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Abstract. This paper proposes one of the possible schemes of realization of the debalance for an 
inertial vibration exciter of a resonant vibrating machine that can automatically change the 
amplitude of the disturbing force by changing the eccentricity and, thus, maintain the required 
characteristics of the vibration process (vibration velocity, vibration acceleration, etc.) as the mass 
of technological load and, consequently, resonant frequency of the system changes. 
Keywords: inertial vibration exciter, vibrating machine, resonance, self-regulated debalance. 

1. Introduction 

In modern practice, vibration machines with inertial exciters are widely used, which develop 
a disturbing force transmitted to the object being processed due to the rotation of an unbalanced 
element (debalance) with a given angular velocity [1-4]. In most cases, inertial vibration exciters 
with a constant static moment of a debalance are used. Usually, vibration machines with inertial 
vibration exciters are operated at beyond-resonance frequencies, which requires the use of 
vibration exciters with a significant imbalance and with a large drive power. The resonant mode 
of oscillations of the dynamic system of the vibrating machine can be provided by a vibration 
exciter with a significantly lower imbalance and, consequently, a drive with lower power, which 
ensures high energy efficiency of the processes. However, due to the instability of the resonant 
modes of operation of vibrating machines for their implementation, in particular, when the mass 
of technological load is changing, the control system [5-7] is used. 

It is known that the indicators of various vibration technological processes (such as the speed 
of the process, machine performance, etc.) are often determined by the vibration velocity or the 
vibration acceleration of the working body of the vibrating machine. Despite a slight change in 
the natural frequency of the system (within 5-15 % of the natural frequency of the unloaded 
machine), caused by a change in the mass of the technological load on a vibrating machine with a 
constant imbalance, when it is tuned to resonance, there is a significant change in the amplitude 
of the working body oscillations (within 20-50 %, depending on the damping). In Fig. 1 for 
illustration the amplitude-frequency characteristics (AFC) curves are built for three different total 
mass values of the system, where indicated: 𝜉 = 𝐴/Δ𝑙௦௧, 𝜐 = 𝜔/𝜔, 𝜇 = (𝑚 + 𝑚)/𝑚, where 𝐴  – the amplitude of resonant oscillations, Δ𝑙௦௧ = 𝑚𝑔/𝑘  – the static deformation of the 
machine’s elastic suspension with stiffness 𝑘, 𝜔 – the natural frequency, 𝑚, 𝑚 – the mass of 
the unloaded machine and mass of technological load, g - gravity acceleration. 

In this case, the vibration velocity or vibration acceleration of the working body may vary by 
several times. For example, when the total mass of the system is changed by 1.5 times, it can lead 
to a change in vibration velocity by 2.25 times, and vibration accelerations – by 2.75 times, which 
can significantly affect the performance indicators of the process. 

In this regard, it is necessary to implement the principle of automatic variation of the disturbing 
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force amplitude, at which the necessary amplitude of the working body oscillations is ensured in 
accordance with the required value of vibration velocity (or vibration acceleration) when the mass 
of the technological load changes. This automatic change in the amplitude of the disturbing force 
can be realized by changing the eccentricity of the debalance. 

The authors of this paper have previously proposed the model of a self-regulating debalance 
of an inertial vibration exciter capable of automatically changing the amplitude of the disturbing 
force by changing the eccentricity, and thereby maintaining the required characteristics of the 
vibration process (vibration velocity, vibration acceleration, etc.) when the mass of the 
technological load and resonance frequency of a system change [8].  

This paper describes one of possible debalance realization schemes with an automatic change 
in eccentricity, satisfying the conditions of constant vibration velocity or vibration acceleration of 
the technological process. 

 
Fig. 1. AFC of the system depending on the total mass change 

2. Description and calculation of parameters of self-regulated debalance 

The debalance of the exciter consists of two parts Fig. 2 (a), (b). The main part of the debalance 
is made in the form of a solid 1 with a cavity in which the counterweight 2 is placed, pressed 
against the base of the cavity by the elastic element 3. The distance from the center of mass of the 
main body to the axis of rotation is 𝑟ௗଵ, and the center of mass of the counterweight to the axis of 
rotation in the initial state is 𝑟ௗଶ . Moreover, the centers of mass of the main body and the 
counterweight are located opposite to the axis of rotation. The static moment of the main body 
(without counterweight) is set greater than the static moment of the mass of the counterweight at 
any of its possible displacements inside the cavity, i.e. 𝑚ௗଵ𝑟ௗଵ > 𝑚ௗଶ𝛿 , for 𝑟ௗଶ ≤ 𝛿 ≤ 𝛿୫ୟ୶ 
where 𝑚ௗଵ  – the mass of the main body, 𝑚ௗଶ  – the mass of the counterweight, 𝛿  – the 
displacement of the counterweight from the axis of rotation of the debalance, 𝛿௫  – the 
maximum constructively possible displacement of the counterweight. 

 
a) 

 
b) 

Fig. 2. Self-regulating debalance of inertial vibrator 
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During acceleration, the counterweight under the action of centrifugal force is displaced from 
the axis of rotation by a distance 𝛿 = 𝛿(𝜔) , which is determined from the equality of the 
centrifugal force and the restoring force 𝐹(𝛿) of the elastic element, i.e.: 𝛿(𝜔) = 𝐹(𝛿)/𝑚ௗଶ𝜔ଶ. 
The total eccentricity of such a composite debalance is 𝑟ௗ(𝛿) = (𝑚ௗଵ𝑟ௗଵ − 𝑚ௗଶ𝛿) 𝑚ௗ⁄ , where 𝑚ௗ = 𝑚ௗଵ + 𝑚ௗଶ is the total mass of the debalance. 

So the total eccentricity of the debalance increases when the frequency of rotation of the 
vibration exciter decreases, thereby increasing the amplitude of the disturbing force and, 
consequently, the amplitude of oscillations of the vibrating machine's working body and, 
conversely, increasing the frequency of rotation of the vibration exciter leads to decreasing the 
amplitude of oscillations of the working body. The force 𝐹(𝛿) is a previously unknown function 
of the counterweight displacement, and the type of this function depends on the design scheme of 
a particular machine and the requirements for the parameters of the generated vibration. The 
characteristic of the elastic element should be chosen, in particular, from the condition of constant 
vibration velocity (or vibration acceleration) of the vibrating machine's working body. 

The calculation of the design parameters of such debalance proposed below is based on a 
simplified calculating scheme of a vibrating transport-technological machine, the oscillations of 
which are excited when the self-regulating debalance 3 rotates Fig. 3. The working body of the 
machine is a tray 2, mounted on linear elastic-viscous elements 4 of stiffness 𝑘 and damping 𝑏, 
which, in turn, are set on a fixed base. Located on the tray, the mass of the processed material 
(technological load) 1 may slowly vary in time relative to the oscillation period of the platform. 
In this scheme, it is assumed that the tray is an absolutely rigid body and can oscillate only in the 
vertical direction along the 𝑦 axis, which is measured from the position of the static equilibrium 
of the center of mass of the unloaded vibrating machine. It is also assumed that when the 
technological load mass changes, the resonance tuning is supported by the frequency control 
system with feedback on the mutual phase shift between the disturbing force and the working 
body oscillations [5]. 

 
Fig. 3. Calculating scheme of resonance vibrating machine with the self-regulating debalance 

Debalance is characterized by five main parameters: the mass of the main body of debalance 𝑚ௗଵ, its eccentricity 𝑟ௗଵ, mass of counterweight 𝑚ௗଶ, maximum and minimum eccentricity 𝑟ௗଶ 
and 𝛿୫ୟ୶ which are related by the following relations: ቄ𝑚ௗ𝑟ௗ୫ୟ୶ = 𝑚ௗଵ𝑟ௗଵ − 𝑚ௗଶ𝑟ௗଶ,𝑚ௗ𝑟ௗ୫୧୬ = 𝑚ௗଵ𝑟ௗଵ − 𝑚ௗଶ𝛿୫ୟ୶.  

The range of variation of the total imbalance depends on the range of natural frequencies of 
the loaded and unloaded vibrating machine. In this paper, for definiteness, it is assumed that the 
range of mass variation of the entire system 𝑚 ∈ [𝑚,1.3𝑚]. In this case, it is most often possible 
to isolate the nominal mass of the vibrating machine 𝑚 = 𝑚 + 0.8𝑚୫ୟ୶, on which it is 
required to maintain the operating frequency and amplitude of oscillations. It may be assumed that 
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the efficiency of the technological process is ensured by the constant vibration velocity of the 
working body, regardless of the change in the oscillation frequency: 𝑉 = 𝐴(𝑚)𝜔(𝑚) = 𝐴𝜔. (1) 

At the same time, to minimize the power consumption of the drive of the exciter, the debalance 
should have a minimum moment of inertia. 

To design such a debalance, it is necessary to define a specific geometry of all the constituent 
elements. For definiteness, the debalance is proposed to have the form presented in Fig. 4, where 
two extreme positions of the counterweight are shown. This form is close to the form of debalance, 
usually used for the debalances with a constant value of the static moment [2]. 

Due to the interdependence of the geometric parameters, part of the parameters is set from 
strength considerations (ℎ௦௧, ℎௗ, 𝑟௩, ℎ), and part varies (𝐻, 𝜑, 𝑅ଵ, ℎௗଶ, ℎ), where ℎ is the width 
of the debalance. 

 
Fig. 4. Calculating scheme of resonance vibrating machine with the self-regulating debalance 

The mass characteristics are determined by the density of the debalance material, which allows, 
if necessary, to reduce its size when using the material with a density greater than the density of 
the main debalance body. 

For further we will move on to dimensionless parameters by entering the following scales:  𝑚 – mass of an unloaded vibrating machine, 𝜔 – natural frequency of an unloaded vibrating 
machine, 𝑘 = 𝜔ଶ𝑚 – stiffness of an elastic suspension of a vibrating machine, Δ𝑙௦௧ = 𝑚𝑔/𝑘 – 
static deformation of the suspension of an unloaded vibrating machine, 𝑏 = 2ඥ𝑘𝑚 – critical 
damping of an unloaded vibrating machine. 

Dimensionless natural frequency of the system 𝜐 = ඥ1/𝜇, where 𝜇 = 𝑚/𝑚 and 𝜐 = 𝜔/𝜔, 
moreover, for an unloaded machine 𝜐୫ୟ୶ = 𝜐 = 1, and for a loaded machine – 𝜐୫ୟ୶ = ඥ1/1,3𝜇. 
From the condition of constant vibration velocity Eq. (1), the required dimensionless amplitudes 
of resonant oscillations at maximum and minimum loads 𝜉୫ୟ୶ = 𝜐𝜉/𝜐୫ୟ୶  and 𝜉୫୧୬ = 𝜐௧𝜉௧, where 𝜉 = 𝐴/Δ𝑙௦௧. 

The dimensionless resonant amplitude [10]: 𝜉௦ = 𝜇ௗ�̃�ௗ 𝑏෨⁄ , where 𝑏෨ = 𝑏/𝑏, 𝜇ௗ = 𝑚ௗ/𝑚 
and �̃�ௗ = 𝑟ௗ/Δ𝑙௦௧ . Dimensionless static moments of the debalance that provide resonant 
amplitudes of oscillations of an unloaded and loaded vibrator according to Eq. (1) have the form 𝜇ௗ�̃�ௗ୫୧୬ = 𝜉𝑏෨, 𝜇ௗ�̃�ௗ୫ୟ୶ = 𝜉୫ୟ୶𝑏෨ 𝜐୫ୟ୶⁄ . 
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When calculating, the following debalance design parameters were determined: dimensionless 
displacement of the counterweight 𝛿ሚ ∈ [�̃�ௗଶ, 𝛿ሚ୫ୟ୶] depending on the resonant frequency 𝜐  for 
various values of the counterweight mass 𝜇ଶ: 

𝛿ሚ(𝜐) = 𝜇ଵ𝜇ଶ − 2𝑏෨𝑉෨௧𝜇ଶ𝜐ଶ .  

Dimensionless force characteristic of the elastic element 𝐹෨(𝛿ሚ) of the debalance depending on 
the displacement 𝛿ሚ at various values of the mass of the counterweight 𝜇ଶ: 

𝐹෨൫𝛿ሚ൯ = 2𝑉෨௧𝜇ଶ𝑏෨𝛿ሚ𝜇ଵ − 𝜇ଶ𝛿ሚ .  

By specifying three parameters, for example 𝑅෨ଵ, 𝜑 and 𝐻෩, and using the parameter search with 
a certain step, the corresponding parameters ℎ෨  and ℎ෨ௗଶ  can be obtained and an array of 
geometrically possible debalance realizations that provide the desired change in the static moment. 
For each option, the dimensionless mass of the main body and the counterweight, the total mass 
and the total minimum and maximum eccentricity, the minimum and maximum inertia of the 
debalance are determined. Among these options, in accordance with the specific conditions (for 
example, the minimum moment of inertia), the feasible option is chosen. 

Further, the process is iterative in nature – a verification strength analysis is carried out, the 
structural dimensions are reduced (increased) and the variable sizes are recalculated in order to 
achieve an optimal result. 

Fig. 5 shows the graphs of the displacement of the counterweight depending on the natural 
frequency Fig. 5(a) and the mass of the counterweight and the power characteristics of the elastic 
element Fig. 5(b). The main feature of the obtained graphs is almost a linear characteristic of the 
rigidity of the elastic element of the debalance.  

 
a) 

 
b) 

Fig. 5. Dependencies: a) displacement of the counterweight depending on the natural frequency,  
b) the power characteristics of the elastic element depending on the mass of the counterweight 

3. Conclusions 

Summing up, it can be concluded that the proposed design of self-regulating debalance makes 
it possible to maintain the required vibration velocity of the working body of a resonant vibrating 
machine, regardless of the change in the mass of the process load. 
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