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Abstract. In this paper, the method based on Laplace transform and Fourier transform and their 
inverse transforms is developed to give an exact solution to the forced torsional vibration of a shaft 
subjected to multiple inertias, multiple elastic supports, arbitrary boundary conditions and 
arbitrary excitation forces. Two simple cases are used to show in detail how this developed method 
can obtain an exact analytical solution to the forced torsional vibration of shaft and the results are 
compared with Eigenfunction Expansion Method and Finite Element Method (FEM) to 
demonstrate the accuracy and effectiveness of the developed method. Two more complex cases 
are investigated to further show the superiority of the developed method over FEM in highly 
efficient and accurate. Finally, using the developed method, the effects of parameters on forced 
torsional vibration response of shaft are discussed, including the stiffness, the location of elastic 
supports and the time interval of impact loading. The developed method can provide a reliable 
theoretical base not only for analysis and fault diagnosis of a shaft system in engineering signal 
testing projects but also for the verification of other numerical and analytical methods. 
Keywords: analytical solution, forced torsional vibration, integral transformations, arbitrary 
boundary conditions. 

1. Introduction 

A shafting system is an important component in the structures widely used in aviation, 
navigation, machinery, etc. The torsional vibration is a common cause of the failure of the shaft 
system. Hence, studying the characteristics of the torsional vibration of a shaft is important. It can 
not only provide the ideas for the engineering design of the shaft system but also the basis for fault 
diagnosis. Usually, the study is to deal with a forced torsional vibration of a simplified shaft system 
with multiple concentrated inertias and multiple elastic supports. 

There is a lot of published literature available involving in the forced torsional vibration of the 
shaft system. Among them, the energy method and the amplification factor method were the most 
basic and important methods widely used to study torsional vibration [1]. The Holzer method was 
often used for forced torsional vibration as well [2, 3]. With the rapid development of computer 
technology, the system matrix method, the transfer matrix method and FEM have been widely 
used in [4, 5]. Meanwhile, many approximate solutions have also been developed by researchers. 
Based on the a modified Riccati torsional transfer matrix combining with the Newmark-𝛽 method, 
Xiang et al. [6] presented an analytical method of the forced torsional vibrations of a Shafting 
System under Electrical Disturbances. The torsional vibration of an elastic rod with external dry 
friction was solved using approximate methods of expansion in a small parameter and harmonic 
linearization by Koibin [7]. A general analytical solution was developed to study vibration of 
non-uniform Timoshenko beams coupled with flexible attachment and multiple discontinuities 
based on separation of variables in conjunction with the transfer matrix approach by Zhang et al. 
[8]. Ewing and Mirsafian [9] proposed an analytical model consisting of two Euler-Bernoulli 
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beams joined by a torsional spring with linear and cubic stiffness and a method of harmonic 
balance was used to give an approximate solution for the model with pinned-fixed conditions. 
Jiang et al. [10] discussed the forced tensile and torsional response of helical springs caused using 
the Laplace transforms. The nonlinear torsional vibration dynamical modeling of the multi-DOF 
rolling mill’s main drive system is established by Han et al. [11] and the amplitude-frequency 
characteristic equations are obtained by multiscale method. Beytullah et al. [12] investigated the 
dynamic behavior of composite cylindrical helical rods subjected to time-dependent loads in the 
Laplace domain. Bapat and Bhutani [13] have developed a general approach for free and forced 
vibrations of stepped systems governed by the One-Dimensional wave equation with non-classical 
boundary conditions. Wang et al. [14] studied forced torsional vibration of a finite class 622 
piezoelectric hollow cylinder with free-free ends subjected to dynamic shearing stress and time 
dependent electric potential at both internal and external surfaces by means of the superposition 
method and the separation of variables technique. On the basis of lumped parameter model and 
the Lagrange method, the dynamic analysis and multi-object optimization of the forced torsional 
vibration for vehicular multi-stage planetary gears was studied by Liu Hui et al. [15]. Kang and 
Hoon [16] investigated hysterically damped free and forced vibrations of axial and torsional bars 
using a closed form exact method. Rudavskii et al. [17] studied the forced flexural-and-torsional 
vibrations of a cantilever beam of constant cross section. Torsional vibrations of composite bars 
of variable cross-section by BEM are investigated by Sapountzakis [18]. Among the researches, 
the numerical approach is common used to solve the problems of forced torsional vibration. 
Hardly, one can found an actual analytical solution. Yang [19] developed an analytical method 
with a distributed transfer function formulation and a residue formula for inverse Laplace 
transform for transient vibration analysis of stepped systems composed of shafts and strings 
carrying lumped masses. In Ref. [19], the matching conditions are given to describe the 
discontinuity at the locations of lumped mass and elastic supports and to obtain the forced 
vibration response of the equation the natural frequencies needs to be solved first. 

In this paper, a method based on Laplace transform and Fourier transform defined on a 
bounded interval is developed to obtain an exact solution to the forced torsional vibration of a 
shaft with multiple concentrated inertias and elastic supports deal with arbitrary boundary 
conditions and arbitrary excitation forces. Different from Ref. [19], in this study the delta function 
is used to describe the discontinuity at the locations of lumped mass and elastic supports and the 
forced vibration response can be obtained directly. First, the developed method is introduced in 
detail. Then, two examples, a shaft with two different forms of excitation and different boundary 
conditions, are used to show in detail how this developed method can obtain an exact analytical 
solution to the forced torsional vibration of the shaft. The results are compared with the widely 
accepted Eigenfunction Expansion Method and FEM to demonstrate the accuracy and 
effectiveness of the developed method. Furthermore, to further show its superiority over FEM, a 
shaft with a single circular disc under the general excitation force and a shaft with one elastic 
support under the impact loading are studied. To take advantage of the developed method further, 
the influence of different parameters on the torsional forced vibration response of shaft is 
discussed. They include the stiffness, the position of elastic supports and the time interval of the 
impact loading.  

2. Developed method 

2.1. Free vibration equation of a shaft  

The torsional free vibration equation of a shaft with multiple concentrated inertias and elastic 
supports (with arbitrary magnitudes and locations) subjected to arbitrary boundary conditions can 
be obtained from the Hamilton’s principle or from the equation of motion. It is given as follows: 
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𝜌𝐼௣ ∂ଶ𝜃∂𝑡ଶ + ෍ 𝐽௠𝛿൫𝑥 − 𝑥௃೘൯ ∂ଶ𝜃∂𝑡ଶ௛
௠ୀଵ − 𝐺𝐼௣ ∂ଶ𝜃∂𝑥ଶ + ෍𝐾௜𝜃𝛿൫𝑥 − 𝑥௞೔൯௡

௜ୀଵ = 0, (1)

where the 𝑥  axis is along the shaft axis. பమఏப௧మ  and பమఏப௫మ  are the second derivative of 𝜃(𝑥, 𝑡)
 
with 

respect to 𝑥 and 𝑡, respectively. The partial derivative of 𝜃(𝑥, 𝑡) is பఏப௧ . The length and the radius 
of the circular section of the shaft are 𝐿 and 𝑅, respectively. The shear modulus is 𝐺 and the mass 
density is 𝜌. The polar moment of inertia of the cross section is 𝐼௣ = ׬ ׬ 𝑟ଷଶగ଴ோ଴ 𝑑𝜙𝑑𝑟. The shaft is 
composed of ℎ discs and 𝑛 elastic-supports. 𝐽௠ (𝑚 = 1,2,3 ⋅⋅⋅ ℎ) is the moment of inertia with the 
associated 𝑚 -th disc. 𝐾௜ (𝑖 = 1,2,3 ⋅⋅⋅,𝑛)  is the stiffness with associated 𝑖 -th elastic-support.  𝜃 = 𝜃(𝑥, 𝑡), the torsion angle of each section in the Cartesian coordinate system, is a function of 
the generalized coordinate 𝑥 and time 𝑡. It is worth to note that specially, the 𝛿 function is used to 
characterize the existence of a concentrated inertia and/or an elastic support at certain position. 𝛿(𝑥 − 𝑥௃೘) shows 𝑚-th disc existing at the position 𝑥 = 𝑥௃೘  and 𝛿(𝑥 − 𝑥௞೔) shows 𝑖-th spring 
existing at the position 𝑥 = 𝑥௞೔ . In the following section, a method is developed to solve the 
equation of forced torsional vibration. 

2.2. A developed method to solve forced torsional vibration of shaft  

Based on Laplace transform and Fourier transform defined on a bounded interval, a new 
analytical method is developed herein to solve the forced torsional vibration of a shaft as shown 
in Fig. 1. The shaft is treated as a beam which can be subjected to multiple concentrated inertias, 
multiple elastic supports with arbitrary magnitudes and locations and arbitrary boundary 
conditions and excitations. 

 
Fig. 1. A shaft with multiple concentrated inertias and elastic supports under arbitrary excitation 

Based on Eq. (1), the motion equation of forced torsional vibration of a shaft is given by the 
following equation: 

𝜌𝐼௣ ∂ଶ𝜃∂𝑡ଶ + ෍ 𝐽௠𝛿൫𝑥 − 𝑥௃೘൯ ∂ଶ𝜃∂𝑡ଶ௛௠ୀଵ − 𝐺𝐼௣ ∂ଶ𝜃∂𝑥ଶ + ෍ 𝐾௜𝜃𝛿൫𝑥 − 𝑥௞೔൯௡௜ୀଵ = 𝑀(𝑥, 𝑡), (2)

where 𝑀(𝑥, 𝑡) is the applied torque. 
The boundary conditions at fixed ends are given as: 𝜃(0, 𝑡) = 0, (3)𝜃(𝐿, 𝑡) = 0. (4)

The boundary conditions at free ends are given as follows: ∂𝜃∂𝑥ฬ௫ୀ଴ = 0, (5)
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∂𝜃∂𝑥ฬ௫ୀ௅ = 0. (6)

The initial angular displacement and the initial angular velocity are given as follows: 

𝜃(𝑥, 0) = 0,    ∂𝜃∂𝑡ฬ௧ୀ଴ = 0. (7)

Eq. (2) is a second order partial differential equation with the two variables: position 𝑥 and 
time 𝑡.  

To solve Eq. (2), first step is to separate the variables 𝑥 and 𝑡. To begin with, the Laplace 
transform of Eq. (2) with respect to time 𝑡 gives: 

𝜌𝐼௣ ൤𝑠ଶ𝑈(𝑥, 𝑠) − 𝑠𝜃(𝑥, 0) − ∂𝜃∂𝑡ฬ௧ୀ଴൨ − 𝐺𝐼௣ 𝑑ଶ𝑈(𝑥, 𝑠)𝑑𝑥ଶ + ෍ 𝐽௠𝛿൫𝑥 − 𝑥௃೘൯௛௠ୀଵ      ⋅ ൤𝑠ଶ𝑈(𝑥, 𝑠) − 𝑠𝜃(𝑥, 0) − ∂𝜃∂𝑡ฬ௧ୀ଴൨ + ෍ 𝐾௜𝑈(𝑥, 𝑠)𝛿൫𝑥 − 𝑥௞೔൯௡௜ୀଵ = 𝐿(𝑥, 𝑠), (8)

where 𝑠 is the Laplace transform parameter: 

𝑈(𝑥, 𝑠) = 𝐿ሾ𝜃(𝑥, 𝑡)ሿ = න 𝜃(𝑥, 𝑡)𝑒ି௦௧ାஶ
଴ 𝑑𝑡, (9)𝐿(𝑥, 𝑠) = 𝐿ሾ𝑀(𝑥, 𝑡)ሿ = න 𝑀(𝑥, 𝑡)eି௦௧ାஶ
଴ 𝑑𝑡. (10)

Substituting the initial conditions of Eq. (7) into Eq. (8) yields: 

𝜌𝐼௣𝑠ଶ𝑈(𝑥, 𝑠) − 𝐺𝐼௣ 𝑑ଶ𝑈(𝑥, 𝑠)d𝑥ଶ + ෍ 𝐽௠𝑠ଶ𝑈(𝑥, 𝑠)𝛿൫𝑥 − 𝑥௃೘൯௛௠ୀଵ        +෍ 𝐾௜𝑈(𝑥, 𝑠)𝛿൫𝑥 − 𝑥௞೔൯௡௜ୀଵ = 𝐿(𝑥, 𝑠). (11)

Since Eq. (11) is a second order non homogeneous equation with constant coefficient and 
contains Dirac Delta function, it will be very complex to be solved. Therefore, a developed 
approach to solve this equation is to make Fourier transformation of Eq. (11) with respect to the 
variable 𝑥. Considering 𝑥 in the range of [0, 𝐿], the Fourier transform defined on this bounded 
interval can be described by the following relationship: 

𝑈𝑈(𝑝, 𝑠) = 𝐹൫𝑈(𝑥, 𝑠)൯ = න 𝑈(𝑥, 𝑠)𝑒ି௝௣௫𝑑𝑥௅
଴ , (12)

where 𝑝 is the Fourier transform parameter. The Fourier transform of Eq. (11) with respect to 𝑥 
gives: 𝜌𝐼௣𝑠ଶ𝑈𝑈(𝑝, 𝑠) − 𝐺𝐼௣ሾ−𝑝ଶ𝑈𝑈(𝑝, 𝑠) + 𝑗𝑝(𝑈(𝐿, 𝑠)𝑒ି௝௣௅ − 𝑈(0, 𝑠)) + 𝑈′(𝐿, 𝑠)𝑒ି௝௣௅      −𝑈′(0, 𝑠)ሿ + ෍ 𝐽௠௛௠ୀଵ 𝑈൫𝑥௃೘ , 𝑠൯𝑠ଶ𝑒ି௝௣௫಻೘ + ෍ 𝐾௜௡௜ୀଵ 𝑈൫𝑥௞೔ , 𝑠൯𝑒ି௝௣௫ೖ೔ = 𝐹𝐹(𝑝, 𝑠). (13)

In which: 
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𝐹 ቆ𝑑ଶ𝑈(𝑥, 𝑠)𝑑𝑥ଶ ቇ = −𝑝ଶ𝑈𝑈(𝑝, 𝑠) + 𝑈ᇱ(𝐿, 𝑠)𝑒ି௣௅௝ − 𝑈ᇱ(0, 𝑠) + 𝑝𝑗 ቀ𝑈(𝐿, 𝑠)𝑒ି௣௅௝ − 𝑈(0, 𝑠)ቁ, (14)𝐹(1) = 1 − 𝑒ି௝௣௅𝑗𝑝 , (15)𝐹(𝐿(𝑥, 𝑠)) = 𝐹𝐹(𝑝, 𝑠). (16)

If both ends of shaft are fixed, substituting the boundary conditions of Eq. (3) and Eq. (4) into 
the Eq. (13) leads to: 

𝑈𝑈(𝑝, 𝑠) = 𝑈′(𝐿, 𝑠)𝑒ି௝௣௅ − 𝑈′(0, 𝑠)𝑎ଶ𝑠ଶ + 𝑝ଶ + 𝐹𝐹(𝑝, 𝑠)𝐺𝐼௣(𝑎ଶ𝑠ଶ + 𝑝ଶ)      −∑ 𝐽௠௛௠ୀଵ 𝑈൫𝑥௃೘ , 𝑠൯𝑠ଶ𝑒ି௝௣௫಻೘ + ∑ 𝐾௜௡௜ୀଵ 𝑈൫𝑥௞೔ , 𝑠൯𝑒ି௝௣௫ೖ೔𝐺𝐼௣(𝑎ଶ𝑠ଶ + 𝑝ଶ) , (17)

where 𝑎ଶ = 𝜌 𝐺⁄ . 
The inverse Laplace transform of Eq. (17) gives: 

𝑈(𝑥, 𝑠) = 𝑈′(𝐿, 𝑠)𝑒௔௦(௫ି௅) − 𝑈′(0, 𝑠)𝑒ି௔௦௫2𝑎𝑠 + 𝑒ି௔௦|௫|2𝑎𝑠𝐺𝐼௣ ∗ 𝐹ିଵ൫𝐹𝐹(𝑝, 𝑠)൯
      −∑ 𝐽௠௛௠ୀଵ 𝑈൫𝑥௃೘ , 𝑠൯𝑠ଶ𝑒ି௔௦ቚ௫ି௫಻ೕቚ + ∑ 𝐾௜௡௜ୀଵ 𝑈൫𝑥௞೔ , 𝑠൯𝑒ି௔௦ቚ௫ି௫ೖ೔ቚ2𝑎𝑠𝐺𝐼௣ ,  (18)

where 𝐹ିଵ൫𝐹𝐹(𝑝, 𝑠)൯ is the inverse of 𝐹𝐹(𝑝, 𝑠) . The symbol “∗” represents the convolution 
operation. 

To solve Eq. (18), first, substituting the boundary conditions of Eq. (3) and Eq. (4) into  
Eq. (18), from 𝑈(0, 𝑠) = 𝑈(𝐿, 𝑠) = 0 , 𝑈′(𝐿, 𝑠)  and 𝑈′(0, 𝑠)  can be obtained. Then similarly, 
substituting 𝑥 = 𝑥௃೘,  𝑥 = 𝑥௞೔  (𝑚 = 1,2,3 … ,ℎ; 𝑖 = 1,2,3 … ,𝑛)  into Eq. (18), the values of 𝑈(𝑥௃೘ , 𝑠) and 𝑈(𝑥௞೔ , 𝑠) can be obtained. After that, the function of 𝑈(𝑥, 𝑠) can be obtained. Based 
on the residue theorem, the exact function of 𝜃(𝑥, 𝑡) can be derived by inverse Laplace transform 
of 𝑈(𝑥, 𝑠). Hence, the forced torsional vibration of a shaft is solved.  

In the following section, two cases are studied in detail to show how to use this developed 
method to obtain an exact analytical solution and the results will be compared with the 
Eigenfunction Expansion Method [20] and the FEM to demonstrate the superiority of the 
developed method in the accuracy and effectiveness. All the calculations are obtained by 
MATLAB and the results of FEM are obtained by ANSYS. Using ANSYS, the shaft studied is 
divided into 60 Timoshenko beam elements (BEAM188) and 61 nodes. The disk is simulated 
using MASS21 and the spring is simulated ideally by linear stiffness element (SPRING14). For 
the purpose of brief, all these will not be mentioned later on. 

3. Method validation 

The first case is a shaft fixed at both ends and subjected to the distributed loading. The second 
case is a shaft with one end clamped and the other free and subjected to a concentrated loading at 
the center of the shaft. 

3.1. Case one 

Case 1 is a shaft fixed at both ends and subjected to the distributed uniform moment loading 
as shown in Fig. 2. The shaft has a circular cross-section with the diameter 𝑅 = 0.0375 m and the 
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length 𝐿 = 3 m. The material properties of the shaft are given as follows. The shear modulus is 𝐺 = 81.5×109 N/m2 and the mass density is 𝜌 = 7850 kg/m3. The polar moment of inertia of the 
cross section is 𝐼௣ = 𝜋𝑅ସ 2⁄ . The distributed loading is 𝑀(𝑥, 𝑡) = 𝑓଴sin𝜔𝑡 = 3.01sin2𝜋𝑡 N⋅m.  

 
Fig. 2. A shaft fixed at both ends under distributed loading 

The vibration equation, the boundary condition and the initial condition are: 

⎩⎪⎨
⎪⎧𝜌𝐼௣ 𝜕ଶ𝜃𝜕𝑡ଶ − 𝐺𝐼௣ 𝜕ଶ𝜃𝜕𝑥ଶ = 𝑓଴sin𝜔𝑡,𝜃(0, 𝑡) = 𝜃(𝐿, 𝑡) = 0,𝜃(𝑥, 0) = 0,   ∂𝜃∂𝑡ฬ௧ୀ଴ = 0.  (19)

First, Laplace transformation of Eq. (19) with respect to time 𝑡 gives: 

𝜌𝐼௣ ൤𝑠ଶ𝑈(𝑥, 𝑠) − 𝑠𝜃(𝑥, 0) − ∂𝜃∂𝑡ฬ௧ୀ଴൨ − 𝐺𝐼௣ 𝑑ଶ𝑈(𝑥, 𝑠)𝑑𝑥ଶ = 𝑓଴𝜔𝑠ଶ + 𝜔ଶ. (20)

Substituting the initial conditions into Eq. (20) leads to: 

𝜌𝐼௣𝑠ଶ𝑈(𝑥, 𝑠) − 𝐺𝐼௣ 𝑑ଶ𝑈(𝑥, 𝑠)𝑑𝑥ଶ = 𝑓଴𝜔𝑠ଶ + 𝜔ଶ. (21)

Eq. (21) can be transformed in accordance with the Fourier transformation rules on a bounded 
interval as follows: 

𝜌𝐼௣𝑠ଶ𝑈𝑈(𝑃, 𝑠) − 𝐺𝐼௣ሾ−𝑝ଶ𝑈𝑈(𝑃, 𝑠) + 𝑈ᇱ(𝐿, 𝑠)𝑒ି௝௣௅ − 𝑈ᇱ(0, 𝑠)ሿ = 𝑓଴𝜔𝑠ଶ + 𝜔ଶ 1 − 𝑒ି௝௣௅𝑗𝑝 . (22)

Substituting the fixed boundary conditions into Eq. (22) leads to: 

𝑈𝑈(𝑝, 𝑠) = 𝑈ᇱ(𝐿, 𝑠)𝑒ି௝௣௅ − 𝑈ᇱ(0, 𝑠)𝑎ଶ𝑠ଶ + 𝑝ଶ + 𝑓଴𝜔𝐺𝐼௣(𝑎ଶ𝑠ଶ + 𝑝ଶ)(𝑠ଶ + 𝜔ଶ) 1 − 𝑒ି௝௣௅𝑗𝑝 . (23)

The inverse Fourier transform of Eq. (23) yields: 

𝑈(𝑥, 𝑠) = 𝑈ᇱ(𝐿, 𝑠)𝑒௔௦(௫ି௅) − 𝑈ᇱ(0, 𝑠)𝑒ି௔௦௫2𝑎𝑠 + 𝑓଴𝜔𝐺𝐼௣(𝑠ଶ + 𝜔ଶ) 2 − 𝑒ି௔௦௫ − 𝑒௔௦(௫ି௅)2𝑎ଶ𝑠ଶ . (24)

Substituting 𝑥 = 0, 𝑥 = 𝐿 into Eq. (24), the boundary conditions of 𝑈(0, 𝑠) = 𝑈(𝐿, 𝑠) = 0  
are: 
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⎩⎪⎨
⎪⎧𝑈(0, 𝑠) = 𝑈ᇱ(𝐿, 𝑠)𝑒ି௔௦௅ − 𝑈ᇱ(0, 𝑠)2𝑎𝑠 + 𝑓଴𝜔𝐺𝐼௣(𝑠ଶ + 𝜔ଶ) 1 − 𝑒ି௔௦௅2𝑎ଶ𝑠ଶ = 0,
𝑈(𝐿, 𝑠) = 𝑈ᇱ(𝐿, 𝑠) − 𝑈ᇱ(0, 𝑠)𝑒ି௔௦௅2𝑎𝑠 + 𝑓଴𝜔𝐺𝐼௣(𝑠ଶ + 𝜔ଶ) 1 − 𝑒ି௔௦௅2𝑎ଶ𝑠ଶ = 0. (25)

From Eq. (25), one can obtain: 

⎩⎪⎨
⎪⎧𝑈ᇱ(0, 𝑠) = 𝑓଴𝜔𝑎𝑠𝐺𝐼௣(𝑠ଶ + 𝜔ଶ) 1 − 𝑒ି௔௦௅1 + 𝑒ି௔௦௅ ,
𝑈ᇱ(𝐿, 𝑠) = − 𝑓଴𝜔𝑎𝑠𝐺𝐼௣(𝑠ଶ + 𝜔ଶ) 1 − 𝑒ି௔௦௅1 + 𝑒ି௔௦௅ . (26)

Substituting Eq. (26) into Eq. (24) yields: 

𝑈(𝑥, 𝑠) = − 𝑓଴𝜔൫𝑒௔௦(௫ି௅) + 𝑒ି௔௦௫൯𝑎ଶ𝑠ଶ𝐺𝐼௣(𝑠ଶ + 𝜔ଶ)(1 − 𝑒ି௔௦௅) + 𝑓଴𝜔𝑎ଶ𝑠ଶ𝐺𝐼௣(𝑠ଶ + 𝜔ଶ). (27)

Inverse Laplace transform of Eq. (27) yields an exact analytical solution of Case 1: 

𝜃(𝑥, 𝑡) = 𝑓଴𝜔𝑎ଶ𝐺𝐼௣ (cos𝑎𝜔(𝑥 − 𝐿) + cos𝑎𝑥𝜔 − cos𝑎𝜔𝐿 − 1)sin𝜔𝑡𝜔ଷ(1 + cos𝑎𝜔𝐿) . (28)

The result of Case 1 by Eigenfunction Expansion Method is given as: 

𝜃(𝑥, 𝑡) = ෍ 4𝑓଴𝐿 ቀ𝐿ଶ𝜔sin𝑛𝜋𝑏𝑡𝐿 − 𝑛𝜋𝑏𝐿sin𝜔𝑡ቁ sin𝑛𝜋𝑥𝐿𝑏𝑛ଶ𝜋ଶ(−𝑛ଶ𝜋ଶ𝑏ଶ + 𝜔ଶ𝐿ଶ)ஶ
௣ୀଵ ,     (𝑝 = 1,3,5 … 2𝑖 − 1), (29)

where: 

𝑏 = ඨ𝐺𝜌. (30)

Table 1. Amplitude of the center of the beam in Case 1 
Method Amplitude (m) Difference (%) 

The developed method 1.3376e-5 – 
The eigenfunction expansion method 1.3372e-5 0 

The finite element method 1.3331e-5 0.3364 

The results from the developed method are shown in Fig. 3(a). The results from the 
Eigenfunction Expansion Method are shown in Fig. 3(b). Fig. 3(c) shows the results from FEM. 
In Fig. 3(a), Fig. 3(b) and Fig. 3(c), two figures are the amplitude vs the length of the beam and 
the amplitude of the center of the beam vs time, respectively. The forced vibration response 
amplitude of the center from three methods is given in Table 1. It can be seen that the results of 
the shafting forced vibration response spectrum obtained by the developed method agree well with 
the Eigenfunction Expansion Method and the FEM. 

The developed method shows highly efficient. With simple cases like Case 1 to achieve the 
desired accuracy, it is just taken one second for the developed method while several minutes for 
the FEM. As for the Eigenfunction Expansion Method, it needs iterative more than 50 times. The 
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superiority of the developed method over the Eigenfunction Expansion Method and the FEM in 
accuracy and computation time is obvious. 

 
a) The developed method 

 
b) The eigenfunction expansion method 

 
c)The finite element method 

Fig. 3. Results of Case 1 

3.2. Case two  

Case 2 shown in Fig. 4 is a shaft with one end clamped and the other free subjected to a 
concentrate load ae the center. All geometrical and material parameters are same as given in 
Case 1. The concentrated load is 𝑀(𝑥, 𝑡) = 𝑓଴sin𝜔𝑡𝛿(𝑥 − 𝐿ଵ) = 3.01sin2𝜋𝑡𝛿(𝑥 − 1.5) N⋅m. 

 
Fig. 4. A shaft with one end clamped and the other free under concentrated loading 

The vibration equation, the boundary condition and the initial condition are: 
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⎩⎪⎪⎨
⎪⎪⎧𝜌𝐼௣ 𝜕ଶ𝜃𝜕𝑡ଶ − 𝐺𝐼௣ 𝜕ଶ𝜃𝜕𝑥ଶ = 𝑓଴sin𝜔𝑡𝛿(𝑥 − 𝐿ଵ),𝜃(0, 𝑡) = 0,     𝜕𝜃𝜕𝑥ฬ௫ୀ௅ = 0,𝜃(𝑥, 0) = 0,     ∂𝜃∂𝑡ฬ௧ୀ଴ = 0.  (31)

First, Laplace transformation of Eq. (31) with respect to time 𝑡 gives: 

𝜌𝐼௣ ൤𝑠ଶ𝑈(𝑥, 𝑠) − 𝑠𝑢(𝑥, 0) − ∂𝑢∂𝑡ฬ௧ୀ଴൨ − 𝐺𝐼௣ 𝑑ଶ𝑈(𝑥, 𝑠)𝑑𝑥ଶ = 𝑓଴𝜔𝑠ଶ + 𝜔ଶ 𝛿(𝑥 − 𝐿ଵ). (32)

Substituting the initial conditions in Eq. (31) into Eq. (32) leads to: 

𝜌𝐼௣𝑠ଶ𝑈(𝑥, 𝑠) − 𝐺𝐼௣ 𝑑ଶ𝑈(𝑥, 𝑠)𝑑𝑥ଶ = 𝑓଴𝜔𝑠ଶ + 𝜔ଶ 𝛿(𝑥 − 𝐿ଵ). (33)

Eq. (33) can be transformed in accordance with the Fourier transformation rules on a bounded 
interval as follows: 

𝜌𝐼௣𝑠ଶ𝑈𝑈(𝑃, 𝑠) − 𝐺𝐼௣ሾ−𝑝ଶ𝑈𝑈(𝑃, 𝑠) + 𝑗𝑝𝑈(𝐿, 𝑠)𝑒ି௝௣௅ − 𝑈ᇱ(0, 𝑠)ሿ = 𝑓଴𝜔𝑠ଶ + 𝜔ଶ 𝑒ି௝௣௅భ . (34)

Substituting the boundary conditions in Eq. (31) into Eq. (34) leads to: 

𝑈𝑈(𝑝, 𝑠) = 𝑗𝑝𝑈(𝐿, 𝑠)𝑒ି௝௣௅ − 𝑈ᇱ(0, 𝑠)𝑎ଶ𝑠ଶ + 𝑝ଶ + 𝑓଴𝜔𝐺𝐼௣(𝑎ଶ𝑠ଶ + 𝑝ଶ) 𝑒ି௝௣௅భ𝑠ଶ + 𝜔ଶ. (35)

Inverse Fourier transform of Eq. (35) yields: 

𝑈(𝑥, 𝑠) = 𝑈(𝐿, 𝑠)𝑒௔௦(௫ି௅)2 − 𝑈ᇱ(0, 𝑠)𝑒ି௔௦௫2𝑎𝑠 + 𝑓଴𝜔𝐺𝐼௣(𝑠ଶ + 𝜔ଶ) 𝑒ି௔௦|௫ି௅భ|2𝑎𝑠 . (36)

Substituting 𝑥 = 0, 𝑥 = 𝐿 into Eq. (36), the boundary conditions of 𝑈(0, 𝑠) = 𝑈(𝐿, 𝑠) = 0  
are: 

⎩⎪⎨
⎪⎧𝑈(0, 𝑠) = 𝑈(𝐿, 𝑠)𝑒ି௔௦௅2 − 𝑈ᇱ(0, 𝑠)2𝑎𝑠 + 𝑓଴𝜔𝐺𝐼௣(𝑠ଶ + 𝜔ଶ) 𝑒ି௔௦௅భ2𝑎𝑠 = 0,
𝑈(𝐿, 𝑠) = 𝑈(𝐿, 𝑠)2 − 𝑈ᇱ(0, 𝑠)𝑒ି௔௦௅2𝑎𝑠 + 𝑓଴𝜔𝐺𝐼௣(𝑠ଶ + 𝜔ଶ) 𝑒ି௔௦(௅ି௅భ)2𝑎𝑠 = 0. (37)

From Eq. (37) one can obtain as follows: 

⎩⎪⎨
⎪⎧𝑈ᇱ(0, 𝑠) = 𝑓଴𝜔𝐺𝐼௣(𝑠ଶ + 𝜔ଶ) 𝑐ℎ𝑎𝑠(𝐿 − 𝐿ଵ)𝑐ℎ𝑎𝑠𝐿 ,𝑈(𝐿, 𝑠) = 𝑓଴𝜔𝑎𝑠𝐺𝐼௣(𝑠ଶ + 𝜔ଶ) 𝑠ℎ𝑎𝑠𝐿ଵ𝑐ℎ𝑎𝑠𝐿 .  (38)

Substituting Eq. (38) into Eq. (36) yields: 
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𝑈(𝑥, 𝑠) = 𝑓଴𝜔൫𝑠ℎ𝑎𝑠(𝑥 + 𝐿ଵ − 𝐿) − 𝑠ℎ𝑎𝑠(|𝑥 − 𝐿ଵ| − 𝐿)൯2𝑎𝑠𝐺𝐼௣𝑐ℎ𝑎𝑠𝐿(𝑠ଶ + 𝜔ଶ) . (39)

Then the exact analytical solution of Case 2 can be obtained by Inverse Laplace transform of 
Eq. (39): 

𝜃(𝑥, 𝑡) = 𝑓଴2𝑎𝜔𝐺𝐼௣ ቆsin𝑎𝜔(𝑥 + 𝐿ଵ − 𝐿) − sin𝑎𝜔(|𝑥 − 𝐿ଵ| − 𝐿)co𝑠𝑎𝜔𝐿 ቇ sin𝜔𝑡. (40)

Table 2. Amplitude of the center of the beam in Case 2 
Method Amplitude (m) 

The developed method 5.9251e-6 
The finite element method 5.9247e-6 

Difference (%) 0 
 

 
a) The developed method 

 
b) The finite element method 
Fig. 5. The results of Case 2 

The results from the developed method are shown in Fig. 5(a). Fig. 5(b) shows the results from 
FEM. In Fig. 5(a) and Fig. 5(b), two figures are the amplitude vs the length of the beam and the 
amplitude of the center of the beam vs time, respectively. The forced vibration response amplitude 
of the center is given in Table 2. It can be seen that the results obtained by the developed method 
agree well with the FEM. Case 2 not only again demonstrates the superiority of the developed 
method in precision and time consuming but also indicates that the developed method is suitable 
for shafting models with arbitrary boundaries. 

4. Complex cases 

In this section, the more complicated cases, the torsional forced vibration of a shaft with 
concentrated inertias and elastic supports, will be investigated to further demonstrate the 
superiority of the developed method is highly efficient and accurate. First, Case 3, a shaft with 
single concentrated inertia subjected to random loading, is studied. Then, Case 4, a shaft with an 
elastic support under impact loading, is studied. The amplitude and the vibration response derived 
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from the developed method are taken to compare with FEM. Finally, to take advantage of the 
developed method further, the influence of different parameters on forced torsional vibration 
response of shaft is discussed. The different parameters include the stiffness and position of elastic 
supports and the time interval of the impact loading. 

4.1. Case 3  

Case 3, a shaft with single concentrated inertia is fixed at both ends and subjected to a random 
load, is investigated as shown in Fig. 6. All geometrical and material parameters are same as given 
in Case 1. The concentrated inertia locates at 𝑥 = 𝑥௃ = 𝐿 3⁄ =  1 m. The moment is  𝐽 = 0.6021 kg⋅m2. The random loading is 𝑀(𝑥, 𝑡) = 𝑓଴(1 −𝜔𝑡)𝑒ିఠ௧𝛿(𝑥 − 𝐿ଵ) = 3.01(1 −2𝑡)𝑒ିଶ௧𝛿(𝑥 − 1.5) N⋅m.  

  
Fig. 6. A shaft with a single concentrated inertia fixed at both ends under random loading 

The vibration equation, the boundary condition and the initial condition are: 

⎩⎪⎨
⎪⎧𝜌𝐼௣ 𝜕ଶ𝜃𝜕𝑡ଶ − 𝐺𝐼௣ 𝜕ଶ𝜃𝜕𝑥ଶ + 𝐽𝛿൫𝑥 − 𝑥௃൯ 𝜕ଶ𝜃𝜕𝑡ଶ = 𝑓଴(1 − 𝜔𝑡)𝑒ିఠ௧𝛿(𝑥 − 𝐿ଵ),𝜃(0, 𝑡) = 𝜃(𝐿, 𝑡) = 0,𝜃(𝑥, 0) = 0,     ∂𝜃∂𝑡ฬ௧ୀ଴ = 0.  (41)

For the sake of brief, omitting the process detail of solving the equation mentioned in 
Section 2.2, the exact solution of Case 3 is given as follows: 

𝜃(𝑥, 𝑡) = −𝑓଴𝑒ିఠ௧𝐿𝑐ℎ𝑎𝜔𝐿൫𝑐ℎ𝑎𝜔(|𝑥 − 𝐿ଵ| − 𝐿) − 𝑐ℎ𝑎𝜔(𝑥 + 𝐿ଵ − 𝐿)൯2𝐺𝐼௣(𝑠ℎ𝑎𝜔𝐿)ଶ      + ቀ𝑐ℎ𝑎𝜔൫ห𝑥௃ − 𝐿ଵห − 𝐿൯ − 𝑐ℎ𝑎𝜔൫𝑥௃ + 𝐿ଵ − 𝐿൯ቁ2𝑎𝐺𝐼௣𝑠ℎ𝑎𝜔𝐿 − 𝐽𝜔൫𝑐ℎ𝑎𝜔൫2𝑥௃ − 𝐿൯ − 𝑐ℎ𝑎𝜔𝐿൯      ⋅ 𝐽𝑓଴𝑒ିఠ௧𝜔 ቀ−𝑎൫ห𝑥 − 𝑥௃ห − 𝐿൯𝑠ℎ𝑎𝜔൫ห𝑥 − 𝑥௃ห − 𝐿൯ + 𝑎൫𝑥 + 𝑥௃ − 𝐿൯𝑠ℎ𝑎𝜔൫𝑥 + 𝑥௃ − 𝐿൯ቁ2𝑎𝐺𝐼௣𝑠ℎ𝑎𝜔𝐿      − 𝐽𝑓଴𝜔𝑎𝐿𝑐ℎ𝑎𝜔𝐿𝑒ିఠ௧ ቀ𝑐ℎ𝑎𝜔൫𝑥 + 𝑥௃ − 𝐿൯ − 𝑐ℎ𝑎𝜔൫ห𝑥 − 𝑥௃ห − 𝐿൯ቁ2𝑎𝐺𝐼௣(𝑠ℎ𝑎𝜔𝐿)ଶ      ⋅ ቀ𝑐ℎ𝑎𝜔൫ห𝑥௃ − 𝐿ଵห − 𝐿൯ − 𝑐ℎ𝑎𝜔൫𝑥௃ + 𝐿ଵ − 𝐿൯ቁ2𝑎𝐺𝐼௣𝑠ℎ𝑎𝜔𝐿 − 𝐽𝜔൫𝑐ℎ𝑎𝜔൫2𝑥௃ − 𝐿൯ − 𝑐ℎ𝑎𝜔𝐿൯      +𝜔𝑒ିఠ௧ ቀ𝑐ℎ𝑎𝜔൫𝑥 + 𝑥௃ − 𝐿൯ − 𝑐ℎ𝑎𝜔൫ห𝑥 − 𝑥௃ห − 𝐿൯ቁ2𝑎𝐺𝐼௣𝑠ℎ𝑎𝜔𝐿      ⋅ ቀ𝑎൫ห𝑥௃ − 𝐿ଵห − 𝐿൯𝑠ℎ𝑎𝜔൫ห𝑥௃ − 𝐿ଵห − 𝐿൯ − 𝑎൫𝑥௃ + 𝐿ଵ − 𝐿൯𝑠ℎ𝑎𝜔൫𝑥௃ + 𝐿ଵ − 𝐿൯ቁ2𝑎𝐺𝐼௣𝑠ℎ𝑎𝜔𝐿 − 𝐽𝜔൫𝑐ℎ𝑎𝜔൫2𝑥௃ − 𝐿൯ − 𝑐ℎ𝑎𝜔𝐿൯      −𝑓଴൫𝑐ℎ𝑎𝜔(|𝑥 − 𝐿ଵ| − 𝐿) − 𝑐ℎ𝑎𝜔(𝑥 + 𝐿ଵ − 𝐿)൯𝑡𝑒ିఠ௧2𝑎𝐺𝐼௣𝑠ℎ𝑎𝜔𝐿

 (42)
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      −𝑓଴𝑒ିఠ௧൫−𝑎(|𝑥 − 𝐿ଵ| − 𝐿)𝑠ℎ𝑎𝜔(|𝑥 − 𝐿ଵ| − 𝐿) + 𝑎(𝑥 + 𝐿ଵ − 𝐿)𝑠ℎ𝑎𝜔(𝑥 + 𝐿ଵ − 𝐿)൯2𝑎𝐺𝐼௣𝑠ℎ𝑎𝜔𝐿  

      + 𝐽𝑓଴𝑡𝑒ିఠ௧𝜔 ቀ𝑐ℎ𝑎𝜔൫ห𝑥 − 𝑥௃ห − 𝐿൯ − 𝑐ℎ𝑎𝜔൫𝑥 + 𝑥௃ − 𝐿൯ቁ ቀ𝑐ℎ𝑎𝜔൫ห𝑥௃ − 𝐿ଵห − 𝐿൯ − 𝑐ℎ𝑎𝜔൫𝑥௃ + 𝐿ଵ − 𝐿൯ቁ2𝑎𝐺𝐼௣𝑠ℎ𝑎𝜔𝐿 ቀ2𝑎𝐺𝐼௣𝑠ℎ𝑎𝜔𝐿 − 𝐽𝜔൫𝑐ℎ𝑎𝜔൫2𝑥௃ − 𝐿൯ − 𝑐ℎ𝑎𝜔𝐿൯ቁ  

      + 𝐽𝑓଴𝑒ିఠ௧ ቀ𝑐ℎ𝑎𝜔൫𝑥 + 𝑥௃ − 𝐿൯ − 𝑐ℎ𝑎𝜔൫ห𝑥 − 𝑥௃ห − 𝐿൯ቁ ቀ𝑐ℎ𝑎𝜔൫ห𝑥௃ − 𝐿ଵห − 𝐿൯ − 𝑐ℎ𝑎𝜔൫𝑥௃ + 𝐿ଵ − 𝐿൯ቁ2𝑎𝐺𝐼௣𝑠ℎ𝑎𝜔𝐿 ቀ2𝑎𝐺𝐼௣𝑠ℎ𝑎𝜔𝐿 − 𝐽𝜔൫𝑐ℎ𝑎𝜔൫2𝑥௃ − 𝐿൯ − 𝑐ℎ𝑎𝜔𝐿൯ቁ  

      − 𝐽𝑓଴𝜔𝑒ିఠ௧ ቀ𝑐ℎ𝑎𝜔൫𝑥 + 𝑥௃ − 𝐿൯ − 𝑐ℎ𝑎𝜔൫ห𝑥 − 𝑥௃ห − 𝐿൯ቁ ቀ𝑐ℎ𝑎𝜔൫ห𝑥௃ − 𝐿ଵห − 𝐿൯ − 𝑐ℎ𝑎𝜔൫𝑥௃ + 𝐿ଵ − 𝐿൯ቁ2𝑎𝐺𝐼௣𝑠ℎ𝑎𝜔𝐿  

      ∙ 2𝑎ଶ𝐿𝐺𝐼௣𝑐ℎ𝑎𝜔𝐿 − 𝐽൫𝑐ℎ𝑎𝜔൫2𝑥௃ − 𝐿൯ − 𝑐ℎ𝑎𝜔𝐿൯ − 𝐽𝜔൫𝑎൫2𝑥௃ − 𝐿൯𝑠ℎ𝑎𝜔൫2𝑥௃ − 𝐿൯ − 𝑎𝐿𝑠ℎ𝑎𝜔𝐿൯ቀ2𝑎𝐺𝐼௣𝑠ℎ𝑎𝜔𝐿 − 𝐽𝜔൫𝑐ℎ𝑎𝜔൫2𝑥௃ − 𝐿൯ − 𝑐ℎ𝑎𝜔𝐿൯ቁଶ . 
Table 3. Amplitude of the center of the beam in Case 3 

Method Amplitude (m) 
The developed method 2.9625e-6 

The finite element method 2.9611e-6 
Difference (%) 0 

 

 
a) 

 
b) 

Fig. 7. The vibration pattern of Case 3 from the developed method 

 
a) 

 
b) 

Fig. 8. The vibration response spectrum of Case 3 from FEM 

The results of vibration response are shown in Fig. 7. The spectrum diagram of the forced 
vibration response along the axial direction is given in Fig. 7(a) and the torque of the shaft vs time 
is given in Fig. 7(b). The torque of 𝑀(𝑥, 𝑡) = 𝑓଴(1 −𝜔𝑡)𝑒ିఠ௧𝛿(𝑥 − 𝐿ଵ) is applied at the center 
of the shaft. The results of the vibration response of FEM are given in Fig. 8. The spectrum 
diagram of the forced vibration response along the axial direction is given in Fig. 8(a) and the 
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torque of the shaft vs time is given in Fig. 8(b). The vibration amplitude is given in Table 3. All 
the results from the developed method agree with the FEM very well and once again demonstrate 
the reliability of the developed method. One can conclude that the developed method is capable 
and suitable for solving shaft problems in engineering for the arbitrary boundary conditions and 
excitation. 

4.2. Case 4  

Case 4 is a shaft with an elastic support and one end clamped and the other free subjected to 
uniform impact loading as shown in Fig. 9. All geometrical and material parameters in this case 
are the same as given in Case 1. The stiffness of elastic support is 𝐾 = 10000000 N/m. The elastic 
support is located at 𝑥 = 𝑥௞ = 𝐿 3⁄ = 1 m. The uniform load is 𝑀(𝑥, 𝑡) = 𝑓଴sin𝜔𝑡(𝑢(𝑡 − 𝑡ଵ) −𝑢(𝑡 − 𝑡ଶ)) = 3.01sin గ଼ 𝑡(𝑢(𝑡) − 𝑢(𝑡 − 16)) N⋅m, in which 𝑡ଵ represents the starting time of the 
torque action and 𝑡ଶ is the ending time of the torque action. 

  
Fig. 9. A shaft with an elastic support and one end clamped and the other free under impact loading 

The vibration equation, the boundary condition and the initial condition are: 

⎩⎪⎨
⎪⎧𝜌𝐼௣ ∂ଶ𝜃∂𝑡ଶ − 𝐺𝐼௣ ∂ଶ𝜃∂𝑥ଶ + 𝐾𝜃𝛿(𝑥 − 𝑥௞) = 𝑓଴sin𝜔𝑡൫𝑢(𝑡 − 𝑡ଵ) − 𝑢(𝑡 − 𝑡ଶ)൯,𝜃(0, 𝑡) = 0,    ∂𝜃∂𝑥 | ௫ୀ௅ = 0,𝜃(𝑥, 0) = 0,    ∂𝜃∂𝑡 | ௧ୀ଴ = 0.  (43)

Again, for the sake of brief, omitting the process detail of solving the equation, the exact 
solution of Case 4 is given as: 

𝜃(𝑥, 𝑡) = −𝑓𝐵൫cos𝑎𝜔𝐿 − cos𝑎𝜔(𝐿 − 𝑥)൯𝑎ଶ𝐺𝐼௉𝜔ଷ      ⋅ ቆ 1cos𝑎𝜔𝐿 + 𝑘൫sin𝑎𝜔(|𝑥 − 𝑥௞| − 𝐿) − sin𝑎𝜔(𝑥 + 𝑥௞ − 𝐿)൯𝑎𝜔𝐺𝐼௉cos𝑎𝜔𝐿 + 𝐾൫sin𝑎𝜔𝐿 + sin𝑎𝜔(2𝑥௞ − 𝐿)൯ቇ , (44)

where: 𝐵 = sin𝜔𝑡(𝑢(𝑡 − 𝑡ଵ) − 𝑢(𝑡 − 𝑡ଶ)). (45)

The results are given in Fig. 10(a) and Fig. 10(b). The response amplitude changes along the 
axial direction as shown in Fig. 10(a). As the big bearing stiffness, the response spectrum of the 
shaft between 0-1 m is much similar than the rest part of the shaft. The response spectrum of the 
shaft between 0 to 1 m is similar to that of a shaft with both fixed ends like Case 1 and the response 
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spectrum of the shaft between the 1 m to 3 m is similar to that of a shaft with one end fixed and 
the other free like Case 2. 

 
a) 

 
b) 

Fig. 10. The vibration pattern of Case 4 from the developed method 

Table 4. Amplitude of free end of the beam in Case 4 
Method Amplitude (m) 

The developed method 2.4513e-6 
The finite element method 2.45501e-6 

Difference (%) 0.1511 % 

The results from the FEM method are given in Fig. 11. The results of the amplitude are given 
in Table 4. Again, the results show that the developed method agrees with the FEM well. It not 
only demonstrates the superiority of the developed method in effect and accuracy but also 
indicates that the developed method is suitable for shafting models with arbitrary elastic supports. 

 
a) 

 
b) 

Fig. 11. The vibration response spectrum of Case 4 from FEM 

5. Effect of different parameters on response 

To take advantage of the superiority of the developed method in effect and accuracy, the 
studies of the effect of different parametric on the dynamic response are carried out. They are the 
effect of the impact time of load and the effect of stiffness of the elastic support. Case 4 is taken 
as shaft model to study the effects of different parameters. 

5.1. Effect of impact time of load  

In the study, 𝑡ଵ is same as 0 and the impact time of 𝑡ଶ varies from 1.0 sec to 4.0 sec. The results 
are given in Fig. 12. As to be expected, increasing the action time, the amplitude of the forced 



EXACT FORCED TORSIONAL VIBRATION SOLUTION OF A SHAFT WITH MULTIPLE DISCONTINUITIES AND ARBITRARY BOUNDARY CONDITIONS.  
MEILONG CHEN, SHUYING LI, HONGLIANG LI, SIYUAN LIU 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 787 

vibration response is increased. It also is observed that there is a quick increase of the amplitude 
of vibration response occurring at a range of 1secto 3 sec. 

 
Fig. 12. The effect of variations of action time 𝑡ଶ on forced vibration response of Case 4 

5.2. Effect of stiffness of elastic support  

The value of spring stiffness 𝐾 studied is chosen as, namely, 0, 103 N/m, 104 N/m, 105 N/m, 
106 N/m, 107 N/m, 108 and 109 N/m, separately. The results are given in Fig. 13. 

It can be observed that the forced vibration amplitude of the shaft has a significant increase 
staring from the 𝐾 = 105 N/m. It also can be seen that from the larger the stiffness 𝐾, the higher 
is the changing rate of the vibration response amplitude. But as the stiffness is less than 105 N/m 
or larger than 107 N/m, the vibration response amplitude is constant. That means that in those 
cases the influence of 𝐾 on vibration response can be negligible. It also can find that in the case 𝐾 = 106 N/m, along the shaft axis once over the elastic support the vibration response amplitude 
is increased and then finally will stay at a constant value. This phenomenon is related to the 
stiffness property of the elastic supports.  

5.3. Effect of location of elastic support 

The effect of the location of the elastic supports on vibration response amplitude of the shaft 
is studied herein. The locations at 𝐿 = 0.5 m, 1.5 m, 2 m and 3 m are investigated, separately. The 
results are given in Fig. 14. 

The results show that when the location of the elastic support is closed to the two ends of the 
shaft, the effects of the elastic support can be negligible and the vibration response amplitude of 
the shaft is equivalent to that of the shaft with no elastic supports. 

From above investigations, the developed method is proved to be an applicable and capable 
general approach to analysis of the torsional vibration response of shaft with arbitrary boundary 
conditions, complicated excitation force as well as various elastic supports. Though the examples 
dealing with are with only an elastic support, as one can be expected, the developed method can 
be used conveniently to analyze the forced torsional dynamic behaviors for more complicated 
shaft- elastic support systems in the same way. Another major advantage of the developed method 
is that, regardless of the number and types of elastic supports, the dynamic equation always can 
be conveniently established as a single second-order partial differential equation like Eq. (2) which 
can significantly save the computational effort.  

With FEM, when the number of the elastic supports changes, the overall system matrix of the 
entire structural system has to be rebuilt due to the change of additional freedoms associated with 
the elastic-support points. However, with the developed method, only a slight change to the overall 
dynamic equation is required and the process is simple and straightforward. For instance, the effect 
of the number of elastic supports can be easily reflected in the value 𝑟 in Eq. (2). That is why the 
developed method is superior over FEM in the computation time and effectiveness. 
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a) 𝐾 = 0 N/m 

 
b) 𝐾 = 103 N/m 

 
c) 𝐾 = 104 N/m 

 
d) 𝐾 = 105 N/m 

 
e) 𝐾 = 106 N/m 

 
f) 𝐾 = 107 N/m 

 
g) 𝐾 = 108 N/m 

 
h) 𝐾 = 109 N/m 

Fig. 13. The effects of variations of the stiffness 𝐾 on the forced vibration amplitude of Case 4  
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a) 𝐾 = 107 N/m, 𝐿 = 0.5 m 

 
b) 𝐾 = 107 N/m, 𝐿 = 1.5 m 

 
c) 𝐾 = 107 N/m, 𝐿 = 2 m 

 
d) 𝐾 = 107 N/m, 𝐿 = 3 m 

Fig. 14. The effect of the position of the elastic supports on vibration response amplitude of Case 4 

6. Conclusions 

In this paper, an analytical method is developed to solve the torsional forced vibration of a 
shaft with multiple concentrated inertias and elastic supports under arbitrary boundary conditions 
based on the two kinds of integral transform methods. The time 𝑡 and the coordinate 𝑥 are carried 
out the transforms in the Laplace domain and the Fourier domain to obtain the exact solution 
quickly and accurately, respectively. In comparison with most existing solution procedures for 
shaft system, such as Eigenfunction Expansion Method and FEM, the results show that this 
developed method not only is applicable to deal with any boundary conditions, but also can be 
substantially improved and guaranteed to the speed of solving a complicated shafting model. It is 
superior over Eigenfunction Expansion Method and FEM in the computation time and 
effectiveness. 

Four cases, the shafts with single concentrated inertia or single elastic support under given 
boundary conditions, are studied to demonstrate the accuracy and the effectiveness of the 
developed method. What’s more, the effects of parameters on torsional forced vibration response 
of shaft are further investigated, including the stiffness and location of elastic supports and the 
impact time of the loading. The results from the investigation could serve as benchmark solutions 
for validating new computational techniques in the future. 

The developed method successfully provides the exact analytical solution of forced torsional 
vibration for the shaft with multiple inertias and elastic supports. It can provide a reliable 
theoretical base not only for analysis and fault diagnosis of a shaft system in engineering signal 
testing projects but also for the verification of other numerical and analytical methods. Future 
study will pay attention to extend the developed method to solve other types of vibration problems.  
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