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Abstract. A study is carried out to analyze the natural vibration of non-uniform skew 
(parallelogram) plate made up of non-homogeneous material on different edge conditions, namely 
clamped (C), simply supported (S) and free (F), using Rayleigh Ritz method. The thickness and 
Poisson’s ratio of the plate varies circular in one dimension, while the temperature variation on 
the plate is viewed to be parabolic in nature. Natural frequencies have been obtained for different 
combinations of structural parameters involve in the study. The results are compared with the 
available published results from the open literature. 
Keywords: natural vibration, skew plate, parabolic temperature, different boundary conditions. 

1. Introduction 

In order to design an accurate structure, determination of natural frequencies and mode shape 
are essential. The main aim of the researchers and scientists is to optimize the vibration, for the 
better performance of the mechanical structures. A significant work about the study of vibrational 
characteristics of plate has been reported. 

A comprehensive study about bending of long, circular, anisotropic plate, plates having lateral 
loads and forces in the middle on plates and shells has been discussed in [1]. Buckling and bending 
of thin plates and shells are presented in [2]. Natural vibration of homogeneous, isotropic thin 
annular and circular plates with variable distributions of parameters by using Green's function and 
Neumann series has been discussed and presented in [3, 4]. Vibrations of functionally graded 
material (FGM) rectangular plates with porosities and moving in thermal environment by using 
von Kármán nonlinear plate theory is discussed in [5]. A detailed study about the vibration of 
plates (square, rectangle, parallelogram, triangle and circular) is discussed and lots of results are 
presented for homogenous and uniform plates in [6]. A modeling of non-uniform rectangular 
plates with various cutouts has been discussed in [7] to analyze the free vibration of plates with 
variable thickness. An approximate method using Green function is presented in [8] to analyze the 
free vibration of thin and moderately thick rectangular plates with arbitrary variable thickness. 
Natural vibration of square plate with linear variation in thickness, circular variation in density 
and exponential variation in Poisson’s ratio along with parabolic temperature variation on clamped 
edges is studied and first two modes of vibration is evaluated in [9]. Thermal effect on vibration 
properties of double layered nanoplates at small scale has been studied in [10]. Free vibration of 
non-homogeneous parallelogram plate with variable thickness under temperature variation is 
studied and results for first two modes of vibration is presented in [11, 12]. Natural vibration of 
parallelogram plate with exponential variation in thickness, parabolic variation in density and 
temperature on mixed edge conditions is studied in [13]. Time period [14] for frequency parameter 
of clamped rectangle plate is calculated on various plate parameters using Rayleigh Ritz  
method. 

In this study, authors examine the behavior of vibrational frequency of parallelogram plate 
with circular variation in thickness and Poisson’s ratio on five edge conditions. The present study 
also shows the effect of temperature variation on frequency modes. All the obtained results on 
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various variations of structural parameters along with edge conditions are presented in the form 
of tables. A graphical comparison of results is also given in the form of figures.  

2. Analysis 

Consider a non-uniform and non-homogeneous parallelogram (thin) plate having skew angle 𝜃, length 𝑎, breadth 𝑏, thickness 𝑙, density 𝜌 and Poisson’s ratio 𝜈 referred to skew coordinates 𝜁 = 𝑥 − 𝑦tan𝜃, 𝜓 = 𝑦sec𝜃. 
The kinetic energy 𝑇௦ and strain energy 𝑉௦ for parallelogram plate is given by: 

𝑇௦ = 12 𝑝ଶ𝜌cos𝜃 න න 𝑙Φଶ𝑑𝜁𝑑𝜓, (1) 

𝑉௦ = 12cosଷ𝜃 න න 𝐷
⎣⎢⎢
⎢⎢⎢
⎢⎡ቆ∂ଶΦ∂𝜁ଶ ቇଶ − 4sin𝜃 ቆ∂ଶΦ∂𝜁ଶ ቇ ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇ + 2(sinଶ𝜃 + 𝜈cosଶ𝜃)
    · ቆ∂ଶΦ∂𝜁ଶ ቇ ቆ∂ଶΦ∂𝜓ଶቇ + 2(1 + sinଶ𝜃 − 𝜈cosଶ𝜃) ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇଶ
    −4sin𝜃 ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇ ቆ∂ଶΦ∂𝜓ଶቇ + ቆ∂ଶΦ∂𝜓ଶቇଶ     ⎦⎥⎥

⎥⎥⎥
⎥⎤ 𝑑𝜁𝑑𝜓, (2) 

where 𝐷 = 𝐸𝑙ଷ 12(1 − 𝜈ଶ)⁄  and 𝐸 is known as flexural rigidity and Young’s modulus. 
Rayleigh Ritz method requires: 𝐼 = 𝛿(𝑉௦ − 𝑇௦) = 0. (3) 

Now introducing circular variation in thickness and Poisson’s ratio as: 

𝑙 = 𝑙 ቐ1 + 𝛽 ቌ1 − ඨ1 − 𝜁ଶ𝑎ଶቍቑ ,    𝜈 = 𝜈 ቐ1 − 𝑚 ቌ1 − ඨ1 − 𝜁ଶ𝑎ଶቍቑ, (4) 

where 𝑙  and 𝜈  are the thickness and Poisson’s ratio, respectively at origin. Also  𝛽 (0 ≤ 𝛽 ≤ 1) and 𝑚 (0 ≤ 𝑚 < 1) are taper constant and non-homogeneity parameter. 
It is also assumed that temperature variation on the plate is parabolic in two dimensions as: 

𝜏 = 𝜏 ቆ1 − 𝜁ଶ𝑎ଶቇ ቆ1 − 𝜓ଶ𝑏ଶ ቇ, (5) 

where 𝜏 and 𝜏 is the temperature on the plate at any point and at the origin respectively. The 
temperature dependence modulus of elasticity is: 𝐸 = 𝐸(1 − 𝛾𝜏), (6) 

where 𝐸 is the Young’s modulus at mentioned temperature (i.e., 𝜏 = 0) and 𝛾 is called slope of 
variation. Using Eq. (5), Eq. (6) becomes: 

𝐸 = 𝐸 ቈ1 − 𝛼 ቆ1 − 𝜁ଶ𝑎ଶቇ ቆ1 − 𝜓ଶ𝑏ଶ ቇ, (7) 

where 𝛼, (0 ≤ 𝛼 < 1) is called temperature gradient. Using Eqs. (4), (7), Eq. (3) becomes: 
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𝐼 = 𝐷2 න  න

⎩⎪⎪
⎪⎪⎪
⎪⎨
⎪⎪⎪
⎪⎪⎪
⎧

⎣⎢⎢⎢
⎡ቈ1 − 𝛼 ൜1 − 𝜁𝑎ଶଶൠ ቊ1 − 𝜓𝑏ଶଶቋ ሼ1 + 𝛽Λሽଷ(1 − 𝜈ଶሼ1 − 𝑚Λሽଶ) ⎦⎥⎥⎥

⎤

∙
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ቆ∂ଶΦ∂𝜁ଶ ቇଶ − 4Υsin𝜃 ቆ∂ଶΦ∂𝜁ଶ ቇ ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇ
    + ቆ∂ଶΦ∂𝜁ଶ ቇ ቆ∂ଶΦ∂𝜓ଶቇ 2Υଶ(sinଶ𝜃 + 𝜈ሼ1 − 𝑚Λሽcosଶ𝜃)
    +2Υଶ ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇଶ (1 + sinଶ𝜃 − 𝜈ሼ1 − 𝑚Λሽcosଶ𝜃) ቆ∂ଶΦ∂𝜓ଶቇଶ
    −4Υଷsin𝜃 ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇ ቆ∂ଶΦ∂𝜓ଶቇ + Υସ ⎦⎥⎥

⎥⎥⎥
⎥⎥⎥
⎤

⎭⎪⎪
⎪⎪⎪
⎪⎬
⎪⎪⎪
⎪⎪⎪
⎫





  𝑑𝜓𝑑𝜁

      −𝜆ଶcosସ𝜃 න  න (1 + 𝛽Λ) Φଶ𝑑𝜓
 𝑑𝜁

 = 0,

 (8) 

where 𝐷 = 𝐸𝑙ଷ 12⁄ , Λ = ቆ1 − ට1 − మమቇ, 𝜆ଶ = 𝜌𝑝ଶ𝑙𝑎ସ 𝐷⁄  and Υ = 𝑎 𝑏.⁄  

The two-term deflection function which satisfy all the edge condition can be taken as: 

Φ(𝜁, 𝜓) = ቈ൬𝜁𝑎൰ ൬𝜓𝑏൰ ൬1 − 𝜁𝑎൰ ൬1 − 𝜓𝑏൰௦  Ω ൜൬𝜁𝑎൰ ൬𝜓𝑏൰ ൬1 − 𝜁𝑎൰ ൬1 − 𝜓𝑏൰ൠ
ୀ ൩, (9) 

where Ωଵ and Ωଶ represents arbitrary constants and 𝑝, 𝑞, 𝑟. 𝑠 take values 0, 1 and 2 depending 
upon the support edge condition i.e., take value 0 for free edge, 1 value for simply supported and 
2 value for clamped edge. In order to minimize the functional given in Eq. (8), we require that: ∂𝐼∂Ω = 0,    𝑖 = 0,1,2,3. . . 𝑛. (10) 

After simplifying we get a homogenous system of equations in Ω whose non-zero solution 
gives equation of frequency as: |𝐶 − 𝜆ଶ𝐷| = 0, (11) 

where 𝐶 = ൣ𝑐൧  and 𝐷 = ൣ𝑑൧  are square matrix of order (𝑛 + 1) , 𝑖 =  0, 1, 2, ..., 𝑛  and  𝑗 = 0, 1, 2, ..., 𝑛. 
3. Results and discussion 

In order to examine the behavior of natural vibration of non-homogeneous and non-uniform 
parallelogram plate, a numerical calculation is carried out for different combination of structural 
parameters on five edge conditions namely, CCCC, CCCS, CSCS, CFCF and CCSF and presented 
with the help of tables. The value of 𝜈, 𝜃 and 𝑎/𝑏 is taken to be 0.345, 45° and 1.5 respectively.  

Table 1 provides the frequency modes corresponding to taper constant 𝛽 for three different set 
of values of non-homogeneity constant 𝑚 and thermal gradient 𝛼 i.e., 𝑚 = 𝛼 = 0.2, 0.4, 0.6 on 
CCCC, CCCS, CSCS, CFCF and CCSF conditions. From Table 1, we analyzed that the frequency 
of both modes increases with the increasing value of taper constant 𝛽 for all the three set of values 
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of non-homogeneity constant 𝑚  and thermal gradient 𝛼  (as mentioned above) on all edge 
conditions except CFCF condition where frequency modes decreases. On the other aspect when 
the combined value of non-homogeneity constant 𝑚 and thermal gradient 𝛼 increases from 0.2 to 
0.6, the frequency modes decreases on all edge conditions except CFCF condition where 
frequency modes increases. The first mode of frequency is minimum on CFCF condition and 
maximum on CCCC condition. But the second mode is minimum on CFCF condition and 
maximum on CCCS condition. 

Table 1. Tapering parameter 𝛽 vs vibrational frequency 𝜆 for 𝜃 = 45° and 𝑎/𝑏 = 1.5 

BC’s 𝛽 𝑚 = 𝛼 = 0.2 𝑚 = 𝛼 = 0.4 𝑚 = 𝛼 = 0.6 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 

CCCC 
0.0 115.41 455.93 109.71 433.63 103.77 410.51 
0.4 123.52 484.42 117.63 461.37 111.53 437.56 
0.8 132.29 515.19 126.21 491.37 119.92 466.85 

CCCS 
0.0 95.80 690.46 91.80 680.18 87.69 670.01 
0.4 104.11 735.96 99.97 725.19 95.72 714.55 
0.8 112.99 784.12 108.68 772.82 104.29 761.69 

CSCS 
0.0 66.60 533.35 62.89 508.18 59.02 482.11 
0.4 71.95 566.25 68.26 540.39 64.43 513.68 
0.8 77.88 601.20 74.20 574.59 70.39 547.19 

CFCF 
0.0 23.01 65.00 24.29 66.90 25.69 68.86 
0.4 21.45 58.96 22.85 60.85 24.36 62.82 
0.8 19.78 52.21 21.31 54.14 22.97 56.13 

CCSF 
0.0 29.83 324.28 29.41 319.16 29.03 314.19 
0.4 35.92 362.85 35.56 357.38 35.24 352.12 
0.8 42.51 403.41 42.20 397.28 41.94 392.00 

Table 2. Non-homogeneity 𝑚 vs vibrational frequency 𝜆 for 𝜃 = 45° and 𝑎/𝑏 = 1.5 

BC’s 𝑚 𝛽 = 𝛼 = 0.2 𝛽 = 𝛼 = 0.4 𝛽 = 𝛼 = 0.6 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 

CCCC 
0.0 119.87 471.81 118.62 465.27 117.13 457.81 
0.4 118.91 468.06 117.63 461.37 116.10 453.75 
0.8 118.09 464.78 116.78 458.00 115.24 450.28 

CCCS 
0.0 100.35 715.83 100.92 731.29 101.37 747.16 
0.4 99.44 710.05 99.97 725.19 100.38 740.73 
0.8 98.66 704.93 99.17 719.82 99.55 735.10 

CSCS 
0.0 69.49 551.72 68.87 544.80 68.27 536.82 
0.4 68.92 547.45 68.26 540.39 67.62 532.27 
0.8 68.44 543.67 67.76 536.50 67.11 528.29 

CFCF 
0.0 22.41 62.32 23.23 61.39 24.30 60.37 
0.4 22.10 61.80 22.85 60.85 23.85 59.81 
0.8 21.87 61.34 22.57 60.38 23.53 59.34 

CCSF 
0.0 32.82 345.36 35.58 361.59 38.50 378.18 
0.4 32.81 341.41 35.56 357.38 38.48 373.73 
0.8 32.92 338.20 35.70 354.01 38.65 370.19 

Table 2 presents the frequency modes corresponding to non-homogeneity constant 𝑚 for three 
different set of values of taper constant 𝛽 and thermal gradient 𝛼 i.e., 𝛽 = 𝛼 = 0.2, 0.4, 0.6 on 
CCCC, CCCS, CSCS, CFCF and CCSF conditions. From Table 2, one can easily conclude that 
vibrational frequency decreases with the increasing value of non-homogeneity constant 𝑚 for all 
the three set of values of taper constant 𝛽 and thermal gradient 𝛼 on all edge conditions except 
CCSF condition where frequency of first mode increases. On the other hand, frequency modes 
also decreases when the combined value of taper constant 𝛽 and thermal gradient 𝛼 increases from 
0.2 to 0.6 on all edge conditions except CCCS, CFCF and CCSF condition where frequency modes 
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increases. 
Frequency modes corresponding to thermal gradient 𝛼 for three different set of values of taper 

constant 𝛽 and non-homogeneity constant 𝑚 i.e., 𝛽 = 𝑚 = 0.2, 0.4, 0.6 on CCCC, CCCS, CSCS, 
CFCF and CCSF conditions is depicted in Table 3. Table 3 enlighten the fact that vibrational 
frequency decreases with the increasing value of thermal gradient 𝛼 on all the three value of taper 
constant 𝛽  and non-homogeneity constant 𝑚  on all edge conditions and increases with the 
combined increasing values of taper constant 𝛽  and non-homogeneity constant 𝑚 on all edge 
conditions. 

Table 3. Thermal gradient 𝛼 vs vibrational frequency 𝜆 for 𝜃 = 45° and 𝑎/𝑏 = 1.5 

BC’s 𝛼 𝛽 = 𝑚 = 0.2 𝛽 = 𝑚 = 0.4 𝛽 = 𝑚 = 0.6 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 

CCCC 
0.0 124.47 489.90 128.17 502.71 132.01 515.99 
0.4 114.03 448.96 117.63 461.37 121.38 474.25 
0.8 102.42 403.93 105.93 415.98 109.58 428.49 

CCCS 
0.0 103.38 720.51 107.18 740.71 111.11 761.43 
0.4 96.24 705.12 99.97 725.19 103.82 745.77 
0.8 88.44 689.40 92.11 709.34 95.89 729.79 

CSCS 
0.0 72.46 572.05 74.89 586.78 77.46 601.92 
0.4 65.77 526.03 68.26 540.39 70.84 555.14 
0.8 58.31 475.57 60.90 489.62 63.62 504.04 

CFCF 
0.0 23.01 65.00 24.29 66.90 25.69 68.86 
0.4 21.45 58.96 22.85 60.85 24.36 62.82 
0.8 19.78 52.21 21.31 54.14 22.97 56.13 

CCSF 
0.0 33.19 346.68 36.29 364.27 39.57 382.32 
0.4 32.41 339.86 35.56 357.38 38.89 375.37 
0.8 31.60 332.89 34.81 350.37 38.19 368.29 

4. Comparison of results 

The results (vibrational frequency) of present study is compared with [12] corresponding to 
thermal gradient 𝛼 for fixed value of aspect ratio 𝑎/𝑏 =1.5 and skew angle 𝜃 = 30° on CCCC 
condition and with [13] corresponding to non-homogeneity constant 𝑚 and taper constant 𝛽 for 
fixed value of aspect ratio 𝑎/𝑏 = 1.5 and skew angle 𝜃 = 45° on CCCC condition with the help 
of figures. 

Fig. 1 shows the comparison of frequency modes of present study with [12] corresponding to 
thermal gradient 𝛼  for fixed value of non-homogeneity constant 𝑚  and taper constant 𝛽  i.e.,  𝑚 = 𝛽 = 0.4 on CCCC edge condition.  

 
a) 

 
b) 

Fig. 1. Comparison of frequency modes of present study with [12]  
corresponding to thermal gradient 𝛼 on CCCC condition 
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From Fig. 1, we conclude that frequency modes of present study is very less when compared 
to [12]. Frequency modes of present study and [12] are coincides at 𝛼 = 0.0. 

Figs. 2 and 3 display the comparison of frequency modes of present study with [13] 
corresponding to non-homogeneity constant 𝑚 for fixed value of thermal gradient 𝛼 and taper 
constant 𝛽 i.e., 𝛼 = 𝛽 = 0.2 and taper constant 𝛽 for fixed value of non-homogeneity constant 𝑚 
and thermal gradient 𝛼  i.e., 𝑚 = 𝛼 =  0.0 on CCCC edge conditions. It has been seen that 
frequencies of both modes are less when compared to [13]. The variation of frequency modes in 
present study is very less when compared to variation in frequency modes of [13].  

 
a) 

 
b) 

Fig. 2. Comparison of frequency modes of present study with [13]  
corresponding to non-homogeneity constant 𝑚 on CCCC condition 

 
a) 

 
b) 

Fig. 3. Comparison of frequency modes of present study with [13]  
corresponding to taper constant 𝛽 on CCCC condition 

5. Conclusions 

From the above discussions and comparisons of results, we would like to conclude the 
following points: 

1) The frequency modes in case of parabolic temperature variation (present study) are less 
when compared to linear variation in temperature (as in [12]) on CCCC condition as shown in 
Fig. 1. 

2) The frequency modes in case of circular variation in non-homogeneity and tapering 
parameter (present study) are less when compared to parabolic variation in non-homogeneity and 
exponential variation in tapering parameter (as in [13]) on CCCC edge conditions as shown in 
Figs. 2 and 3. 

3) The frequencies variation (rate of decrement) in present study is high as compared to [12]. 
4) The frequency variation (rate of increment) in present study is less as compared to [13]. 
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