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Abstract. To reduce the adverse effect of incorrect parameters for the traditional iterative tunable 
Q-factor wavelet transform, this paper proposes an iterative tunable Q-factor wavelet transform 
method for fault feature extraction. Firstly, before decomposing the bearing vibration signal by an 
iterative tunable Q-factor wavelet transform, the initial values of 3 basic factors should be set: the 
quality factor Q, redundancy r and the number of decomposition level 𝐽. Secondly, the kurtosis of 
a high resonance component, which is the result of an iterative tunable Q-factor wavelet transform, 
is calculated through multistep iteration until it meets the iteration stop condition. Finally, the 
envelope spectrum of the final low resonance component is calculated, and the type of bearing 
fault can be recognized according to the frequency of extreme points. The results show that this 
method can effectively suppress noise and in-band interference and avoid fault identification 
inaccuracies caused by improper parameters and can also identify the fault feature frequency more 
clearly. 
Keywords: signal processing, bearing fault detection, iterative tunable Q-factor wavelet 
transform, fault feature extraction. 

1. Introduction 

In recent years, on the basis of the traditional Fourier transform, wavelet denoising has been 
widely used in practice by many scholars because of its low entropy, multi-resolution, correlation 
and flexibility. Chen et al. [1] proposed a data driven threshold strategy for different wavelet 
coefficients. Selesnick [2] first proposed a Tunable Q-factor Wavelet Transform (TQWT) in 2011. 
Li Xing [3] applied the genetic algorithm to the Q-factor optimisation with the iterative tunable 
Q-factor wavelet transform method to avoid the blindness of the Q-factor selection. 

Different from the previous fixed Q value algorithm, the algorithm proposed in this paper 
separates the high and low resonance component layer by layer by iterating the size of the Q-factor 
step by step and eliminates the noise signal from the low resonance component. Then, the spectral 
kurtosis of the decomposed high resonance component will decide whether the low resonance 
component will be decomposed continuously. Finally, the envelope spectrum is obtained from the 
low resonance component after the cycle termination, and the type of fault is judged according to 
the frequency of the extreme point. The results show that the method can effectively suppress the 
noise components in the low frequency component. Compared with the traditional envelope 
spectrum method, this method can effectively extract the fault characteristic frequency and detect 
the early faults of bearings. 

2. Iterative tunable Q-factor wavelet transform 

The resonance property of signal is defined by the Q-factor. The larger the Q-factor is, the 
better the frequency aggregation of signals and the higher the resonance property are, the smaller 
the Q-factor is, the better the time aggregation of signals and the lower the resonance property are. 
The basic idea of the algorithm is to decompose a noisy and interfered signal with two different 
wavelet basis functions. 
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The wavelet basis function with high Q-factor is used to represent the components with strong 
oscillation in the signal. Low Q-factor is used to represent the components with weak oscillation. 

The iterative tunable Q-factor wavelet transform method combines the signal center frequency 
and frequency bandwidth synthetically with the signal resonance attribute. It can effectively 
separate the central frequency and the overlapping of the central frequency bands and has different 
signal components with different Q-factors.  

2.1. The tunable Q-factor wavelet transform (TQWT) 

The tunable Q-factor wavelet transform is a flexible discrete wavelet transform. The  𝑄 = 𝑓/𝐵𝑊 is defined directly in the frequency domain, in which 𝑓 is the central frequency of 
the signal and 𝐵𝑊  is the bandwidth. According to the different characteristics of the signal 
oscillation, the Q-factors of the wavelet transform can be adjusted flexibly. Similarly, to other 
kinds of wavelet transform, TQWT is also based on multichannel filter, and its filtering principle 
is shown in Fig. 1. A series of two channel filter banks are used to decompose the low frequency 
band of the signal through iteration. The wavelet factor of the sub signal is expressed by 𝜔ሺ𝑛ሻ 
(𝑗 = 1,2, … , 𝐽 + 1). LPS 𝛼 and HPS 𝛽 are the low-pass scale and the high-pass scale, 𝛼 and 𝛽 are 
the low-pass scale parameter and the high-pass scale parameter, which represent the increase or 
decrease of the sampling frequency. That is to say, the next ordered sampling frequency is 𝛼 
(low-pass frequency band) or 𝛽 (high-pass frequency band) times before, as shown in Fig. 1. In 
order to reconstruct the signal better, the filter bank must be strictly sampled, and the value of 𝛼 
and 𝛽  must strictly satisfy the condition 0 < 𝛼 < 1, 0 < 𝛽 ≤ 1, 𝛼 + 𝛽 > 1. The base –2 fast 
Fourier transform is used here to improve the computational efficiency. 

 
a) The principle of TQWT decomposition filter b) The principle of the TQWT synthetic filter 

Fig. 1. Schematic diagram of the tunable Q-factor wavelet transform filter 

The definition of the frequency response function 𝐻ሺ𝜔ሻ and 𝐻ଵሺ𝜔ሻ of the high and the low 
pass filter are as follows: 

𝐻ሺ𝜔ሻ = ⎩⎪⎨
⎪⎧1,     ሺ|𝜔| ≤ ሺ1 − 𝛽ሻ𝜋ሻ,𝜃 ቆ𝜔 + ሺ𝛽 − 1ሻ𝜋𝛼 + 𝛽 − 1 ቇ,     ൫ሺ1 − 𝛽ሻ𝜋 ≤ |𝜔| < 𝛼𝜋൯,0,     ሺ𝛼𝜋 ≤ |𝜔| ≤ 𝜋ሻ,  (1)

𝐻ଵሺ𝜔ሻ = ൞0,     ሺ|𝜔| ≤ ሺ1 − 𝛽ሻ𝜋ሻ,𝜃 ൬ 𝛼𝜋 − 𝜔𝛼 + 𝛽 − 1൰,    ൫ሺ1 − 𝛽ሻ𝜋 ≤ |𝜔| < 𝛼𝜋൯,1,    ሺ𝛼𝜋 ≤ |𝜔| ≤ 𝜋ሻ,  (2)

where 𝜃ሺ𝜔ሻ = 0.5൫1 + cosሺ𝜔ሻ൯ඥ2 − cosሺ𝜔ሻ , 𝜔 ≤ 𝜋  is a Debbie Keyes (DB) frequency 
response. In these parameters, the high-pass scale parameter 𝛽 is directly related to the Q-factor: 𝑄 = ሺ2 − 𝛽ሻ/𝛽. The relationship between the low pass scale parameter 𝛼 and the redundancy 𝑟 
is 𝑟 = 𝛽/ሺ1 − 𝛼ሻ. When 𝑄 is kept constant, the redundancy 𝑟 increases, the degree of overlap 
between the frequency response of the wavelet will increase. So, the large 𝑟 is, the larger the 
decomposition level 𝐽 will be required to cover the same frequency range. Because the signal 
cannot be decomposed infinitely, the maximum amount of decomposition is determined by the 
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Eq. (3): 

𝐽୫ୟ୶ = ඎ log ൬ 𝐿4ሺ𝑄 + 1ሻ൰log ൬ 𝑟ሺ𝑄 + 1ሻ𝑟ሺ𝑄 + 1ሻ − 2൰ඒ, (3)

where ⌊𝑧⌋ represents the largest integer less than 𝑧  and 𝐿  represents the length of the signal. 
Therefore, if the quality factor 𝑄, the redundancy 𝑟, and the decomposition level 𝐽 are determined, 
then a definite adjustable Q-factor wavelet transform can be defined. 

2.2. Separation of high resonance and low resonance components 

The method of iterative tunable Q-factor wavelet transform uses morphological component 
analysis (MCA) to separate the components in the signal according to the oscillation 
characteristics and establish the best representation of the high resonance component and the low 
resonance component. 

The signal through the adjustable Q-factor wavelet transform can get 2 kinds of wavelet basis 
function library 𝑠ଵ and 𝑠ଶ with quality factors 𝑄ଵ and 𝑄ଶ. The signal to be decomposed can be 
expressed as follows: 𝑥 = 𝑥ଵ + 𝑥ଶ = 𝑤ଵ𝑠ଵ + 𝑤ଶ𝑠ଶ + 𝑛. (4)

In the formula, 𝑤ଵ  and 𝑤ଶ  are wavelet transform coefficients. 𝑤ଵ𝑠ଵ  and 𝑤ଶ𝑠ଶ  are the low 
resonance component and the high resonance component of the signal 𝑥 to be decomposed, and 𝑛 
is called the residual component of the signal 𝑥 to be decomposed, which cannot be expressed by 𝑤ଵ𝑠ଵ or 𝑤ଶ𝑠ଶ. 

If there are many minimum elements in the coefficient matrix 𝑤ଵ and 𝑤ଶ, and the residual 
component 𝑛 is very small, then Eq. (4) is a sparse representation of the signal to be decomposed. 
The purpose of MCA is to separate source signals from signals to be decomposed. In order to 
achieve effective separation of the high resonance component and the low resonance component, 
the objective function of morphological component analysis can be expressed as: 𝐽ሺ𝑤ଵ, 𝑤ଶሻ = ‖𝑥 − 𝑤ଵ𝑠ଵ − 𝑤ଶ𝑠ଶ‖ଶଶ + 𝜆ଵ‖𝑤ଵ‖ଵ + 𝜆ଶ‖𝑤ଶ‖ଵ. (5)

The weight coefficients 𝜆ଵ and 𝜆ଶ in the Eq. (5) determine the optimal coefficient 𝑤ଵ∗ and 𝑤ଶ∗, 
and determine the energy of the high resonance component and the low resonance component in 
the final decomposition.  

Eq. (5) considers the sparsity of the wavelet transform coefficient 𝑤ଵ, 𝑤ଶ and the size of the 
residual component 𝑛 in the Eq. (4). The smaller the values of the objective function, the sparser 
the decomposition is. 

The optimal coefficient 𝑤ଵ and 𝑤ଶ are obtained by using the Split Augmented Lagrangian 
Shrinkage Algorithm (SALSA) [4]. The process of sparse decomposition is to find 𝑤ଵ∗ and 𝑤ଶ∗ 
when the function reaches a minimum. The estimated values of the high resonance component 
and the low resonance component are expressed as: 𝑥ොଵ = 𝑤ଵ∗𝑠ଵ,    𝑥ොଶ = 𝑤ଶ∗𝑠ଶ. (6)

The tunable Q-factor wavelet transform can decompose input signals into high and low 
resonance components. The main components of the high resonance component are interference 
signal and noise. The spectral kurtosis should be less than 3. The main component of the low 
resonance component is the transient impact signal, and its spectral kurtosis should be more than 
3. Therefore, when the bearing fault vibration signal is decomposed by iterative tunable Q-factor 
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wavelet transform, the spectral kurtosis index can be used to determine whether there are still 
noise and interference signal residues in the low resonance component after decomposition, and 
whether further decomposition of different Q-factor is needed. If the spectral kurtosis of the high 
resonance component is greater than 3 after several decompositions, it is proved that some of the 
transient impact components have been decomposed into the high resonance component. This 
means that there is no residual interference signal and noise in the low resonance component at 
this time. So, in every iteration, the spectral kurtosis of the high resonance component will be 
calculated. If its value is less than 3, the low resonance component obtained from this cycle will 
be used as the input signal of the next cycle, and the iteration process will continue. Otherwise, 
the iteration will terminate, and the output is the low resonance component of the 𝑖 iterations. The 
iterative tunable Q-factor wavelet transform flow chart is shown in Fig. 2. 

 
Fig. 2. Principle flow chart of the rolling bearing early fault diagnosis based  

on the iterative tunable Q-factor wavelet transform 

3. Experimental verification 

The accelerometer is installed in the vertical and horizontal position of the bearing. The 
experiment used the acceleration sensor of 100 K. In order to verify the effectiveness of the 
method, the inner and outer ring fault experiments of the rolling bearing were carried out. The 
NTN6204 type rolling bearing was used in the experiment to simulate the inner and outer ring 
faults. Two grooves both with a width of 0.7 mm and the depth of 0.25 mm were cut by laser on 
the inner ring and outer ring of the bearing. The vibration signal was collected by the acceleration 
sensor. The sampling frequency was 100 kHz, the number of sampling points was 32 768, and the 
rotation speed of the rolling bearing 900 r/min. Fig. 3 shows the time domain waveform of the 
bearing in normal state. According to the calculation formula in the literature [5], the frequency 
of fault features of the outer ring and inner ring is 59.76 Hz and 100.97 Hz. In order to simulate 
the vibration signal at the initial stage of the bearing, Gauss white noise with signal to noise ratio 𝑆𝑁𝑅 = 0.1 was added. The setting parameter value of the iterative tunable Q-factor wavelet 
transform is shown in Table 1. 
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Fig. 3. Time domain diagram of bearing under normal condition 

Table 1. Parameters of the iterative tunable Q-factor wavelet transform 

Signal type Filter Library Quality 
factor 𝑄 

Redundancy 
factor 𝑟 

Decomposition 
level 𝐽 

Weight 
coefficient 𝜆 

Fault signal of 
bearing outer ring 

High resonance 
filter Library 9 5 J୫ୟ୶ 1.1 

Low resonance 
filter Library 1 5 J୫ୟ୶ 1 

Fault signal of 
bearing inner ring 

High resonance 
filter Library 13 5 J୫ୟ୶ 0.1 

Low resonance 
filter Library 1 5 J୫ୟ୶ 0.15 

The original signal diagram of the rolling bearing outer ring fault is shown in Fig. 4. Firstly, 
the iterative tunable Q-factor wavelet transform method proposed in this paper is used to denoise. 
When the iteration is carried out once, the termination condition is satisfied. In this case, the 
spectral kurtosis of the high resonance component is 16.3349. Since the noise is more concentrated 
in the high frequency component, the information in the low resonance component preserves a 
large number of vibration shock signals after the iteration. The time-domain waveform of the low 
resonance component is shown in Fig. 5, it can be seen that the time-domain waveform noise is 
obviously reduced. After using the Hilbert envelope demodulation for the low resonance 
component, the characteristic frequency of 𝑓 = 61 Hz and its frequency doubling components are 
obtained, and the envelope spectrum is shown in Fig. 5. 

 
Fig. 4. Time-domain waveform diagram of fault original signal of bearing outer ring 

  
Fig. 5. Time-domain waveform diagram and envelope spectrum of the low resonance component  

with the iterative tunable Q-factor wavelet transform 

The time-domain waveform of the fault vibration signal of the rolling bearing inner ring is 
shown in Fig. 6. The impact component is not obvious enough to obtain. Additionally, the impact 
component needs to be further extracted from the signal. After performing the iterative tunable 
Q-factor wavelet transform twice, the spectral kurtosis of the high resonance component is 2.7456 
and 3.0482 respectively. The time-domain waveform of the low resonant component is shown in 
Fig. 7, and the envelope spectrum of the low resonance component is shown in Fig. 7 in which 
the fault characteristic frequency at 100 Hz is obvious. The result shows that this method can 
effectively diagnose the rolling bearing failure. 

As a comparison, the traditional signal iterative tunable Q-factor wavelet transform method is 
carried out with the same parameters through decomposing and envelope demodulation for the 
fault signal of bearing inner ring. The result of the envelope spectrum is shown in Fig. 8. The fault 
characteristic frequency is drowned in the noise and the types of the fault cannot be identified 
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directly. From the comparison and analysis above, it can be seen that the method in this paper is 
better than the traditional iterative tunable Q-factor wavelet transform method for bearing fault 
diagnosis. 

 
Fig. 6. Time-domain waveform diagram of fault original signal of bearing inner ring 

  
Fig. 7. Time-domain waveform diagram Envelope spectrum of the low resonance component  

with iterative tunable Q-factor wavelet transform 

 
Fig. 8. Envelope spectrum of fault signal of bearing inner ring  

by traditional tunable Q-factor wavelet transform 

4. Conclusions 

This study has proposed a method that consists in adjusting the value of the high Q-factor and 
then filtering step by step. It thus avoids the problems of incomplete filtering and inaccurate 
identifying by using fixed double Q value for the single iterative tunable Q-factor wavelet 
transform. The algorithm simulation and application example show that this method can 
effectively remove the strong noise and interference in the signal and extract the transient impact 
components in the bearing fault signal. 

Acknowledgement 

This research was supported by The National Key Research and Development Program of 
China (2018YFC0809004). 

References 

[1] Chen Y. M., Zi Y. Y., Cao H. R., et al. A data-driven threshold for wavelet sliding window denoising 
in mechanical fault detection. Science China Technological Sciences, Vol. 57, Issue 3, 2014, 
p. 589-597. 

[2] Selesnick I. W. Wavelet transform with tunable Q-factor. IEEE Transactions on Signal Processing, 
Vol. 59, Issue 8, 2011, p. 3560-3575. 

[3] Li Xing, Yu De-Jie, Zhang D. C. Fault diagnosis of rolling bearings based on the iterative tunable 
Q-factor wavelet transform with optimal Q-Factor. Journal of Vibration Engineering, 2015. 

[4] Afonso M. V., Bioucasdias J. M., Figueiredo M. A. Fast image recovery using variable splitting and 
constrained optimization. IEEE Transactions on Image Processing, Vol. 19, Issue 9, 2010, 
p. 2345-2356. 

[5] Jiang Jingsheng Research on Fault Feature Extraction and Recognition Based on Local Tangent 
Space Alignment Algorithm. Beijing University of Chemical Technology, 2017. 




