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Abstract. Purpose: Molecular genetic knowledge of clear-cell renal-cell carcinoma (CCRCC) 
plays an important role in predicting the prognosis and may be used as a guide in treatment 
decisions and the conception of clinical trials. It would then be desirable to predict these mutations 
non-invasively from CT images which are already available for CCRCC patients. Methods: 
TCGAKIRC data were obtained from the National Cancer Institute’s (NCI) image dataset. We 
used 191 patient data of which 63 were associated with PBRM1 mutations. The tumors were 
delineated by a radiologist with over 10 years of experience, on slices that displayed the largest 
diameter of the tumor. Features were extracted and normalized. After feature selection, the KNN 
classification with Random Subspace method was used as it is known to have advantages over the 
simple k-nearest-neighbor method. Results: Prediction accuracy for PBRM1 was found 83.8 %. 
Conclusions: A single slice of the CT scan image of CCRCC can be used for predicting PBRM1 
mutations using KNN classification in Random Subspaces with an acceptable accuracy. 
Keywords: clear cell renal cell carcinoma (CCRCC), polybromo-1 (PBRM1), computed 
tomography (CT), machine learning (ML), radiogenomics. 

1. Introduction 

Renal Cell Carcinoma (RCC) is the most encountered type of renal cancer and represents about 
3.7 % of new cancer occurrences. Just in The United States, RCC accounted for about 61.560 new 
patients and 14.080 deaths in year 2015. It is known that certain genes which have mutations can 
activate intracellular molecular pathways. These specific pathways lead to an increased risk of 
specific histological subtypes of RCC. This knowledge has helped us to better understand the 
pathogenesis of RCC and RCC has been divided into subtypes related to genetic structure and 
mutation status. According to the WHO, there are eight major subtypes of adult-onset RCC. Clear 
cell Renal Cell Carcinoma (CCRCC) is the most encountered one. Approximately 20 % of patients 
have metastatic disease at presentation. More than half of the patients develop metastases after the 
initial diagnosis.  

Recently, the comprehension of the genetic base of RCC has improved research and led to the 
discovery of novel anticancer agents targeting specific intracellular pathways [1]. 

Polybromo-1 (PBRM1) gene is the second most common mutation and is seen in 40 % of these 
patients. The mutation encodes the protein BRG1-associated factor (BAF) 180 [2]. It affects the 
critical cellular processes by regulating cell-cycle changes, metabolism, and DNA repair [3]. 

There have been studies indicating that this gene is valuable because it has an impact on 
survival [4]. One of the studies about PBRM1 indicated that decrease of PBRM1 expression is 
linked with a bad prognosis and increased clinicopathological features in patients with RCC [5]. 
Another study with RCC stage-4 patients reported that this gene could have potential as a 
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prognostic marker for advanced RCC [6]. Moreover, other studies indicate that the PBRM1 
mutation status has a great potential to identify CCRCC and has noticeable effects on disease 
progression [7, 8] and may affect the new treatment strategies [9]. 

Recently several studies concentrated on gene mutation prediction for cancer patients from 
medical images noninvasively [10]. Few studies focused on the prediction of the PBRM1 gene 
mutation for CCRCC patients from imaging studies [11,12,13]. In [11], associations between 
imaging features determined by radiologists and the genetic mutation status were found. In [12], 
a multi-classifier multi-objective radiogenomics model was developed. In [13], an artificial neural 
network (ANN) and a random forest (RF) algorithm were used for classification. Since the original 
dataset was small, multiple slices were used for feature extraction in order to increase the sample 
size. 

A general challenge in these studies is to deal with small and noisy datasets.  
In this study, the goal was to address these issues and develop a method for predicting the 

PBRM1 gene mutation non-invasively using CT images and the KNN classification method with 
Random Subspaces for the first time. KNN is known to have several advantages such as simplicity 
and performance. Random Subspace Method for kNN Classification was shown to improve 
accuracy [14]. This superiority was demonstrated to be preserved with even smaller number of 
training samples, a condition often encountered with radiogenomic data.  

The main novel contributions of this work are: 
– The KNN method in Random Subspaces has been applied to CCRCC Radiogenomics for the 

first time, 
– A relatively large number of patient data has been used (259). With small number of samples, 

the results may largely depend on the used dataset. Other studies have used relatively small overall 
number of patients (e.g. 45 in [13]).  

In the following, the methods used for predicting the PBRM1 gene mutation will be outlined. 
First the data used will be described. Then, image processing steps will be given. Results from 
classification will be discussed in view of the literature and necessary future work will be  
indicated. 

2. Methods 

2.1. Data 

The partnership between the National Cancer Institute (NCI) and the National Human Genome 
Research Institute (NHGRI) has provided information on key genomic alterations in 33 identified 
cancer types, including CCRCC [15, 16]. TCGA-KIRC data set which has the disease type 
Adenomas and Adenocarcinomas of Kidney was used for this study. We used 191 scans from the 
dataset. 63 patients had the PBRM1 mutation.  

2.2. Data processing 

The tissue of interest was carefully delineated by a radiologist with over 10 years old 
experiences using ImageJ [17] software. The slices were considered to include the largest tumor 
area for each patient obtained from TCGA-KIRC data. A sample ROI is shown in Fig. 1. After 
the regions of interest (ROI) were drawn, radiogenomic features were extracted. These included 
gray level patterns, inter-voxel relationships, shape and texture features. In this step, 136 
radiographic features were generated, and a high dimensional feature matrix was created. The 
software platforms Image J with texture analyzer plugin [18], MIPAV [19] and LifeX [20] were 
used. 

Extracted radiogenomic features included shape, intensity and texture features. Unbalanced 
data were [21] handled for balancing by using the ADASYN algorithm which represents an 
extended version of SMOTE. After 𝑡-tests on individual features, and neighborhood component 
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analysis (FSCNCA) [22], the reduced number of features obtained was nine. 
After the feature selection process, classifications were performed using Matlab R2019a. The 

confusion matrix was used to evaluate the results. Validation selection was set to 5-Fold cross 
validation (𝐾 = 5). The selected model type was KNN with Random Subspace [14]. 

 
Fig. 1. The tumor in the right kidney which had the PBRM1 mutation is indicated by the yellow contour 

3. Results 

Our results showed that using classification learner, KNN with Random Subspace model can 
correctly predict PBRM1 and NON-PBRM1 data with 83.8 % (see Figs. 2 and 3). 

 
Fig. 2. Confusion matrix for PBRM1 mutation status using KNN with random subspace 

 
Fig. 3. Number of observations for PBMR1 mutation status using KNN with random subspace 

The results have been obtained using the Fine KNN model Random Subspaces in 
Matlab R2019a (𝐾 = 1) using the Classification Learner, Distance metric = Euclidean, Distance 



PREDICTING THE POLYBROMO-1 (PBRM1) MUTATION OF A CLEAR CELL RENAL CELL CARCINOMA USING COMPUTED TOMOGRAPHY IMAGES AND 
KNN CLASSIFICATION WITH RANDOM SUBSPACE. HARIKA BESTE ÖKMEN, ALBERT GUVENIS, HADI UYSAL 

 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479, KAUNAS, LITHUANIA 33 

weight = Equal, Subspace dimension = 6, Number of Learning Cycles = 30. Validation selection 
was set to 5-Fold cross validation (𝐾 = 5). 

4. Discussion 

The goal of this study was to predict the PBRM1 gene mutation noninvasively using a single 
slice of a CT Image study for CCRCC patients. Predicting gene mutations is important for 
prognostic and therapy selection purposes. KNN classification with random subspace was used. 
The results of the study were presented in Fig. 2 and Fig. 3. These results show that the PBRM1 
gene mutation could be predicted with a sensitivity of 90 % and a specificity of 77.5 %. Overall 
accuracy was determined as 83.8 %.  

There is some evidence that these mutations influence the response to therapy [23]. Therefore, 
the implication of this study is that the non-invasive nature and the practical single slice approach 
of this technique may make it very useful in therapy selection. 

The accuracy obtained is similar to the one obtained in a previous study (78 % in [12]). Up to 
95 % accuracy was reported in another study [13] conducted with a total of 45 patients. However, 
the main disadvantage of these studies was the low number of patients and the lack of a large 
independent test dataset. 

The study presented here was conducted with a larger patient dataset (191). However, the 
images were not standardized. Data included images from different CT scanners, contrast and 
non-contrast images.  

In the future, using larger and more uniform datasets could increase the present performance. 
Practical implementation may require quick and accurate 3D methods for tumor delineation. 
Studies with better automatic 3-D segmentation algorithms may increase both the speed and the 
performance of these algorithms.  

5. Conclusions 

A practical machine learning implementation has been realized for the non-invasive 
determination of the mutation status of PBRM1 Mutation for Clear Cell Renal Cell Carcinoma 
patients. The KNN with Random Subspace was shown to be an adequate method for this task. 
More research is needed to increase both the accuracy and speed by using automated 3D 
segmentation algorithms and larger and standard datasets. 
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