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Abstract. In view of the large maneuvering overload of the rotor system in Unmanned Aerial 
Vehicle (UAV), the dynamic characteristics of rotor system under large maneuvering overload 
conditions were analyzed in this paper. The finite element model of rotor system under large 
maneuvering overload was first established by Timoshenko beam element theory and finite 
element method. The motion differential equations of the rotor system were derived by Lagrange 
equation, and the additional damping matrix, stiffness matrix and excitation force were obtained. 
Critical speeds and unbalance response were calculated by characteristic equation method and 
Newmark-β numerical integration method respectively. The calculation results showed that the 
additional damping and stiffness leaded the critical speeds of the rotor system to change under 
large maneuvering flight, and the additional excitation force resulted in a certain static 
displacement of the whirling orbits. 
Keywords: large maneuvering overload, beam element theory, finite element method, critical 
speed, unbalance response. 

1. Introduction 

The maneuvering overload of mainstream fighters is generally less than 9 g because of the 
pilot's tolerance ability. With the continuous improvement of technology, the UAV appears 
frequently in modern local wars, mainly be responsible for tasks such as intelligence 
reconnaissance, military strikes, information confrontation, communication relay and logistics 
support, and its role is becoming more and more significant [1]. Compared with the traditional 
fighters, the UAV does not need to consider the tolerance ability limit of the human body. 

In order to improve the maneuverability greatly, the maneuvering overload of the UAV will 
far surpass 9 g in the future, and higher requirements are needed for the rotor system in the UAV’s 
engine than in traditional fighters, therefore, it is necessary to study the dynamic characteristics of 
the rotor system under large overload conditions (10 g-30 g). 

A lot of research has been done on dynamic characteristics of rotor system under maneuvering 
flight by many scholars. Studies showed that maneuvering will add an additional load on the rotor 
system. As the overload increases, the effect will become more pronounced, and the dynamic 
characteristics of the rotor system will change [2]. 

The differential equations of motion under arbitrary maneuvering conditions were derived 
making use of Lagrange equation, beam element theory and finite element method for the rotor 
system, and the equations were calculated by characteristic equation method and numerical 
Newmark-𝛽 integration method. Then the dynamic characteristics of rotor system were analyzed 
in this paper. 

2. Mathematical model 

According to the small deformation hypothesis, the bending deformation of the rotor is 
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generally much smaller than the span of the rotor. Under the circumstances, the differential 
equations of motion of the rotor system can be modeled by the finite element method and 
Timoshenko beam theory which can take advantage of shear deformation and moment of inertia. 

The equation of motion of the rotor system is expressed by Eq. (1) when the maneuvering 
overload is not considered: 𝑀𝑢ሷ + ሺ𝐶 + Ω𝐺ሻ𝑢ሶ + 𝐾𝑢 = 𝐹௨ + 𝑄, (1)

where 𝑢 represents the displacements of generalized degrees of freedom, 𝑀 represents the inertia 
matrix of rotor system, 𝐶 represents the damping matrix, 𝐺 represents the gyroscopic matrix, 𝐾 
represents the stiffness matrix, Ω represents the speeds of rotor, 𝐹௨  and 𝑄 represent unbalance 
force and external incentives on rotor system respectively. 

The coordinate system is established to describe the motion of the rotor system considering 
the maneuvering overload, as shown in Fig. 1, where 𝑂𝑋𝑌𝑍 represents fixed coordinate system 
on the ground, 𝑜𝑥𝑦𝑧 represents static coordinate system of rotor, and 𝑜𝜉𝜁𝜂 represents rotating 
coordinate system of the disk. 

 
Fig. 1. Coordinate of the rotor system 

According to the literatures [3, 4], the differential equation of motion of a disk under arbitrary 
maneuvering flight condition can be obtained by using the Lagrange equation: 𝑀ௗ𝑞ሷௗ + ሺ𝐶ௗ + Ω𝐺ௗ + 𝐶ௗሻ𝑞ሶௗ + ሺ𝐾ௗ + 𝐾ௗሻ𝑞ௗ = 𝐹௨ + 𝐹ௗ + 𝑄ௗ, (2)

where 𝑞ௗ is the displacements of generalized degrees of freedom for the disk, 𝑀ௗ, 𝐶ௗ, 𝐺ௗ and  𝐾ௗ 
represent the mass, damping, gyroscopic and stiffness matrix of the disk respectively. 𝑄ௗ is the 
external incentives on disk, 𝐶ௗ, 𝐾ௗ, and 𝐹ௗ represent the additional damping matrix, stiffness 
matrix, and excitation force, the expressions are as follows: 

𝐶ௗ = ൦ 0 −2𝑚𝑊 0 02𝑚𝑊 0 0 00 0 0 00 0 0 0൪, (3)

𝐾ௗ = ⎣⎢⎢
⎡ −𝑚ሺ𝑊ଶ + 𝑊ଶ ሻ 𝑚൫𝑊𝑊 − 𝑊ሶ ൯ 0 0𝑚൫𝑊𝑊 + 𝑊ሶ ൯ −𝑚ሺ𝑊ଶ + 𝑊ଶ ሻ 0 00 0 0 00 0 0 0⎦⎥⎥

⎤, (4)

𝐹ௗ = ⎣⎢⎢
⎢⎡−𝑚൫𝑋ሷ − 𝑊𝑌ሶ + 𝑊𝑍ሶ൯ − 𝑚𝑧൫𝑊𝑊 + 𝑊ሶ ൯−𝑚൫𝑌ሷ − 𝑊𝑋ሶ + 𝑊𝑍ሶ൯ − 𝑚𝑧൫𝑊𝑊 + 𝑊ሶ ൯−𝐼Ω𝑊 − 𝐼ௗ𝑊ሶ 𝐼Ω𝑊 − 𝐼ௗ𝑊ሶ  ⎦⎥⎥

⎥⎤, (5)

where 𝑚 represents the mass of the disk, 𝑋, 𝑌, 𝑍 represent the displacements of the aircraft 
along the axes of 𝑋, 𝑌, 𝑍, 𝑊, 𝑊, 𝑊 represent the angular velocity of the aircraft along the 
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axes of 𝑋, 𝑌, 𝑍, and 𝑧 represents the distance of disk and the origin of the coordinate system 𝑜𝑥𝑦𝑧, 𝐼 is the polar moment of inertia, 𝐼ௗ is diameter moment of inertia of the disk. 
In a similar way, the differential equation of motion of the beam element can be obtained by 

Lagrange equation: 𝑀𝑞ሷ + ሺ𝐶 + Ω𝐺 + 𝐶ሻ𝑞ሶ + ሺ𝐾 + 𝐾ሻ𝑞 = 𝐹 + 𝑄, (6)

where, 𝑞 is the displacements of generalized degrees of freedom for the beam element, 𝑀, 𝐶, 𝐺  and 𝐾  are the mass, damping, gyroscopic and stiffness matrix of the beam element 
respectively, and 𝑄 is the external incentives on the beam element. 𝐶, 𝐾, and 𝐹 represent 
the additional damping matrix, stiffness matrix and excitation force respectively. 𝑀, 𝐺, 𝐶, 𝐾 and 𝐹 can be expressed by the physical parameters, shape functions of the 
beam element and the parameters of maneuvering flight of the aircraft in matrix form, here, the 
formulas are omitted due to space limitations. 

Now the differential equations of motion of the disk and the beam element have been 
established, and the differential equation of motion of the whole rotor system can be obtained by 
assembling the motion equations of each shaft segment and disk: 𝑀𝑞ሷ + ሺ𝐶 + Ω𝐺 + 𝐶ሻ𝑞ሶ + ሺ𝐾 + 𝐾ሻ𝑞 = 𝐹௨ + 𝐹 + 𝑄, (7)

where, 𝑞 is the displacements of generalized degrees of freedom for the rotor system, 𝑀, 𝐶, 𝐺 and 𝐾 are the mass, damping, gyroscopic and stiffness matrix of the rotor system respectively, and 𝑄 
is the external incentives on the rotor. 𝐶, 𝐾, and 𝐹 represent the additional damping matrix, 
stiffness matrix and excitation force respectively. 

3. Calculation model 

Calculation model is showed in Fig. 2, the rotor system consists of two supporting and three 
disks, two of which are simple support disks, and the other one is a cantilever disk. The material 
of the shaft is 40Cr, and the material of disks is 45 steel, the main dimensions of the rotor are 
showed in Fig. 3, and other relevant data are showed in Table 1 and Table 2. 

 
Fig. 2. The Calculation rotor model 

 
Fig. 3. The main sizes of rotor 

Table 1. Stiffness of bearing (N/m) 
 Bearing1 Bearing 2 

Stiffness 1×106 1×106 
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Table 2. Parameters of disks 
 Disk 1 Disk 2 Disk 3 

Quality/kg 0.5344 0.5272 0.5272 
Polar moment of inertia / kg·m2 0.0004 0.0004 0.0004 
Unbalance amount / 10-5 kg·m 0.635 0.635 0.635 

Table 3. Parameters of maneuvering flight 
 Horizontal turn Horizontal rolling 

Turning and rolling radius (m) 3 3 
Angular velocity (rad/s) 9.9 9.9 

maneuvering overload (m/s2) 294 294 

Taking maneuvering overload as 30 g as an example to analyze the influence of large 
maneuvering overload on the dynamic characteristics of rotor system，the parameters under 
different maneuvering flight are showed in Table 3. 

4. Results and discussions 

4.1. Critical speeds calculation 

The critical speeds of the rotor system can be calculated by the characteristic equation method 
[5] when Eq. (1) and Eq. (7) are converted to homogeneous equations. The first three orders 
critical speeds of the rotor regardless of maneuvering conditions are showed in Table 4. The 
calculation results of the critical speeds under maneuvering conditions are showed in Table 5. 

According to the equation of motion of the rotor system under large overload conditions, 
maneuvering will provide additional stiffness, damping, excitation on the rotor system, the 
additional stiffness is very small compared with the inherent stiffness of the system. The additional 
damping directly relates the maneuvering flight of horizontal rolling. When the rolling angular 
velocity is sufficiently large, the additional damping can reach the magnitude of the rotor system’s 
inherent damping. 

Therefore, when the aircraft makes a horizontal turn action, only a small additional stiffness is 
generated, and the critical speeds vary small, which can be neglected. While the aircraft performs 
the horizontal rolling motion, additional damping is generated which can cause a larger changes 
of the critical speeds. For the calculation model in this paper, the additional damping has the 
greatest impact on the first-order critical speed, which varies by about 2.45 % compared with the 
condition when the maneuvering overload is not considered. 

Table 4. The first three critical speeds regardless of maneuvering conditions 
Order Critical speed (rpm) 

First order 4040 
Second order 6566 
Third order 15319 

Table 5. Effect of maneuvering flight on critical speed 
Maneuver Order Critical speed (rpm) Contrast with straight flight (%) 

Horizontal turn (30 g) 
First order 4039 0.025 

Second order 6566 0 
Third order 15319 0 

Horizontal rolling (30 g) 
First order 3941 2.45 

Second order 6542 0.37 
Third order 15223 0.63 
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4.2. Unbalanced response analysis: 

The steady response of the rotor system was solved by the Newmark-𝛽 numerical integration 
method. The response results are plotted as three-dimensional spectrums, as shown in Fig. 4 to 
Fig. 6. 

 
a) Disk 1 along 𝑥-axis 

 
b) Disk 1 along 𝑦-axis 

 
c) Disk 3 along 𝑥-axis 

 
d) Disk 3 along 𝑦-axis 

Fig. 4. Three-dimensional spectrogram regardless of maneuvering conditions 

 
a) Disk 1 along 𝑥-axis 

 
b) Disk 1 along 𝑦-axis 

 
c) Disk 3 along 𝑥-axis 

 
d) Disk 3 along 𝑦-axis 

Fig. 5. Three-dimensional spectrogram of horizontal turning 

 
a) Disk 1 along 𝑥-axis 

 
b) Disk 1 along 𝑦-axis 

 
c) Disk 3 along 𝑥-axis 

 
d) Disk 3 along 𝑦-axis 

Fig. 6. Three-dimensional spectrogram of horizontal rolling 

 
a) Disk 1 460 rad/s 

 
b) Disk 3 640 rad/s 

Fig. 7. Comparison of orbit in various maneuvering actions 

According to the three-dimensional spectrogram, the additional centrifugal force and 
gyroscopic moment cause the rotor to generate a zero-frequency displacement component. When 
the aircraft makes horizontal turn action, the critical speeds change slightly, which can be 
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neglected. When the aircraft performs the horizontal rolling, the critical speeds make a certain 
change, and this verifies the previous conclusion. 

Due to the additional centrifugal force and gyroscopic moment generated by the maneuvering 
flight action, the whirling orbit of the rotor has made a certain static displacement, the comparing 
whirling orbits in each case are showed in Fig. 7. The horizontal turn action generates a static 
displacement along both 𝑥 and 𝑦 directions, while the horizontal rolling action generates a static 
displacement along x direction. In addition, the horizontal rolling action causes a variation of the 
critical speeds, which can be seen from the variation of the whirling radius. 

5. Conclusions 

The motion differential equations of the rotor system under arbitrary maneuvering conditions 
were first derived by beam element theory, finite element method and Lagrange equation, and the 
critical speeds and unbalance response were calculated by characteristic equation method and 
Newmark-𝛽 numerical integration method in this paper. The simulation results showed that the 
maneuvering flight of the aircraft will have an important impact on the dynamic characteristics of 
the rotor system. Additional damping and stiffness generated under large maneuvering overload 
will change the critical speeds of the rotor system. The additional damping makes a greater 
influence than the additional stiffness on critical speeds. In addition, the maneuvering flight will 
generate additional excitation force on the rotor system, including centrifugal force and gyroscopic 
moment. The additional excitation force will cause a certain static displacement of the whirling 
orbits, which will increase the risk of rub between the rotor and the stator. Therefore, the design 
of clearance between rotor and stator in aero-engine under maneuvering flight conditions need to 
be focused.  
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