵ
 + 𝛼𝑊(𝛽)ቇ, 

𝑀௩௩ = න 𝑉(𝜉)𝑉(𝜉)𝑑𝜉ଵ
 + 𝛼𝑉(𝛽)𝑉(𝛽),     𝑀௪௪ = න 𝑊(𝜉)𝑊(𝜉)𝑑𝜉ଵ

 + 𝛼𝑊(𝛽)𝑊(𝛽), 𝐶௩௪ = −න 𝑉(𝜉)𝑊(𝜉)𝑑𝜉ଵ
 − 𝛼𝑉(𝛽)𝑊(𝛽),     𝐶௪௩ = න 𝑊(𝜉)𝑉(𝜉)𝑑𝜉ଵ

 + 𝛼𝑊(𝛽)𝑉(𝛽), 𝐾௩௩ = න 𝑉ᇱᇱ(𝜉)𝑉ᇱᇱ(𝜉)𝑑𝜉ଵ
 − 𝛾ଶ𝑀௩௩,     𝐾௪௪ = න 𝑊ᇱᇱ(𝜉)𝑊ᇱᇱ(𝜉)𝑑𝜉ଵ

 − 𝛾ଶ𝑀௪௪ , 
𝑓ఏ = 𝐸ത௧ − 2𝛾 𝑀௩௩𝑐̅𝑐̅ሶே

ୀଵ
ே
ୀଵ + 𝑀௪௪�̅��̅�ሶே

ୀଵ
ே
ୀଵ + 𝛿൭න 𝑉(𝜉)𝑑𝜉ଵ

 + 𝛼𝑉(𝛽)൱ே
ୀଵ , 

𝑓௩ = න �̅�௩𝑉(𝜉)𝑑𝜉ଵ
 + 𝛾ଶ𝛿 ቆන 𝑉(𝜉)𝑑𝜉ଵ

 + 𝛼𝑉(𝛽)ቇ + 2𝛾𝐶௩௪�̅�ሶே
ୀଵ−ቆන 𝑉ᇱᇱ(𝜉)𝑉ᇱᇱ(𝜉)𝑑𝜉ଵ

 + 𝛾ଶ𝑀௩௩ቇ 𝑐̅ே
ୀଵ , 

(25)

𝑓௪ = න �̅�௪𝑊(𝜉)𝑑𝜉ଵ
 − 2𝛾𝐶௪௩𝑐̅ሶே

ୀଵ −ቆන 𝑊ᇱᇱ(𝜉)𝑊ᇱᇱ(𝜉)𝑑𝜉ଵ
 − 𝛾ଶ𝑀௪௪ቇ �̅�ே

ୀଵ . 
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If the rotation of the hub is prescribed, the influence of the elastic motion of the rod on the 
rotation of the hub can be neglected. Therefore, the dynamic model of the system for an arbitrary 
prescribed rotation can be obtained from Eq. (23), as follows: ቂ𝐌௩௩ 00 𝐌௪௪ቃ �̅�ሷ𝐞തሷ ൨ + 2𝛾 ቂ 0 𝐂௩௪𝐂௪௩ 0 ቃ �̅�ሶ𝐞തሶ ൨ + ቂ𝐊௩௩ 00 𝐊௪௪ቃ ቂ�̅�𝐞തቃ = ቂ𝐟௩𝐟௪ቃ − 𝛾ሶ 𝐌௩ఏ𝐌௪ఏ൨. (26)

In the following study, it is assumed that no external force acts on the rod (i.e., 𝑝௩ = 𝑝௪ = 0). 

3. Dynamic response analysis of system 

3.1. Comparative study 

Before studying the dynamic response properties of the rotary hub-flexible rod-concentrated 
mass system, a comparative study should be presented between the present study and Liu et al. 
[32], in which the mass of the rod was neglected and the concentrated mass is located at the end 
of the rod. In essence, the model developed by Liu et al. [32] was a two-degree-of-freedom model. 
The physical parameters given by Liu et al. [32] are tabulated in Table 1 alongside the mass density 
of the rod. The rotation of the hub is prescribed by 𝜃ሶ = 𝜔 = 𝜛𝑡 15⁄ − (𝜛 2𝜋⁄ )sin(2𝜋𝑡 15⁄ ) in 
the time region of 0 s ≤ 𝑡 ≤ 15 s. Fig. 2 shows the tip motion trajectories of the rod obtained from 
the present study and Liu et al. [32] with 𝜛 = 2 rad/s. As shown in Fig. 2, the discrepancy between 
the results of the present and Liu’s models is very small. This not only proves the correctness of 
the present model, but also illustrates that the mass of the rod in this simulation is negligible. 

 
Fig. 2. Tip motion trajectories of the rotating rod (𝑚 = 0.3 kg, 𝐿 = 0.3 m and 𝜛 = 2 rad/s) 

 
Fig. 3. Tip motion trajectories of the rotating rod (𝑚 = 0.1 kg, 𝐿 = 0.8 m and 𝜛 = 1 rad/s) 

Fig. 3 shows the tip motion trajectories of the rod obtained from the present study and Liu et 
al. [32] with 𝜛 = 1 rad/s. In this calculation, the concentrated mass and the length of the rod are 
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set to 0.1 kg and 0.8 m, respectively, and the other parameters are the same as those in Table 1. It 
can be seen from Fig. 3 that the results of the present model and Liu’s model [32] have great 
differences. This reveals that the effect of the mass of the rod on the exact dynamic analysis cannot 
be neglected. 

Table 1. The physical parameters of the rotating hub-rod-concentrated mass system for comparative study 
Concentrated 

mass 
Rod  

length 
Rod  

diameter 
Young’s 
modulus 

Eccentricity  
of rod 

Mass density  
of rod 𝑚 = 0.3 kg 𝐿 = 0.3 m 𝑑 = 0.003 m 𝐸 = 100 GPa 𝑟 = 0.1 m 𝜌 =7.2×103 kg/m3 

3.2. Dynamic response analysis for a prescribed rotation 

The Eq. (26) is used to determine the elastic deformations of the rod when the rotation of the 
hub is assumed to be known. A prescribed rotating motion of the hub is defined by: 

𝛾 =
⎩⎪⎨
⎪⎧𝛾𝑇 𝜏 − 𝛾2𝜋 sin 2𝜋𝑇 𝜏,                          (0 ≤ 𝜏 ≤ 𝑇),𝛾,                                                       (𝑇 ≤ 𝜏 ≤ 2𝑇),−𝛾𝑇 (𝜏 − 3𝑇) + 𝛾2𝜋 sin 2𝜋𝑇 𝜏,       (2𝑇 ≤ 𝜏 ≤ 3𝑇),0,                                                         (𝜏 ≥ 3𝑇),

 (27)

where 𝛾 denotes the steady-state rotational speed ratio and 𝑇 represents a given dimensionless 
time parameter. Here 𝛾 = 0.2 and 𝑇 = 15 are used in this section. According to Eq. (27), the 
prescribed motion can be divide into four different motion processes. The hub is initially at rest 
and then a spin-up process is performed from 0 to 15. The steady-state rotational speed ratio is 
maintained when 15 ≤ 𝜏 ≤ 30 and the steady-state rotation follows a spin-down process when 
30 ≤ 𝜏 ≤ 45, finally the rotating motion stops after 𝜏 = 45. The variations of the rotational speed 
ratio and the rotational acceleration ratio of the hub are illustrated in Fig. 4. The rotational 
acceleration ratio undergoes two up-down changes in the positive and negative directions during 
0 ≤ 𝜏 ≤ 15 and 30 ≤ 𝜏 ≤ 45, respectively. 

 
Fig. 4. Variations of a) the rotational speed ratio and b) the rotational acceleration ratio of the hub 

Fig. 5 shows the tip motion trajectory of the rod throughout the whole process of the hub 
motion prescribed in Eq. (27) with 𝛼 = 0.1, 𝛽 = 1 and 𝛿 = 0.1. During the spin-up process (i.e., 
0 ≤ 𝜏 ≤ 15), the tip of the rod moves tangentially backwards (𝑤 𝐿⁄  is negative) and radially 
outwards, as shown in Fig. 6(a). The radial deformation gradually increases and the tangential 
deformation increases first and then decreases since the centrifugal force depending on the 
rotational speed ratio increases and the tangential force depending on the rotational acceleration 
ratio undergoes an up-down change. 
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Fig. 5. Tip motion trajectory of the rod for the whole process  

of the hub motion (𝛾 = 0.2, 𝑇 = 15, 𝛼 = 0.1, 𝛽 = 1 and 𝛿 = 0.1) 

 
Fig. 6. Tip motion trajectory of the rod for the four different motion processes (𝛾 = 0.2, 𝑇 = 15, 𝛼 = 0.1, 𝛽 = 1 and 𝛿 = 0.1): a) the spin-up process (0 ≤ 𝜏 ≤ 15), b) the steady-state rotation process  

(15 ≤ 𝜏 ≤ 30), c) the spin-down process (30 ≤ 𝜏 ≤ 45), d) the static process (𝜏 ≥ 45) 

Fig. 6(b) shows the tip motion trajectory of the rod in the steady-state rotation process (i.e., 
15 ≤ 𝜏 ≤ 30). An attractive petal pattern is presented since the oval path of the tip trajectory 
rotates clockwise around a fixed point, which is located in the radial direction. The radial 
deformation is about two orders of magnitude larger than the tangential deformation. This should 
be attributed to the fact that the tangential force vanishes due to the steady-state rotation.  
Therefore, the petal pattern is only affected by Coriolis force. 

In the spin-down process (i.e., 30 ≤ 𝜏 ≤ 45), the tip motion trajectory of the rod is displayed 
in Fig. 6(c). The tip of the rod moves radially inwards and tangentially forwards (𝑤 𝐿⁄  is positive). 
The radial deformation gradually decreases and the tangential deformation first increases and then 
decreases. 

In the final process (i.e., 𝜏 ≥ 45), the hub is at rest so that the motion of the rod is only 
influenced by its own elastic restoring force. A steady-state tip elliptical motion trajectory of the 
rod is depicted in Fig. 6(d). This is a typical two-dimensional steady-state oscillation phase 
diagram. 
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Fig. 7. Effects of parameters on the tip motion trajectory of the rod: a) effect of concentrated mass ratio,  

b) effect of concentrated mass location ratio, c) effect of initial eccentricity ratio 

Figs. 7(a), 7(b) and 7(c) show the effects of concentrated mass, concentrated mass location and 
initial eccentricity ratios on the tip motion trajectories of the rod, respectively. As shown in Fig. 7, 
both the radial and tangential deformations increase as the concentrated mass, concentrated mass 
location and initial eccentricity ratios increase due to the increase of the centrifugal force and the 
tangential force. 

3.3. Dynamic response analysis for an arbitrary external torque acting on the hub 

For the case of an arbitrary external torque acting on the hub, the rotation of the hub is unknown 
and should be solved. Evidently, the rigid rotation of the hub can lead to the elastic deformation 
of the rod, and the elastic deformation of the rod will also affect the rigid rotation of the hub. The 
Eq. (23) is used to determine the elastic deformations of the rod and the rigid rotation of the hub. 
The following external torque is assumed to act on the hub: 

𝐸ത௧ = ൝𝐸ത௧ sin ൬2𝜋𝜏𝑇 ൰ ,       0 ≤ 𝜏 ≤ 𝑇,0,                                𝜏 ≥ 𝑇,  (28)

where 𝐸ത௧  is a given external torque ratio. Here, 𝐸ത௧ = 1 and 𝑇 = 40 are fixed to be used. 
According to Eq. (28), the external torque is acted on the hub following a sinusoidal law during 
0 ≤ 𝜏 ≤ 40 and the external torque is removed when 𝜏 ≥ 40. A numerical example for a rotating 
hub-flexible circular cross-section rod with a concentrated mass is presented below when 𝛼 = 0.5, 𝛽 = 1, 𝛿 = 0.05, 𝑑 𝐿⁄ = 0.01 and 𝜂ு = 20. 

Figs. 8(a) and 8(b) show the responses of the rotation angle 𝜃 and the rotational speed ratio 𝛾 
of the hub, respectively. As shown in Fig. 8(a), the rotation angle gradually increases when  
0 ≤ 𝜏 ≤ 40  and then fluctuates within a very small range and decreases slightly when  
40 ≤ 𝜏 ≤ 50. The rotational speed ratio of the hub increases when 0 ≤ 𝜏 ≤ 20, then decreases 
when 20 ≤ 𝜏 ≤ 40 and finally oscillates around zero when 40 ≤ 𝜏 ≤ 50. As a matter of fact, both 
the fluctuation of the rotation angle and the oscillation of the rotational speed ratio when  
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40 ≤ 𝜏 ≤ 50 that directly reflect the influences of elastic deformations of the rod on the motion of 
the hub. 

 
Fig. 8. Rotation responses of the hub (𝐸ത𝑡𝑜𝑟0 = 1, 𝑇 = 40, 𝛼 = 0.5, 𝛽 = 1, 𝛿 = 0.05, 𝑑 𝐿⁄ =0.01  

and 𝜂𝐻 = 20): a) the rotation angle, b) the rotational speed ratio 

Figs. 9(a) and 9(b) show the tip motion trajectories of the rod for the whole process (i.e.,  
0 ≤ 𝜏 ≤ 50) and the no external torque process (i.e., 40 ≤ 𝜏 ≤ 50), respectively. As shown in 
Fig. 9(a), when 0 ≤ 𝜏 ≤ 20 , the radial deformation gradually increases and the tangential 
deformation increases first and then decreases to zero. When 20 ≤ 𝜏 ≤ 40, the radial deformation 
gradually decreases and the tangential deformation increases first and then decreases. When  
40 ≤ 𝜏 ≤ 50, a steady-state tip elliptical motion trajectory is depicted in Fig. 9(b). Obviously, the 
rotation of the hub causes the corresponding elastic deformations of the rod. 

 
Fig. 9. Tip motion trajectory of the rod (𝐸ത𝑡𝑜𝑟0 = 1, 𝑇 = 40, 𝛼 = 0.5, 𝛽 = 1, 𝛿 = 0.05, 𝑑 𝐿⁄ = 0.01 and  𝜂𝐻 = 20): a) the whole process (0 ≤ 𝜏 ≤ 50), b) the no external torque process (40 ≤ 𝜏 ≤ 50) 

4. Free vibration analysis for steady-state rotation 

In this section, the hub rotates at a constant rotational speed (i.e., 𝛾ሶ = 0). The free vibration 
properties of the rotating rod with a concentrated mass could be explored by transforming Eq. (26) 
into a state space equation, as follows: 𝐀𝐫ሶ + 𝐁𝐫 = 𝟎, (29)

where: 
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𝐀 = ൦𝐌௩௩ 0 0 00 𝐌௪௪ 0 00 0 𝐈 00 0 0 𝐈 ൪ସே×ସே
,      𝐁 = ൦ 0 2𝛾𝐂௩௪ 𝐊௩௩ 02𝛾𝐂௪௩ 0 0 𝐊௪௪−𝐈 0 0 00 −𝐈 0 0 ൪

ସே×ସே
,       

𝐫 = ൦�̅�ሶ𝐞തሶ�̅�𝐞ത൪ସே×ଵ
, (30)

in which 𝐫 and 𝐈  are the state space vector and an identity matrix, respectively. Substituting  𝐫 = 𝑒ఓఛ𝐑 into Eq. (29) yields: (𝑗𝜇𝐀 + 𝐁)𝐑 = 𝟎, (31)

where 𝜇 and 𝐑 are the eigenfrequency and the eigenvector, respectively. 
Fig. 10 presents the first four non-dimensional natural frequencies of the rotating 

rod-concentrated mass system versus rotational speed ratio with 𝛼 = 0.1 and 𝛽 = 1 alongside the 
results reported by Liu et al. [32]. As shown in Fig. 10, when 𝛾 = 0 (i.e., the hub is at rest), the 
first and second dimensionless natural frequencies are equal to 2.9678, whereas the results of Liu’s 
model are 5.4772. Obviously, the consideration of the mass of the rod reduces the natural 
frequencies of the system. With the increase of the rotational speed ratio, the first and third natural 
frequencies decrease while the second and fourth natural frequencies increase. The dimensionless 
fundamental natural frequency vanishes at 𝛾 = 2.9678, which is called as the buckling speed ratio. 
Evidently, the buckling speed ratio of system is equal to the first dimensionless natural frequency 
of 𝛾 = 0. Furthermore, an interesting relationship between the adjacent dimensionless natural 
frequencies can be obtained as: 𝜇ଶ − 𝜇ଶିଵ = 2𝛾,          (𝑖 = 1,2,3,⋯ ), (32)

where 𝜇ଶ and 𝜇ଶିଵ are the 2𝑖th and (2𝑖 − 1)th non-dimensional natural frequencies of the system 
with the rotational speed ratio 𝛾, respectively. 

 
Fig. 10. The first four dimensionless natural frequencies of the rotating rod-concentrated  

mass system versus rotational speed ratio (𝛼 = 0.1 and 𝛽 = 1) 

The variation of the dimensionless fundamental natural frequency of the rotating 
rod-concentrated mass system versus concentrated mass location 𝛽 is depicted in Fig. 11 with  𝛾 =  0.2 for five values of 𝛼 =  0, 0.1, 0.5, 1.0, 2.0. It is observed from Fig. 11 that the 
dimensionless fundamental natural frequencies decrease as the concentrated mass location ratio 𝛽 
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and/or the concentrated mass ratio 𝛼 increase. 

 
Fig. 11. The variation of the dimensionless fundamental natural frequency of the rotating  

rod-concentrated mass system versus concentrated mass location ratio (𝛾 = 0.2) 

5. Conclusions 

In this study, a comprehensive rigid-flexible coupling dynamic model of a rotating 
hub-flexible rod with a concentrated mass is established to investigate the dynamic characteristics 
of the system. On the basis of the classical beam theory and von Kármán geometric nonlinearity, 
the governing equations of the system are derived by using the Hamilton’s principle. The Galerkin 
method is employed to solve the derived equations numerically. The rigid-flexible coupling effect 
between the rigid rotation of the hub and the flexible deformation of the rod leads to the strong 
nonlinearity of the system. For the case of the prescribed rigid rotation, the dynamic responses of 
the rod are numerically calculated, and the tip motion trajectories of the rod are graphically 
presented. The centrifugal, tangential and Coriolis effects on the tip motion trajectories are 
discussed. The attractive petal pattern for the steady-state rotation and the conventional elliptical 
pattern for the case without rotation are shown. For the case of the external torque acting on the 
hub, a numerical example is presented to illustrate the rigid-flexible coupling effect of the system. 
For the case of steady-state rotation, as the rotational speed ratio increases, the first and third 
dimensionless natural frequencies decrease and the second and fourth ones increase due to the 
Coriolis effect. The dimensionless fundamental natural frequency vanishes at the buckling speed 
ratio. The dimensionless fundamental natural frequency decreases as the concentrated mass 
location ratio and/or the concentrated mass ratio increase. The modeling method and related 
conclusions in this paper can provide theoretical basis for the design, optimization and dynamic 
control of such rotating mechanisms in industrial applications. 
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