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Abstract. In this paper, we introduce a new concept of W-nonexpansive mappings and obtain 
fixed point theorems for nonexpansive mappings for non-convex set. Our results resolve fixed 
pointed problem that nonexpansive mappings be not on closed convex set, and it extends fixed 
point theorems for nonexpansive mappings. 
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1. Introduction and preliminaries 

Fixed point theory is widely applied in engineering. Browder (1965) [1], Kirk (1965) [2] 
obtained fixed points theorem for nonexpansive mapping. Non-expansion fixed point theory has 
made great progress, large number of results are obtained by authors (e.g. See [3-11]). let’s come 
up with some definitions. 

Definition 1.1 Let 𝑋 be a nonempty set, the function 𝑊: 𝑋 ൈ 𝑋 → ሾ0, ∞) is called triangular 
if for all 𝑥,  𝑦 ∈ 𝑋,  if 𝑊(𝑥, 𝑦) ≥ 1,  𝑊(𝑦, 𝑧) ≥ 1  or 𝑊(𝑦, 𝑥) ≥ 1,  𝑊(𝑦, 𝑧) ≥ 1,  then  𝑊(𝑥, 𝑧) ≥ 1.  

Definition 1.2 Let (𝑋, 𝑑) be a metric space and 𝑇: 𝑋 → 𝑋 be a given mapping, if there exists 
a function 𝑊: 𝑋 ൈ 𝑋 → ሾ0, ∞) such that 𝑊(𝑥, 𝑦)𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑑(𝑥, 𝑦), ∀𝑥, 𝑦 ∈ 𝑋 , then we say 
that 𝑇 is a 𝑊-nonexpansive mapping.  

Clearly, any nonexpansive mapping is a 𝑊-nonexpansive mapping with 𝑊(𝑥, 𝑦) = 1 for all 𝑥, 𝑦 ∈ 𝑋. 
Definition 1.3 Let 𝑇: 𝑋 → 𝑋 be a mapping and 𝑊: 𝑋 ൈ 𝑋 → ሾ0, ∞) be a function. We say that 𝑇 is a 𝑊-admissible if 𝑊(𝑥, 𝑦) ≥ 1 ⇒ 𝑊(𝑇𝑥, 𝑇𝑦) ≥ 1, ∀𝑥, 𝑦 ∈ 𝑋. 
Definition 1.4 [4] Let 𝐻 be a Hilbert space, 𝑇: 𝐻 → 𝐻 is called demicompact if whenever {𝑥} ⊂ 𝐻  is bounded and {𝑇𝑥 − 𝑇𝑥}  strongly convergent, then there exists a subsequence {𝑥} of {𝑥} which is strongly convergent.  
Next our main results are presented. 

2. Main results 

Theorem 2.1 Let 𝐸 be a bounded closed convex subset of a Hilbert space 𝐻, 𝑊: 𝐸 ൈ 𝐸 →ሾ0, ∞) is triangular function, 𝑇: 𝐸 → 𝐸 is a 𝑊-nonexpansive mapping and it is 𝑊-admissible. If 
the following conditions are satisfied: 

(w1) there exists 𝑥 ∈ 𝐸 such that 𝑊(𝑥, 𝑇𝑥) ≥ 1; 
(w2) there exists a sequence {𝑠} ⊆ ሾ0,1) with 𝑙𝑖𝑚→ஶ𝑠 = 1 such that for all 𝑥, 𝑦 ∈ 𝐸 , if 𝑊(𝑥, 𝑦) ≥ 1, then 𝑊(𝑥, (1 − 𝑠)𝑥 + 𝑠𝑦) ≥ 1, ∀𝑠 ∈ {𝑠}; 
(w3) if {𝑥} ⊆ 𝐸  is satisfied 𝑊(𝑥, 𝑥) ≥ 1,  moreover 𝑥 → 𝑥∗  or 𝑥 → 𝑥∗ ∈ 𝐸,  then 𝑊(𝑥, 𝑥 ∗) ≥ 1. 
Then 𝑇 has a fixed point.  
Proof. Let 𝑥 ∈ 𝑋  such that 𝛼(𝑥, 𝑇𝑥) ≥ 1 . Take 𝑥ାଵ = (1 − 𝑠)𝑥 + 𝑠𝑇𝑥  for all 𝑗 ,  𝑛 ∈ 𝑁, there 𝑥 = 𝑥. Now we fix 𝑗, for each 𝑗 ∈ 𝑁, from (w2), we may obtain 𝑊(𝑥, 𝑥ଵ) ≥ 1. 
Also, for 𝑇  is 𝑊 -admissible, then 𝑊(𝑇𝑥, 𝑇𝑥ଵ) ≥ 1  is obtained. According to 𝑊  is a 
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triangular function and (w1), then 𝑊(𝑥, 𝑇𝑥ଵ) ≥ 1. 
Once again use (w2), then 𝑊(𝑥, 𝑥ଶ) ≥ 1 is also obtained. Continuously, we easily obtain: 𝑊൫𝑥, 𝑥൯ ≥ 1,    ∀𝑛 ∈ 𝑁. (1)

Based on that 𝑊 is triangular, we may get: 𝑊൫𝑥, 𝑥൯ ≥ 1,   ∀𝑛, 𝑚 ∈ 𝑁, 𝑛 < 𝑚. (2)

So from Eq. (2) and for 𝑇 is 𝑊-nonexpansive, we have: ฮ𝑥 − 𝑥ฮ = 𝑠ฮ𝑇𝑥ିଵ − 𝑇𝑥ିଵฮ ≤ 𝑠𝑊(𝑥ିଵ, 𝑥ିଵ)ฮ𝑇𝑥ିଵ − 𝑇𝑥ିଵฮ      ≤ 𝑠ฮ𝑥ିଵ − 𝑥ିଵฮ. . . ≤ 𝑠ฮ𝑥 − 𝑥ିฮ. (3)

Let 𝑛 → ∞, for 𝐸 is bounded we may get ฮ𝑥 − 𝑥ฮ → 0, hence {𝑥} is Cauchy sequence, 
it means there exists 𝑥∗ ∈ 𝐸 such that {𝑥} convergent to 𝑥∗, that is: lim→ஶฮ𝑥 − 𝑥∗ฮ = 0. (4)

Also, from Eq. (1) and (w3), we have: 𝑊൫𝑥, 𝑥∗൯ ≥ 1. (5)

Once again by Eq. (1), for 𝑊 is triangular, so we have: 𝑊൫𝑥, 𝑥∗൯ ≥ 1. (6)

Since 𝐸 is bounded, closed and convex in Hilbert 𝐻, then it is weakly compact. Hence there 
exists a 𝑥∗ ∈ 𝐸 such that: 𝑥∗ → 𝑥∗,    (𝑗 → ∞). (7)

From Eqs. (6, 7), applying (w3) we have: 𝑊(𝑥∗, 𝑥∗) ≥ 1. (8)

Next, we show that 𝑥∗ = (1 − 𝑠)𝑥 + 𝑠𝑇𝑥∗. 
Indeed, according to 𝑥 = (1 − 𝑠)𝑥 + 𝑠𝑇𝑥ିଵ , 𝑇  is 𝑊 -nonexpiansive and Eq. (5), we 

have: ቛ𝑥∗ − ቀ൫1 − 𝑠൯𝑥 + 𝑠𝑇𝑥∗ቁቛ = ቛ𝑥∗ − 𝑥 + 𝑥 − ቀ൫1 − 𝑠൯𝑥 + 𝑠𝑇𝑥∗ቁቛ     = ฮ𝑥 − 𝑥∗ฮ + 𝑠ฮ𝑇𝑥ିଵ − 𝑇𝑥∗ฮ ≤ ฮ𝑥 − 𝑥∗ฮ + 𝑠𝑊൫𝑥, 𝑥∗൯ฮ𝑇𝑥ିଵ − 𝑇𝑥∗ฮ     ≤ ฮ𝑥 − 𝑥∗ฮ + 𝑠ฮ𝑥ିଵ − 𝑥∗ฮ. (9)

Let 𝑛 → ∞ in Eq. (9), utilize Eq. (4) we obtain ฮ𝑥∗ − ൣ൫1 − 𝑠൯𝑥 + 𝑠𝑇𝑥∗൧ฮ → 0, it implies 
that 𝑥∗ = (1 − 𝑠)𝑥 + 𝑠𝑇𝑥∗. 

Finally, we show that 𝑥∗ is a fixed point of 𝑇. If 𝑦 is any arbitrary point in 𝐻, we have: ฮ𝑥∗ − 𝑦ฮଶ = ฮ൫𝑥∗ − 𝑥∗൯ + (𝑥∗ − 𝑦)ฮଶ = ฮ𝑥∗ − 𝑥∗ฮଶ + ‖𝑥∗ − 𝑦‖ଶ + 2〈𝑥∗ − 𝑥∗, 𝑥∗ − 𝑦〉. (10)
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Since 𝑥∗ → 𝑥∗, then 2〈𝑥∗ − 𝑥∗, 𝑥∗ − 𝑦〉 → 0, (𝑗 → ∞). 
So, based on the above inequality and Eq. (10), we get: lim→ஶ ቀฮ𝑥∗ − 𝑦ฮଶ − ฮ𝑥∗ − 𝑥∗ฮଶቁ = ‖𝑥∗ − 𝑦‖ଶ. (11)

Setting 𝑦 = 𝑇𝑥∗ in Eq. (11), we have: lim→ஶ ቀฮ𝑥∗ − 𝑇𝑥∗ฮଶ − ฮ𝑥∗ − 𝑥∗ฮଶቁ = ‖𝑥∗ − 𝑇𝑥∗‖ଶ. (12)

Moreover, since 𝑥∗ = (1 − 𝑠)𝑥 + 𝑠𝑇𝑥∗, then: ฮ𝑇𝑥∗ − 𝑥∗ฮ = ฮ𝑇𝑥∗ − (1 − 𝑠)𝑥 − 𝑠𝑇𝑥∗ฮ = (1 − 𝑠)ฮ𝑇𝑥∗ − 𝑥ฮ. (13)

So, in Eq. (13) as 𝑗 → ∞, for lim→ஶ𝑠 = 1 we have: ฮ𝑇𝑥∗ − 𝑥∗ฮ → 0. (14)

On the other hand, from Eq. (8) and since 𝑇 is 𝑊-nonexpansive mapping, we have: ฮ𝑇𝑥∗ − 𝑇𝑥∗ฮ ≤ 𝑊(𝑥∗, 𝑥∗)ฮ𝑇𝑥∗ − 𝑇𝑥∗ฮ ≤ ฮ𝑥∗ − 𝑥∗ฮ. 
Thus: ฮ𝑥∗ − 𝑇𝑥∗ฮ ≤ ฮ𝑥∗ − 𝑇𝑥∗ฮ + ฮ𝑇𝑥∗ − 𝑇𝑥∗ฮ ≤ ฮ𝑥∗ − 𝑇𝑥∗ฮ + ฮ𝑥∗ − 𝑥∗ฮ, (15)

in turn: ฮ𝑥∗ − 𝑇𝑥∗ฮ − ฮ𝑥∗ − 𝑥∗ฮ ≤ ฮ𝑥∗ − 𝑇𝑥∗ฮ. (16)

Hence by Eq. (14), we have: lim→ஶ൫ฮ𝑥∗ − 𝑇𝑥∗ฮ − ฮ𝑥∗ − 𝑥∗ฮ൯ ≤ lim→ஶฮ𝑥∗ − 𝑇𝑥∗ฮ = 0. (17)

And, due to 𝐸 is bounded, we have also: lim→ஶ ቀฮ𝑥∗ − 𝑇𝑥∗ฮଶ − ฮ𝑥∗ − 𝑥∗ฮଶቁ      = lim→ஶ൫ฮ𝑥∗ − 𝑇𝑥∗ฮ − ฮ𝑥∗ − 𝑥∗ฮ൯൫ฮ𝑥∗ − 𝑇𝑥∗ฮ + ฮ𝑥∗ − 𝑥∗ฮ൯ ≤ 0. (18)

So, by Eq. (12), we get ‖𝑥∗ − 𝑇𝑥∗‖ଶ = 0, that is, 𝑥∗ is fixed point of 𝑇. 
Now, we provide a method for computation of that fixed point 𝑥∗. 
Theorem 2.2 Suppose all conditions of the Theorem 2.1 are satisfied. Then the Krasnoselskij 

iteration {𝑥}ஶ given by: 𝑥ାଵ = (1 − 𝑠)𝑥 + 𝑠𝑇𝑥,    𝑠 ∈ {𝑠}∈ே,    𝑛 = 0,1,2, …, (19)

converges to a fixed point of 𝑇.  
Proof. Take the same 𝑥 ∈ 𝐸 as Theorem 2.1, and such that 𝑊(𝑥, 𝑇𝑥) ≥ 1. From (w2) we 

get: 
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𝑊(𝑥, (1 − 𝑠)𝑥 + 𝑠𝑇𝑥) = 𝑊(𝑥, 𝑥ଵ) ≥ 1. (20)

For 𝑊 is triangular, so: 𝑊(𝑇𝑥, 𝑥ଵ) ≥ 1. (21)

Since 𝑇 is a 𝑊-admissible, from Eq. (20) we have: 𝑊(𝑇𝑥, 𝑇𝑥ଵ) ≥ 1. (22)

Once again for 𝑊 is triangular, by Eqs. (21) and (22) we have 𝑊(𝑥ଵ, 𝑇𝑥ଵ) ≥ 1. 
Also, from (w2) we have 𝑊(𝑥ଵ, (1 − 𝑠)𝑥ଵ + 𝑠𝑇𝑥ଵ) = 𝑊(𝑥ଵ, 𝑥ଶ) ≥ 1. 
Continuously, we can obtain: 𝑊(𝑥, 𝑥) ≥ 1,   ∀𝑛, 𝑚 ∈ 𝑁,    𝑛 < 𝑚. (23)

Hence: 𝑊(𝑥, 𝑥) ≥ 1. (24)

Also form Theorem 2.1, we know that 𝑥∗ is fixed point of 𝑇, and Based on all conditions of 
Theorem 2.1 are satisfied in Theorem 2.2, similarly we have: 𝑊൫𝑥, 𝑥∗൯ ≥ 1, (25)𝑊൫𝑥∗, 𝑥∗൯ ≥ 1. (26)

From Eqs. (25) and (26), for 𝑊 is triangular, then: 𝑊(𝑥, 𝑥∗) ≥ 1. (27)

Also, by Eqs. (24) and (27), use 𝑊 is triangular, we get: 𝑊(𝑥, 𝑥∗) ≥ 1. (28)

Based on Eq. (28), since 𝑇 is 𝑊-nonexpansive mapping, then we have: ‖𝑇𝑥 − 𝑇𝑥∗‖ ≤ 𝑊(𝑥, 𝑥∗)‖𝑇𝑥 − 𝑇𝑥∗‖ ≤ ‖𝑥 − 𝑥∗‖. (29)

So: ‖𝑥ାଵ − 𝑥∗‖ = ‖(1 − 𝑠)(𝑥 − 𝑥∗) + 𝑠(𝑇𝑥 − 𝑇𝑥∗)‖       ≤ (1 − 𝑠)‖(𝑥 − 𝑥∗)‖ + 𝑠‖𝑇𝑥 − 𝑇𝑥∗‖       ≤ (1 − 𝑠)‖(𝑥 − 𝑥∗)‖ + 𝑠‖𝑥 − 𝑥∗‖ = ‖(𝑥 − 𝑥∗)‖. (30)

Continuously, we have ‖𝑥ାଵ − 𝑥∗‖ ≤ ‖𝑥 − 𝑥∗‖ , which implies that {‖𝑥ାଵ − 𝑥∗‖}  is 
monotone decrease bounded sequence. So lim→ஶ‖𝑥ାଵ − 𝑥∗‖ exists. 

Next, we prove that ‖𝑥 − 𝑇𝑥‖ → 0: ‖𝑥ାଵ − 𝑥∗‖ଶ = ‖(1 − 𝑠)(𝑥 − 𝑥∗) − 𝑠(𝑇𝑥 − 𝑇𝑥∗)‖ଶ       = (1 − 𝑠)ଶ‖𝑥 − 𝑥∗‖ଶ + 𝑠ଶ‖𝑇𝑥 − 𝑇𝑥∗‖ଶ + 2(1 − 𝑠)𝑠〈𝑥 − 𝑥∗, 𝑇𝑥 − 𝑇𝑥∗〉       ≤ (1 − 𝑠)ଶ‖𝑥 − 𝑥∗‖ଶ + 𝑠ଶ‖𝑥 − 𝑥∗‖ଶ + 2(1 − 𝑠)𝑠〈𝑥 − 𝑥∗, 𝑇𝑥 − 𝑇𝑥∗〉       = ((1 − 𝑠)ଶ + 𝑠ଶ)‖𝑥 − 𝑥∗‖ଶ + 2(1 − 𝑠)𝑠〈𝑥 − 𝑥∗, 𝑇𝑥 − 𝑇𝑥∗〉. (31)
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Also, on the other hand for any constant 𝜆: 𝜆ଶ‖𝑥 − 𝑇𝑥‖ଶ = ‖(𝑥 − 𝑥∗) − (𝑇𝑥 − 𝑇𝑥∗)‖ଶ       = 𝜆ଶ‖𝑥 − 𝑥∗‖ଶ + 𝜆ଶ‖𝑇𝑥 − 𝑇𝑥∗‖ଶ − 2𝜆ଶ〈𝑥 − 𝑥∗, 𝑇𝑥 − 𝑇𝑥∗〉       ≤ 𝜆ଶ‖𝑥 − 𝑥∗‖ଶ + 𝜆ଶ‖𝑥 − 𝑥∗‖ଶ − 2𝜆ଶ〈𝑥 − 𝑥∗, 𝑇𝑥 − 𝑇𝑥∗〉       = 2𝜆ଶ‖𝑥 − 𝑥∗‖ଶ − 2𝜆ଶ〈𝑥 − 𝑥∗, 𝑇𝑥 − 𝑇𝑥∗〉 (32)

Adding Eq. (31) to Eq. (32) and let 𝜆ଶ ≤ (1 − 𝑠)𝑠 , we may obtain: ‖𝑥ାଵ − 𝑥∗‖ଶ + 𝜆ଶ‖𝑥 − 𝑇𝑥‖ଶ ≤ ((1 − 𝑠)ଶ + 𝑠ଶ + 2𝜆ଶ)‖𝑥 − 𝑥∗‖ଶ       +(2(1 − 𝑠)𝑠 − 2𝜆ଶ)〈𝑥 − 𝑥∗, 𝑇𝑥 − 𝑇𝑥∗〉       ≤ ((1 − 𝑠)ଶ + 𝑠ଶ + 2𝜆ଶ + 2(1 − 𝑠)𝑠 − 2𝜆ଶ)‖𝑥 − 𝑥∗‖ଶ = ‖𝑥 − 𝑥∗‖ଶ. (33)

It implies 𝜆ଶ‖𝑥 − 𝑇𝑥‖ଶ ≤ ‖𝑥 − 𝑥∗‖ଶ − ‖𝑥ାଵ − 𝑥∗‖ଶ. 
Since lim→ஶ‖𝑥ାଵ − 𝑥∗‖  exists, in the above inequality let 𝑛 → ∞,  it results  𝜆ଶ‖𝑥 − 𝑇𝑥‖ଶ → 0. 
It means ‖𝑥 − 𝑇𝑥‖ → 0. 
For 𝑇  is demicompact, it results that there exists a strongly convergent subsequence  {𝑥} ⊆ {𝑥}  such that 𝑥 → 𝑥∗ ∈ 𝐹(𝑇) , that is, ฮ𝑥 → 𝑥∗ฮ → 0 . Also {‖𝑥 → 𝑥∗‖}  is 

convergent, it implies that ‖𝑥 → 𝑥∗‖ → 0. Hence that {𝑥} is convergent to 𝑥∗ ∈ 𝐹(𝑇). 
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