
 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 705 

Hybrid artificial genetic – neural network model to 
predict the transmission of vibration to the head during 
whole-body vibration training 

M. Alshabi1, N. Nawayseh2, M. Bettayeb3 
1, 2Department of Mechanical and Nuclear Engineering, University of Sharjah,  
P. O. Box 27272, Sharjah, United Arab Emirates 
3Electrical Engineering Department, University of Sharjah,  
P. O. Box 27272, Sharjah, United Arab Emirates 
3CEIES, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia 
1Corresponding author 
E-mail: 1malshabi@sharjah.ac.ae, 2nnawayseh@sharjah.ac.ae, 3maamar@sharjah.ac.ae 
Received 25 May 2019; received in revised form 24 September 2019; accepted 26 October 2019 
DOI https://doi.org/10.21595/jve.2019.20828 

Copyright © 2020 M. Alshabi, et al. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. In this work, Artificial Neural Network (ANN) modelling has been employed to 
investigate the effects of various factors on the biodynamic responses to vibration represented by 
the transmissibility and its phase. These factors include, height, weight, Body Mass Index (BMI), 
age, frequency and posture. Nine subjects stood on a vibrating plate and were exposed to vertical 
vibration at nine frequencies in the range 17-46 Hz while adopting four different standing postures; 
Bent Knee posture (BK), Locked Knee posture (LK), right foot to the Front and left foot to the 
Back posture (FB) and One Leg posture (OL). The accelerations of the vibrating plate and the 
head of the subjects were measured during the exposure to vibration in order to calculate the 
transmissibility between the vibrating plate and the head. Genetic Algorithm (GA) was used to 
choose ANN’s number of hidden layers and number of neurons in each layer to obtain the best 
performance for predicting the transmissibility. The GA compared the root mean square errors 
(RMSE) between the ANN outputs and the experimental outputs, and then choose the best results 
that could be achieved. The number of hidden layers and number of neurons tested in GA vary 
from one hidden layer to four hidden layers, and from one neuron per layer to one hundred neurons 
per layer. Several runs have been conducted to train and validate the ANN model. The results 
show that double hidden layer with 13 neurons in the first layer and 12 neurons in the second layer 
give the best candidate. The proposed model can be integrated with whole-body vibration 
machines in order to choose the suitable exposure based on the user’s characteristics. 
Keywords: artificial neural network, genetic algorithm, whole-body vibration training, 
transmissibility. 

1. Introduction 

The use of whole-body vibration training machines in both the medical and sport fields is 
becoming very popular. Some studies have claimed that the exposure to whole-body vibration 
helps with some medical conditions or training exercises [1-6]. Other studies, however, have 
reported either detrimental effects or no beneficial outcomes to using whole-body vibration 
training machines [7-12]. The discrepancy between the results of the different studies could be 
attributed to the different vibration conditions used in the different studies. For example, some 
studies used vertical vibration while others used pivoting vibration. Some studies used only one 
vibration frequency while others used multiple vibration frequencies. In addition, the exposure 
duration and subject postures and physical characteristics differed among the different studies. 
Some vibration condition and body posture might be useful for a certain medical 
condition/training exercise but not others [13]. 

Despite the claimed benefits from using whole-body vibration training machines, the machines 
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should be used with care. Previous research has shown possible discomfort and adverse effect of 
whole-body vibration exposure at magnitudes less than those used with whole-body vibration 
machines [14]. Therefore, International and local standards have been developed to control the 
exposure to vibration (e.g. [15]). Those standards are not necessarily applicable to the vibration 
produced by whole-body vibration training machines due to the different vibration characteristics 
produced by those machines from those used in the standards. However, there is certainly a need 
for developing protocols/standards that protect the users’ health from overdose exposure to 
vibration or wrong use of the machine. 

Before developing the standards, it is essential to understand the biodynamic responses to 
vibration that show how the vibration is transmitted through the human body. This can be done 
by exposing the body to a controlled vibration and measuring the response (for example in terms 
of acceleration) at different locations on the body [4, 9, 11, 13, 16]. Those data can then be used 
to develop the required standards. The biodynamic responses to vibration can also be used to build 
models that help understand the response to vibration and/or predict any possible risk arising from 
misusing the whole-body vibration training machines. Although such models have been presented 
for low frequency and low vibration magnitude cases [17-19], no previous work has attempted to 
build a model that can predict the response of the human body to vibration under whole-body 
vibration training conditions. 

Using biodynamic models to study the influence of numerous variables on the human 
Bio-Response has the advantage of reducing cost and time compared to experimental 
investigations. Elaborative experimental investigations might also be laden with inconsistencies 
because of unavoidable errors. Two approaches can generally be followed to build biodynamic 
models. In the first approach, the human body is modelled as a single or a multi-degree of freedom 
system depending on the objective of the study. This is an analytical approach, in which the body 
is modelled as rigid bodies connected by springs and dampers to represent the dynamic properties 
of the body tissue. Lumped parameter models and finite element models fall under this approach. 
The complexity of this approach depends on the number of segments and the proposed degree of 
freedom [20-23]. In the second approach, the whole-body is treated as a black box and the goal of 
the model is to predict the response of some parts of the body given a specific input. Artificial 
Intelligent techniques fall under this approach. Several algorithms can be used to mimic the model, 
such as Artificial Neural Network (ANN) [24-27], Autoregressive Moving Average (ARMA) 
[28, 29], and Fuzzy Logic [30]. The choice between the two approached depend on the application 
and the objective of the study. In the present work, the second approach, and in particular the 
artificial neural network, will be used to build the model.  

ANN is a well-known modelling tool that is used for prediction, pattern recognition, data 
fitting, and classifications of complex systems [24]. It possesses the ability to learn and generalize 
functions from rounds of training as well as extract essential information from data [31-33]. ANN 
modelling has the building blocks or elements called ‘neurons’ that are interconnected in multiple 
layers through learned weights. This structure identifies the input-output pattern; the ANN 
constructs the relations that leads the inputs to the outputs through the weights, then, it uses this 
relation to predict the output of the missing input data, by using a high nonlinearity 
interpolation/fitting functions [24, 33, 34]. In the literature, several works used ANN for its 
simplicity, and its high performance. The training process to obtain the weights is simple, and it 
does not take long period of time. Usually the match rate of the outputs for these models are above 
90 % to the data used for the training [24-27]. Therefore, the ANN offers a useful tool to predict 
the nonlinear biodynamic response while dealing with holistic problem of numerous variabilities.  

The objective of this work is to present an artificial neural network (ANN) model that can 
predict the transmissibility of the vibration to the head (magnitude and phase) under whole-body 
vibration training conditions. The experimental data used to train and verify the model have been 
reported previously in [13]. The model will use the characteristics of the subjects (height, weight, 
body mass index and age), the vibration frequency and the subject standing posture to predict the 
magnitude and phase of the transmissibility of the vibration to the head. Since whole-body 
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vibration training machines use a fixed exposure at each frequency for all users regardless of their 
body characteristics, different vibration will be transmitted through the bodies of users having 
different body characteristics. Hence, for some subjects, the transmitted vibration could be more 
or less than required to, for example, train a certain muscle. Models like that proposed in this paper 
can be integrated with whole-body vibration machines in order to choose the suitable exposure 
based on the user’s characteristics. Such models not only help in efficient training but also prevent 
subjects from being exposed to vibration with doses that may lead to injuries due to high 
transmissibility. The model presented in this work is a first step for building more comprehensive 
models that can be used to select the vibration input suitable for training specific muscles in 
different parts of the body. To the best of the authors’ knowledge, the application of ANN to 
predict the whole-body vibration of a standing body on a vibration training machine has not been 
attempted previously. The rest of the paper is organized as follows: Section 2 describes the system 
under study with the factors of the height, weight, body mass index, age, frequency and standing 
posture are taken in consideration. The methodology is presented in Section 3, where the data, the 
ANN, and the Genetic Algorithm (GA) are discussed, and their setups are explored. Sections 3 
and 4 are dedicated to the results and discussions, and conclusion and future works, respectively. 

2. Problem formulation  

Studies have shown that biodynamic responses to vibration depend on several factors such as 
posture and vibration frequency. Moreover, the high inter-subject variability usually found in the 
biodynamic responses implies that the responses depend on the subject characteristics. This 
indicates that the exposure to whole-body vibration training has to be customised with respect to 
the trainee characteristics instead of being fixed at a certain amplitude for all subjects. In this work, 
Genetic Algorithm (GA) and Artificial Neural Networks (ANN) are used to study the effect of 
selected body characteristics on the transmissibility to the head (magnitude and phase) of standing 
subjects under whole-body vibration training conditions. A model is developed to predict the 
transmissibility to the head using several inputs including the body characteristics, posture and 
vibration frequency. The ANN model will be trained using experimental data reported previously 
[13]. This work targets modelling the transmissibility of the human body when standing on a 
whole-body vibration training machine operated at different frequencies. Subjects, with 
anthropometric properties summarized in Table 1, were exposed to sinusoidal vertical vibrations. 
The transmissibility of the head, in term of magnitude and phase, was calculated using acceleration 
measured on the vibrating plate and the head of the subjects. The safety guidelines were described 
to each subject, and then each subject signed a consent form approved by the Huma Research 
Ethics Committee of University of Sharjah. 

Table 1. Anthropometric details of the subjects 
 Min Max Mean Standard deviation 

Mass (kg) 66.5 80.4 72.7 5.3 
Height (m) 1.63 1.78 1.71 0.041 
Age (years) 19 45 25.6 7.8 
BMI (kg/m2) 20 27 24.9 1.8 

3. Methodology  

Statistical modelling tools are used for quantitative description of the effects of various factors 
on the whole-body vibration system. In this work, the following factors are considered; frequency, 
posture, mass, height, age, and body mass index (BMI). 

3.1. Data sources and pre-processing 

The experimental data used to build and verify the neural network model has been reported 
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previously in [13]. A brief description of the experiment will be given here.  
Nine standing male subjects were exposed to whole-body vibration produced by a whole-body 

vibration training machine [13]. The input vibration stimuli consisted of sinusoidal vertical 
vibration at 9 different frequencies (17, 20, 24, 28, 31, 35, 38, 42 and 46 Hz). At each frequency, 
the subjects stood on the vibrating plate of the vibration machine and were exposed to vibration 
while adopting four different postures one at a time. In the first posture, the subjects stood with 
their heels lifted up, their backs straight up and their knees slightly bent (bent knee posture, BK). 
In the second posture, the subjects locked their knees and tilted their upper bodies to the front 
creating an angle of about 110° between their lower body and upper body (locked knee posture, 
LK). In the third posture, the subjects stood with their right foot to the front and left foot to the 
back (foot front/back posture, FB). In the fourth posture, the subjects stood with one leg with a 
slight bending in the knee (one leg posture, OL). With all postures, the subjects stood barefooted 
and were instructed to look straight ahead during the exposure to vibration. Each exposure 
condition lasted 5 seconds followed by a 20-second resting period to minimise the effect of fatigue. 

During the exposure to vibration, the vertical acceleration of the vibrating plate (𝑎) and the 
vertical acceleration of the head (𝑎ு ) were measured for each condition using piezo-electric 
accelerometers (PCB PIEZOTRONICS 352C03). The accelerations were acquired at 256 samples 
per second via a data acquisition system (DATA TRANSLATION DT9837) and QuickDAQ 2013 
software. The transmissibility to the head (𝑇𝑟𝑎𝑛𝑠ሺ𝑓ሻ) at each frequency 𝑓 was calculated as the 
ratio between the root mean square (r.m.s.) of the acceleration of the head (𝑎ு) to the r.m.s. of the 
acceleration of the platform (𝑎 ) as shown in Eq. (1). The phase angle (𝜃ሺ𝑓ሻ) between the 
acceleration of the head (𝑎ு) and the acceleration of the platform (𝑎) was calculated using the 
dot product as shown in Eq. (2): 

𝑇𝑟𝑎𝑛𝑠ሺ𝑓ሻ = 𝑟.𝑚. 𝑠. ሺ𝑎ுሻ𝑟.𝑚. 𝑠. ሺ𝑎ሻ, (1)𝜃ሺ𝑓ሻ = cosିଵ 𝑎ு ∙ 𝑎|𝑎ு|ห𝑎ห. (2)

3.2. ANN modelling 

Multilayer perceptron (MLP) network is a feedforward ANN that consists of an input layer, 
an output layer, and at least one hidden layer between the input and output layers. Each layer has 
at least one building block called “neuron”. Each neuron combines the outputs of the previous 
layer after adjusting them with appropriate weight and biases to obtain a single value, 𝑉. Beside 
the input neurons, each neuron propagates 𝑉  through a function, referred to as the activation 
function, as shown in Fig. 1 [33, 35, 36]. The activation function in use as default in Matlab 2017a 
is the hyperbolic tangent (tanh), also known as Tangent-Sigmoid function (“tansig”), and is 
expressed in Eq. (3): 

tanhሺ𝑥ሻ = 𝑒௫ − 𝑒ି௫𝑒௫ + 𝑒ି௫ . (3)

Another well-known activation function is the log-sigmoid function (“logsig”), which is 
expressed in Eq. (4): logsigሺ𝑥ሻ = 11 + 𝑒ି௫. (4)

The structure of the ANN is designed to accommodate nine subjects, with different body 
masses, heights, ages, and body mass indices, four standing postures, and nine different 
frequencies for the sinusoidal vertical vibration. This resulted in 324 datasets. These datasets were 
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divided into three groups of 228, 48, and 48 datasets for training, testing and validation, 
respectively. The inputs to the ANN are in this order: Posture, frequency, mass, height, age, and 
body mass index. On the other hand, the outputs of the ANN are in this order: transmissibility 
magnitude and phase. To improve the convergence speed, and to reduce the numerical instability 
in obtaining the weights, the inputs and outputs were scaled to the range of {0-1}. The postures 
were given values of {0.25, 0.5, 0.75 and 1} to represent posture (BK), posture (LK), posture (FB) 
and posture (OL), respectively. The activation function used here was the “logsig” function as the 
data were normalized. Once the input and the output layers were set, the hidden layers and their 
neurons should be selected. This was not an easy task. The selection should be good enough to 
give a prediction within acceptable Root Mean Squared Error (RMSE), but it should not be 
overfitted. Therefore, the maximum number of neurons in each layer was set to 25, and the 
maximum number of hidden layers was set to 4. GA was used to find the best solution of the many 
different combinations. Results showed that two hidden layers were good enough, and if the 
number of layers increased, the model become over-fitted without improving the RMSE. GA setup 
and parameters is discussed in the next section. Back propagation (BP) with the Levenberg 
Marquardt training algorithm (“trainlm”) is used to train the ANN in order to achieve minimum 
(RMSE) within 1000 epochs. The training algorithm started by selecting the weights and biases 
in a random manner, which affected the model performance. To overcome this, each model was 
trained 20 times, and the best performance was selected. This caused a large computational/time 
value, but the benefit of having lower RMSE was accomplished. 

 
Fig. 1. Single neuron in MLP network [36] 

The reliability of the neural network was tested based on the coefficient of determination (𝑅ଶ) 
in the training part Eq. (5). In selecting the best ANN for hidden layer combination, the RMSE 
value was used Eq. (6). The minimum RMSE for the same setup indicates highest 𝑅ଶ. To compare 
between different models, several statistical indices were used; the RMSE for each normalized 
and non-normalized output (𝑅𝑀𝑆𝐸 and 𝑅𝑀𝑆𝐸, Eq. (6, 7)), the RMSE of both normalized 
outputs (𝑅𝑀𝑆𝐸ଶ, Eq. (8)), the Maximum Absolute Error for each normalized and non-normalized 
output (𝑀𝐴𝐸 and 𝑀𝐴𝐸, Eq. (9, 10), and the 𝑀𝐴𝐸 of both normalized outputs Eq. (11): 

𝑅ଶ = 1 −∑ ൫𝑂௧௨,ே − 𝑂௧ௗ,ே ൯ଶேୀଵ∑ ൫𝑂௧௨,ே − 𝑂ത௧௨,ே ൯ଶேୀଵ ,      𝑖 = 1,2, (5)

𝑅𝑀𝑆𝐸 = ඨ1𝑁 ൫𝑂௧௨,ே − 𝑂௧ௗ,ே ൯ଶேୀଵ ,      𝑖 = 1,2, (6)

𝑅𝑀𝑆𝐸 = ඨ1𝑁 ൫𝑂௧௨, − 𝑂௧ௗ,൯ଶேୀଵ ,      𝑖 = 1,2, (7)

𝑅𝑀𝑆𝐸ଶ = 12ඨ1𝑁 ൫𝑂௧௨,ଵே − 𝑂௧ௗ,ଵே ൯ଶேୀଵ + 1𝑁 ൫𝑂௧௨,ଶே − 𝑂௧ௗ,ଶே ൯ଶேୀଵ , (8)
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𝑀𝐴𝐸 = max൫ห𝑂௧௨,ே − 𝑂௧ௗ,ே ห൯ ,       𝑖 = 1,2, (9)𝑀𝐴𝐸 = max൫ห𝑂௧௨, − 𝑂௧ௗ,ห൯ ,       𝑖 = 1,2, (10)𝑀𝐴𝐸ଶ = 12ට൫max൫ห𝑂௧௨,ଵே − 𝑂௧ௗ,ଵே ห൯൯ଶ + ൫max൫ห𝑂௧௨,ଶே − 𝑂௧ௗ,ଶே ห൯൯ଶ, (11)

where 𝑂௧௨, , 𝑂௧ௗ, , 𝑂௧௨,ே  and 𝑂௧ௗ,ே  are the actual output 𝑖 vector before it was 
normalized, the output 𝑖 vector obtained from the ANN and after it was scaled, the actual output 𝑖  vector after it was normalized, and the output 𝑖  vector obtained from ANN, respectively. 𝑂ത௧௨,ே  is the average of the normalized output 𝑖. 𝑁 is the total number of the available data. 

3.3. GA for optimization 

Increasing the number of the hidden layers generally improves the performance of the model. 
However, it also makes the optimization problem harder. For example, hidden layers up to and 
including four layers with each layer having up to 25 neurons, results in about 406,900 models. 
Bearing in mind that each model needs to be trained 20 times to choose the best model, more than 
8 million simulations need to be performed to obtain the best model. This issue was raised in [24], 
and it was suggested to use meta-heuristics optimization algorithms to solve this problem. In this 
work, a step has been taking into this path, as Genetic Algorithm (GA) has been used to obtain the 
number of layers and the number of assigned neurons. 

 
Fig. 2. GA Flowchart 

GA is a well-known tool that is used for optimization [37-39]. It is considered as a multi-
directional searching method that relies on reproduction (selection), crossover and mutation. The 
process starts with a number of solutions chosen randomly to create an initial population. Each 
solution is considered as a candidate that will be used to generate the ANN model and obtain the 
RMSE. Low values of RMSE indicate that the solution is a good candidate. The solutions are 
encoded as binary digits to create the chromosomes. The best candidates are kept, and the bad 
candidates are eliminated. The best candidates are then used to create a new generation by taking 
parts from their chromosomes to produce new chromosomes (crossover), and then the low 
probability features/portions are changed (mutation). The method is repeated several times until 
the performance is achieved or the maximum number of epochs is reached. Fig. 2 summarizes the 
GA procedure. In this work, a population of 50 solutions were obtained. The solution contains the 
number of the neurons assigned for each layer as follow: 𝑠𝑜𝑙 = #of neuron in ሼ 𝐿1    𝐿2    𝐿3    𝐿4ሽ. (12)

With minimum and maximum values of Eq. (13) and Eq. (14), respectively: 𝑚𝑖𝑛ሺ𝑠𝑜𝑙ሻ = ሼ1 0 0 0ሽ, (13)
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𝑚𝑖𝑛ሺ𝑠𝑜𝑙ሻ = ሼ25 25 25 25ሽ. (14)

The solutions contain only integer numbers, which can be achieved by setting the “IntCon” 
part of the GA Matlab’s function to {1, 4}. Once the solution is assigned, the ANN is trained 
20 times and the best RMSE is assigned as the fitting value to that solution. The maximum epoch’s 
number was set to 5000 epochs. The results were repeated 30 times to reduce the effect of using 
the random process. The results showed that the best candidates (best populations) for all the 
simulations in all times are limited to two hidden layers only. Therefore, it was safe to assume that 
going for third and fourth layer will extensively increase the computational time without 
improving the results or at least overfitting the data. Therefore, in the results section, the two 
hidden layers will be considered in more details. 

4. Results and discussions  

The GA confirmed that choosing two hidden layers is good enough to model the system. 
Therefore, this section is dedicated to two hidden layers only. Two hidden layers models with 
neurons between {0-25} in each layer were modelled. The Root Mean Squared Error (RMSE) and 
the Maximum Absolute Error (MAE) for magnitude and phase were calculated for 
non-normalized inputs/outputs and are shown in Fig. 3 and Fig. 4, respectively. The average 
RMSE and MAE were calculated and plotted in Fig. 5. 

 
a) 

 
b) 

Fig. 3. Non-normalized RMSE versus numbers of neurons in 2-layer: a) magnitude, b) phase 

The best solution was found in three scenarios. The first scenario consisted of 22 neurons in 
the first hidden layer and 25 neurons in the second hidden layer. The second scenario comprised 
13 neurons in the first hidden layer and 12 neurons in the second hidden layer. The third scenario 
consisted of 18 neurons in the first hidden layer and 24 neurons in the second hidden layer. The 
results of these three models are illustrated in Fig. 6 and Fig. 7. To choose the best candidate, these 
three models were examined in further details. The RMSE, RMSE %, MA, and MA % were 
obtained and listed in Table 2, and regression, best validation error, and convergence rate were 
obtained and listed in Table 3. These comparisons are shown in Fig. 8 to Fig. 11. 

Table 2. Comparison between best candidates of two-hidden-layer models in terms of RMSE and MA 

Layer 1 Layer 2 RMSEnon 
magnitude 

RMSEnon phase 
(degree) RMSE2 MAMnon MAPnon 

(degree) MAE2 

22 25 0.062 11.9 7.30 0.39 66.6 0.2 
13 12 0.065 12.0 7.42 0.36 49.8 0.17 
18 24 0.061 13.5 8.11 0.31 45.7 0.15 
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a) 

 
b) 

Fig. 4. Non-normalized MAE versus numbers of neurons in 2-layer: a) magnitude, b) phase 

 
a) 

 
b) 

Fig. 5. RMSE2 and MAE2 for the overall performance  
versus numbers of neurons in 2-layer: a) RMSE2, b) MAE2  

 
Fig. 6. Estimated magnitude of the best candidates in ANN models and their corresponding errors 
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Fig. 7. Estimated phase of the best candidates in the ANN models and their corresponding errors 

Table 3. Comparison between best candidates of two-hidden-layer models  
in terms of regression and validation 

Layer 1 Layer 2 𝑅ଶ magnitude 𝑅ଶ phase 𝑅ଶ overall Epochs Best validation error 
22 25 0.965 0.9336 0.959 13 0.0050 
13 12 0.961 0.9299 0.956 22 0.0058 
18 24 0.965 0.9103 0.948 8 0.0063 

 

   
Fig. 8. Regression for 2-hidden layers of {22 25 neurons} 

Fig. 9. Regression for 2-hidden layers of {13 12 neurons} 
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Fig. 10. Regression for 2-hidden layers of {18 24 neurons} 

 
a) 

 
b) 

 
c) 

Fig. 11. Training results for 2-hidden layers of: a) {22 25 neurons}, b) {13 12 neurons};  
c) {18 24 neurons} neurons and their convergence rate 

The best results in terms of RMSE, MAE, epochs, validation error, and percentage overall 
performance, taking into consideration the overfitting phenomenon, is the second solution with 13 
and 12 neurons in the first and the second hidden layer, respectively. Once this is set, see Fig. 12, 
the biodynamic response is examined. The posture effect on the response is illustrated in Fig. 13. 
To find the other parameters effects, the third posture was considered. The mass effect can be 
found in Fig. 14, followed by Fig. 15 that shows the effect of the BMI. The height and age effects 
were found after setting the frequency at 17 Hz, and they both were illustrated in Fig. 16 and 
Fig. 17, respectively. 

O
ut

pu
t ~

= 
0.

95
*T

ar
ge

t +
 0

.0
06

5

0.2 0.4 0.6 0.8
Target

0.2

0.4

0.6

0.8

O
ut

pu
t ~

= 
0.

83
*T

ar
ge

t +
 0

.0
47

Phase: R=0.9103

Data
Fit
Y = T

0 0.2 0.4 0.6 0.8
Target

0

0.2

0.4

0.6

0.8

O
ut

pu
t ~

= 
0.

89
*T

ar
ge

t +
 0

.0
2

Overall: R=0.94767

Data
Fit
Y = T



HYBRID ARTIFICIAL GENETIC – NEURAL NETWORK MODEL TO PREDICT THE TRANSMISSION OF VIBRATION TO THE HEAD DURING WHOLE-BODY 
VIBRATION TRAINING. M. ALSHABI, N. NAWAYSEH, M. BETTAYEB 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 715 

 
Fig. 12. Proposed ANN 

 
Fig. 13. Magnitude and phase for different postures (𝑆 is the subject number)  

Fig. 3, Fig. 4, and Fig. 5 show a comprehensive study for gradually increasing the number of 
neurons in the hidden layers. In general, increasing the neurons reduces the RMSE, MAE, 
and %RMSE, but not in a smooth manner. This is due the instability in the learning process (i.e. 
the random selection of initial weights). The histograms in these figures show that the majority of 
models follow the Gaussian (Normal) distribution, with mean values of 0.08, and 17.5 degree for 
the RMSE of both magnitude and phase, respectively, 0.55, and 75 degree for the MAE of both 
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magnitude and phase, respectively, and 7.5 %, and 50 % for both RMSE of both magnitude and 
phase, respectively. More than 50 models are in the range of the best candidate using RMSE 
criteria; < 0.75 and <2 0 % for both magnitude and phase, respectively. Using the MAE criteria, 
almost 40 models satisfy the magnitude threshold (< 0.35), but no model satisfy the phase 
threshold (< 20 %). This leads to have almost 50 models that satisfy %RMSE and only few models 
that satisfy %MAE. Among these models, three models are selected that fall within the 50 models, 
and have lowest MAE and %MAE. These models are {22 25 neurons}, {13 12 neurons}, and 
{18 24 neurons} ANN models.  

 
a) 

 
b) 

Fig. 14. Performance for the 3rd posture versus masses and frequencies: a) magnitude, b) phase 

 
a) 

 
b) 

Fig. 15. Performance for the 3rd posture versus BMIs and frequencies: a) magnitude, b) phase 

Comparing these models together; Fig. 6 to Fig. 11 and Table 2 to Table 3, the third model; 
{18 24 neurons}, has the fastest convergence rate; 8 epochs compared to 13 for {22 25 neurons} 
and 22 for {13 12 neurons}. However, it has the worst RMSE, MAE, %RMSE, 𝑅ଶ, and best 
validation error. The first model; {22 25 neurons}, has the best RMSE, %RMSE, 𝑅ଶ, and best 
validation error. However, the large MAE, which reaches 66.6 % for phase calculation, indicates 
overfitting occurrence. Therefore, the second model, {13 12 neurons} is the best candidate after 
taking in to consideration all the test mentioned before. It has the second best %RMSE, %MAE, 𝑅ଶ , and best validation error of values 7.4 %, 32 %, 95.6 %, and 0.0058, respectively. The 
convergence rate is the slowest compared to the other two models; 22 epochs compared to 13 and 
8 for the {22 25 neurons} and {18 24 neurons}, respectively. However, the time required to obtain 
the results is the shortest; 10.05 seconds compared to 53.21 and 29.1 seconds for the  
{22 25 neurons} and {18 24 neurons}, respectively. The phenomena of overfitting is less likely 
to occur in this model compared to the others. Therefore, the system contains 13 neurons in the 
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first layer and 12 in the second layer, as shown in Fig. 12. Taking the results of the model {13 12 
neurons}, the following observation are obtained from Fig. 13 to Fig. 17: 

– Posture 3 has the highest transmissibility magnitude, higher than Posture 2. This is followed 
by Posture 4, and Posture 1, which has the lowest transmissibility magnitude. 

– Phase has no major effect on the bio-response performance. 
– In general, the smallest mass values have the highest transmissibility magnitude. This 

magnitude decays as the mass increases. 
– Same observation obtained for transmissibility phase. Small mass values have the largest 

phase around 30 Hz. Increasing the mass value, shifts the maximum phase value to the highest 
frequency; around 47 Hz. 

– As the mass value is a major factor in obtaining bio-response performance, BMI gives a 
better understanding and more clear observations, as it takes the mass value compared to the height 
value. The results show that, for small BMI, the transmissibility magnitude becomes large. This 
will decrease as the BMI increases. 

– BMI has the same effect on transmissibility phase as the mass. 
– The height does not have a significant effect on the transmissibility magnitude. It is better 

for future research to merge the mass and height to one factor; BMI. Taking the factors separately 
will not improve the results. 

– In general, younger subjects have higher transmissibility magnitude compared to older 
subjects. However, more work is needed to be done in this area. 

 
a) 

 
b) 

Fig. 16. Performance for the 3rd posture at 17 Hz versus masses and heights: a) magnitude, b) phase 

 
a) 

 
b) 

Fig. 17. Performance for the 3rd posture at 17 Hz versus ages and masses: a) magnitude, b) phase 
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5. Conclusions 

A model using genetic algorithm (GA) and artificial neural network (ANN) has been presented 
to study the effects of various factors on the transmissibility of vibrations to the head during 
whole-body vibration training. The optimisation of the number of layers and neurons of the ANN 
model resulted in two hidden layers with one layer having 13 neurons while the other having 12 
neurons. This combination was efficient in predicting the transmissibility to the head (magnitude 
and phase) reported in a previous study. The model showed that the transmissibility is affected 
mostly by frequency, body mass index (BMI), age, and posture, while height showed the least 
effect. This model is a first step for developing models that can be integrated with the vibration 
training machines in order to customise the exposure to vibration based on the trainee 
characteristics. 
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