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Abstract. The paper proposes a constructive method for solving the stationary Kolmogorov-Feller 
equation with a nonlinear drift coefficient. The corresponding algorithms are constructed and their 
convergence is justified. The basis of the proposed method is the application of the Fourier 
transform. 
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1. Introduction 

This paper proposes an approach to constructing solutions of differential equations of 
fractional order of the Kolmogorov-Feller type. We consider equations with nonlinear  
coefficients, namely the case of a quadratic dependence of the drift coefficient on the independent 
variable. As far as we know, this method of construction is not presented in the literature. The 
advantage of the method is its effectiveness in numerical implementation. 

2. Mathematical model of the problem 

Let’s consider the form of the Kolmogorov-Feller Eq. (1) with the drift coefficient 𝛽 ≠ 0, 
which depends nonlinearly on the coordinate: 𝑑𝑑𝑥 ሾ(𝛼𝑥 + 𝛽𝑥ଶ)𝑊(𝑥)ሿ + 𝜈 න 𝑝(𝐴)ାஶ

ିஶ 𝑊(𝑥 − 𝐴)𝑑𝐴 − 𝜈𝑊(𝑥) = 0,     − ∞ < 𝑥 < +∞. (1)

In the literature, it is customary to consider the simplified case 𝛽 = 0. In our case for normal 
form we have: 

𝑊(𝑥) → 0௫→േஶ,        න 𝑊(𝑥)𝑑𝑥 = 1ାஶ
ିஶ , (2)𝑝(𝐴) ||→ஶሱ⎯⎯⎯ሮ 0,    න 𝑝(𝐴)ାஶ

ିஶ 𝑑𝐴 = 1. (3)

We assume 𝑝(𝐴) – analytical function and �̂�(𝑘) =  𝑝(𝑥)ାஶିஶ   𝑒௫𝑑𝑥 – it’s Fourier transform, 
where |𝐴| < 𝑅 or: �̂�(𝑘) = �̂� + �̂�ଵ𝑘 + �̂�ଶ𝑘+. . . ,    |𝑘| < 𝑘,    𝑘 ≫ 1. (4)

Insofar as Eqs. (2-3), we have: 
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�̂� = �̂�(0) = 1. (5)

In case 𝑝(𝑥) – even function, we have �̂�ଶ௦ିଵ = 0, 𝑠 = 1, 2,..., and �̂�(𝑘) – is real analytical 
function. From Eq. (2) we have: 

ቐන ห𝑊 (𝑘)ห𝑑𝑘 < ∞,ାஶ
ିஶ𝑊 (0) = 1.  (6)

Obviously, we can go from solving the Eq. (1) with Eq. (2), to the equation: 𝑖𝛽𝑊′′ (𝑘) − 𝛼𝑊ᇱ (𝑘) + 𝜈𝜌(𝑘)𝑊 (𝑘) = 0. (7)

From Eq. (6) we have: 

𝜌(0) = �̂�ଵ = න 𝑥𝑝(𝑥)ାஶ
ିஶ 𝑑𝑥, (8)𝜌(𝑘) = �̂�ଵ + �̂�ଶ𝑘 + �̂�ଷ𝑘ଶ+. . . ,    |𝑘| < 𝑘. (9)

Again, since �̂�(𝑘) → 0, |𝑘| → ∞, we get: 

𝜌(𝑘)~ −1𝑘 ,    (|𝑘| → ∞). (10)

3. Mathematical model analysis 

For: 𝑊 (𝑘) = 𝜑(𝑘)𝑒ି  ట()ௗೖబ , (11)

we get: 𝜑′′ + ൬−2𝜓 + 𝑖 𝛼𝛽൰ 𝜑′ + ൬𝜓ଶ − 𝜓′ − 𝑖 𝛼𝛽 𝜓 − 𝑖 𝜈𝛽 𝜌൰ 𝜑 = 0. 
Putting: 𝜓 = 𝑖 𝛼2𝛽, (12)

we’ll get for 𝜑(𝑘) following equation: 𝜑′′ − 𝑞(𝑘)𝜑 = 0, (13)

where: 𝜑(𝑘) = 𝑊 (𝑘)𝑒 ఈଶఉ, (14)𝑞(𝑘) = − 𝛼ଶ2𝛽ଶ + 𝑖 𝜈𝛽 𝜌(𝑘). (15)

For 𝑞(𝑘) we can highlight some properties. 
1) From Eq. (10) it follows: 
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𝑞(𝑘) → − 𝛼ଶ2𝛽ଶ ,    |𝑘| → ∞. (16)

      

2) From Eq. (19) we have: 

𝑞(𝑘) = − 𝛼ଶ2𝛽ଶ + 𝑖 𝜈𝛽 �̂�ଵ + 𝑖 𝜈𝛽 (�̂�ଶ𝑘 + �̂�ଷ𝑘ଶ+. . . ),    |𝑘| < 𝑘, (17)

or 𝑞(𝑘) = 𝑞 + 𝑞ଵ𝑘 + 𝑞ଶ𝑘ଶ+. . . ,    |𝑘| < 𝑘, (18a)

where: 

⎩⎨
⎧𝑞 = − 𝛼ଶ2𝛽ଶ + 𝑖 𝜈𝛽 �̂�ଵ,𝑞 = 𝑖 𝜈𝛽 �̂�ାଵ.  (18b)

3) Also: 𝑞(𝑘) = −𝛿(𝑘) + 𝑖 𝜈𝛽 Re𝜌(𝑘). (19)

Lemma 1. For ඥ𝑞(𝑘): 

ቀඥ𝑞(𝑘)ቁଵ = ඥ|𝑞(𝑘)| ൝12 ൭1 + ቆ1 + ሾRe𝜌(𝑘)ሿଶ𝜈ଶ𝛿ଶ𝛽ଶ ቇିଵ ଶ⁄ ൱ൡଵ ଶ⁄  
     −𝑖ඥ|𝑞(𝑘)| ቐ12 ቌ1 − ቆ1 + ሾRe𝜌(𝑘)ሿଶ𝜈ଶ𝛿ଶ𝛽ଶ ቇିଵଶቍቑଵ ଶ⁄ , (20)

is 𝐶ଶ by 𝑘 ∈ (0, +∞) and Re൫ඥ𝑞(𝑘)൯ଵ > 0 for 𝑘, which are large enough. 

4. Construction of the solution of the transfer theory problem 

We will use the well-known asymptotic theorem for solving the equation: 𝑢′′(𝑥) − 𝑞(𝑥)𝑢(𝑥) = 0, (21)

when 𝑥 → +∞. 
Theorem 1. Let in the Eq. (21) 𝑞(𝑥) ∈ 𝐶ଶ(0, ∞), 𝑞(𝑥) ≠ 0 for sufficiently large 𝑥 and let 

there exist a branch ඥ𝑞(𝑥) of class 𝐶ଶ(𝑏, ∞) such that Reඥ𝑞(𝑥) > 0, 𝑥 > 𝑏 ≥ 0. Let further 𝛼ଵ(𝑥) = ଵ଼ ᇱᇱయ మ⁄ − ௦ଷଶ ሾᇱሿమఱ మ⁄  and ஶ |𝛼ଵ(𝑥)|𝑑𝑥 < ∞. Then Eq. (21) has a solution: 

𝑢(𝑥) = 𝑞ିଵସ(𝑥)𝑒ି  ඥ(௧)ௗ௧ೣ ሾ1 + 𝜀ଶ(𝑥)ሿ,    𝜀ଶ(𝑥) → 0,   (𝑥 → ∞). 
Moreover, for 𝑥 > 0: 
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ቤ𝑢(𝑥)𝑢(𝑥) − 1ቤ ≤ 2 ቀ𝑒ଶ  |ఈభ(௧)|ௗ௧ಮೣ − 1ቁ, 
ቤ 𝑢′(𝑥)ඥ𝑞(𝑥)𝑢(𝑥) + 1ቤ ≤ 14 อ𝑞′(𝑥)𝑞ଷଶ(𝑥)อ + 4 ቌ1 + 14 อ𝑞′(𝑥)𝑞ଷଶ(𝑥)อቍ × ቀ𝑒ଶ  |ఈభ(௧)|ௗ௧ಮೣ − 1ቁ. 

If ᇱ(௫)యమ(௫) → 0, (𝑥 → ∞), then 𝑢′(𝑥) = 𝑞ଵ ସ⁄ (𝑥)𝑒  ି  ඥ(௧)ௗ௧ೣ ൫1 + 𝜀ଵ(𝑥)൯, 𝜀ଵ(𝑥) → 0, 𝑥 → +∞. 

Lemma 2. If ห𝑝′ (𝑘)ห ≤ 𝑂 ቀଵቁ and ห𝑝′′(𝑘)ห ≤ 𝑂 ቀଵቁ , then for Eq. (12) the previous theorem is 
valid.  

Thus, further we solve the following problem: 𝜑ᇱᇱ() − 𝑞(𝑘)𝜑(𝑘) = 0,    𝑘 > 0, (22)൜𝜑(0) = 1,𝜑(𝑘) → 0,    𝑘 → +∞. (23)

Here 𝑞(𝑘) is given by Eq. (15). Further, we assume that the assumptions of Theorem 1 are 
fulfilled. In particular, the function 𝑞(𝑘) is analytic when |𝑘| < 𝑘, 𝑘 ≫ 1 (see Eq. (18a)). 

From the theory of differential equations, we obtain for the coefficients 𝑎 following infinite 
system of equations: 

ቐ(𝑛 + 1)(𝑛 + 2)𝑎ାଶ −  𝑎௦𝑞ି௦ = 0,    𝑛 = 0,1,2, . . .௦ୀ𝑎 = 1.  (24)

For 𝑎ଶ we immediately get at 𝑛 = 0: 

𝑎ଶ = 12 𝑞 = − 𝛼ଶ4𝛽ଶ + 𝑖 𝜈2𝛽 �̂�ଵ. (25)

In case of even 𝑝(𝑥): �̂�ଵ = 0, 𝑎ଶ = − ఈమସఉమ. The determinant of the matrix 𝐴ே of this system is: ∆ே= det𝐴ே = (2 ⋅ 3)(3 ⋅ 4). . . (𝑁 + 1)(𝑁 + 2)       = 12 (𝑁 + 1)! (𝑁 + 2)! = 𝑁 + 22 ሾ(𝑁 + 1)!ሿଶ > 0. (26)

In these designations for 𝜑(𝑘) we have the expression: 𝜑(𝑘) = 1 + 𝑎ଵ𝑘 + 𝑎ଶ𝑘ଶ + ℎ(𝑘) + 𝑎ଵ𝑔(𝑘) = 𝑎ଵ൫𝑘 + 𝑔(𝑘)൯ + 1 + 𝑎ଶ𝑘ଶ + ℎ(𝑘)       ≡ 𝑎ଵ𝑔ଵ(𝑘) + ℎଵ(𝑘), (27)

where 𝑘 + 𝑔(𝑘) = 𝑔ଵ(𝑘), 1 + 𝑎ଶ𝑘ଶ + ℎ(𝑘) = ℎଵ(𝑘). 
To find the coefficient 𝑎ଵ , we use the asymptotic solution 𝜑(𝑘)  ( 𝑘 → +∞ ), given by 

Theorem 1. Let 𝑘ଵ < 𝑘. Then by Theorem 1 we get: 

ቊ𝑎ଵ𝑔ଵ(𝑘ଵ) + ℎଵ(𝑘ଵ) = 𝐶𝑞ିଵ ସ⁄ (𝑘ଵ)൫1 + 𝜀ଶ(𝑘ଵ)൯,𝑎ଵ𝑔′ଵ(𝑘ଵ) + ℎ′ଵ(𝑘ଵ) = −𝐶𝑞ଵ ସ⁄ (𝑘ଵ)൫1 + 𝜀ଵ(𝑘ଵ)൯. (28)

If 𝑘ଵ ≫ 1, then |𝜀ଵ(𝑘ଵ)| ≪ 1, |𝜀ଶ(𝑘ଵ)| ≪ 1 [7, 8]. Therefore, Eq. (28) can be approximately 
replaced by the system: 
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ቊ𝑎ଵ𝑔ଵ(𝑘ଵ) + ℎଵ(𝑘ଵ) = 𝐶ሚ𝑞ିଵ ସ⁄ (𝑘ଵ),𝑎ଵ𝑔′ଵ(𝑘ଵ) + ℎ′ଵ(𝑘ଵ) = −𝐶ሚ𝑞ଵ ସ⁄ (𝑘ଵ), (29)

where 𝑎ଵ and 𝐶ሚ are approximate values for 𝑎ଵ and 𝐶. From Eq. (29) we find: 

⎩⎪⎨
⎪⎧𝑎ଵ = − ℎଵ𝑞ଵ ଶ⁄ + ℎ′ଵ𝑔ଵ𝑞ଵ ଶ⁄ + 𝑔′ଵ ,𝐶ሚ = 𝑞ଵ ସ⁄ 𝑔′ଵℎଵ − 𝑔ଵℎ′ଵ𝑔ଵ𝑞ଵ ଶ⁄ + 𝑔′ଵ , (30)

where all functions are calculated when 𝑘 = 𝑘ଵ.  For an approximate value 𝜑(𝑘)  of 𝜑(𝑘)  we 
therefore have: 

⎩⎪⎪⎨
⎪⎪⎧𝜑(𝑘) = ⎩⎪⎨

⎪⎧𝑎ଵ𝑔ଵ(𝑘 ) + ℎଵ(𝑘 ),    0 ≤ 𝑘 ≤ 𝑘ଵ,ቌ𝑔′ଵℎଵ − 𝑔ଵℎ′ଵ𝑔ଵ𝑞ଵଶ + 𝑔′ଵ ቍቮୀభ
𝑞ଵସ(𝑘ଵ)𝑞ିଵସ(𝑘)𝑒ି  ඥ(௧)ௗ௧ೖೖభ ,     𝑘 ≥ 𝑘ଵ,

𝑘ଵ ≫ 1,     𝑘ଵ < 𝑘,𝜑(−𝑘) = 𝜑(𝑘),       𝑘 ≥ 0.
 (31)

5. Results and conclusions 

For construction of the analytical solution of the Kolmogorov-Feller Eq. (1) one can use the 
following algorithm. 

1) Take the desired function 𝜑(𝑘) = 𝑊 (𝑘)𝑒మഀഁ. 
2) For 𝜑(𝑘) we have 𝜑′′(𝑘) − 𝑞(𝑘)𝜑(𝑘) = 0, 𝑘 > 0 under: ൜𝜑(0) = 1,𝜑(𝑘) → 0,    𝑘 → +∞, 𝑞(𝑘) = 𝑞 + 𝑞ଵ𝑘 + 𝑞ଶ𝑘ଶ+. . . ,    |𝑘| < 𝑘. 
3) We can get 𝑞 from: 

⎩⎨
⎧𝑞 = − 𝛼ଶ2𝛽ଶ + 𝑖 𝜈𝛽 �̂�ଵ,𝑞 = 𝑖 𝜈𝛽 �̂�ାଵ,  
where �̂� – are from �̂�௦ = ො(ೞ)()௦! = ଵ௦! (𝑖)௦  𝑥௦𝑝(𝑥)ାஶିஶ 𝑑𝑥, or from �̂�(𝑘) =  𝑝(𝑥)ାஶିஶ 𝑒௫𝑑𝑥 with �̂�(𝑘) = �̂� + �̂�ଵ𝑘 + �̂�ଶ𝑘+. .., |𝑘| < 𝑘, 𝑘 ≫ 1. 

4) Then we have solution in form 𝜑(𝑘) = 1 + 𝑎ଵ𝑘 + 𝑎ଶ𝑘ଶ+. .., 0 ≤ 𝑘 < 𝑘, where 𝑎, 𝑗 ≥ 2 
are determined from equations: 

(𝑛 + 1)(𝑛 + 2)𝑎ାଶ −  𝑎௦𝑞ି௦ = 0, 𝑛 = 0,1,2, . . .
௦ୀ ,    𝑎 = 1, 

and: 
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𝑎ଵ = − lim→ାஶ ℎଵ(𝑘)𝑞ଵଶ(𝑘) + ℎᇱଵ(𝑘)𝑔ଵ(𝑘)𝑞ଵଶ(𝑘) + 𝑔ᇱଵ(𝑘), 
where ℎଵ(𝑘), 𝑔ଵ(𝑘) are determined from Eqs. (30), (31). 
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