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Abstract. The exact solution of structural dynamic related problems can be achieved by using the 
frequency-dependent spectral method. The exact solution is thought to be accurate while reducing 
the number of degree-of-freedom to resolve the cost and computational drawbacks. This paper 
investigates the vibrational characteristics of a Levy-type solution of thick plates considering shear 
deformation based on the two-variable Refined Plate Theory (RPT). The plates, which are 
modeled by an isotropic Levy-type rectangular plate, were solved by using the Spectral Element 
Method (SEM). The SEM for RPT Levy-type in the frequency domain is derived to formulate the 
free vibration problems of the plates. Transcendental stiffness matrices are well established in 
vibration, formulated from the exact solutions of the differential equations of the RPT Levy-type 
plate element. The present spectral element model has four line-type degree-of-freedoms (DOF) 
on each edge of the Levy-type rectangular plate. Natural frequencies of the plate are computed by 
means of the Wittrick-Williams algorithm. Numerical comparisons are given to show the 
effectiveness, efficiency, and accuracy of the SEM by using one element. Unlike the FEM, the 
SEM gives exact solutions of the natural frequencies of plates without element discretization 
procedures. 
Keywords: free vibration, frequency domain, levy-type plate, two-variable refined plate theory, 
spectral element method. 

1. Introduction 

Plates are broadly used in engineering applications due to their valuable features, such as the 
high strength and stiffness to the weight ratios. Thus, the understanding of the free vibration of 
plates is indispensable to the engineers across disciplines [1-4]. A reliable and accurate free 
vibration analysis of plates is required to get safe and reliable designs. 

Based on the theory of plates, the effects of shear deformation, particularly in thick plates, are 
not negligible. Even for thin plates that vibrate in high modes, the effects also need to be 
considered in the analysis. The Classical Plate Theory (CPT) does not consider the shear effects 
in the formulations. Hence, some plate theories have been developed to take the effects of shear 
deformation into the analyses of plates. Reissner [5], Mindlin [6] and Wang [7] developed theory 
of plates to consider the effect of shear based on the displacement functions assuming constant 
transverse shear stress through the thickness of the plates. A correction factor is needed to 
approximate the real shear stress in the plates. Librescu [8], Donnell [9] and Levinson [10] made 
necessary modifications to the classical plate theory to consider the effects of shear deformation 
in plates. There are many higher-order theories of plates proposed which are available in the 
literature. One such example is the two-variable Refined Plate Theory (RPT) [11] which uses two 
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constituents for representing transversal displacement consisting of bending and shear 
displacements. It is worth noting that the RPT does not use a shear correction factor. 

Finite Element Method (FEM) is one of the major and common computational methods 
available in many fields of science and engineering. The vibration modes of a plate vary depending 
on the vibration frequencies and its wavelengths. To obtain a sufficiently accurate dynamic 
response, all necessary high-frequency wave modes have to be considered in the analysis. The 
size of meshes must be sufficiently small to be used in the modeling. Because the conventional 
FEM is formulated based on the frequency of independent polynomial shape functions, thus the 
FEM cannot accommodate all essential high-frequency wave modes without fine discretization. 
Hence, the FEM solution becomes less accurate, particularly at high frequencies, where the 
frequencies are related with short wavelengths. 

To improve the accuracy of the solution is by using the shape functions, which depend on the 
natural frequency of the plate. Hence, the shape functions depend on the frequency which are 
known as the dynamic shape functions. The dynamic shape functions can be considered as 
necessary in high-frequency wave modes, exceptionally highly accurate solutions can be obtained, 
and it is not necessary to refine the meshes. This sophisticated concept has directed to the so-called 
Dynamic Stiffness Method (DSM) [12, 13]. Because the dynamic shape functions are formulated 
by using exact dynamic stiffness matrix, they treat the mass in a structure member implicitly. 
Therefore, a regular shape of rigid plate model can be modelled by a single element, irrespective 
of its length between any two continuous structural or material discontinuities, to obtain exact 
solutions. The need to refine a regular part of a structure into multiple fine meshes is not necessary. 
The size of the problem will significantly be reduced by using the least number of meshes and 
DOFs. As a result, this will significantly reduce the computational time and cost and improving 
the accuracy of solution by decreasing the errors of computer round-off. Also, the DSM produces 
infinite number of Eigen solutions by using the exact dynamic stiffness matrix represented by the 
least number of DOFs. Alike with the formulation of the conventional finite element stiffness 
matrices, the stiffness of the exact dynamic matrices can be assembled in a similar way as in the 
FEM. Therefore, in the DSM, the procedures of elements meshing and assembling are very similar 
with the way in the FEM. 

In Spectral Analysis Method (SAM) [14], the solution to the governing differential equations 
can be achieved by adding infinite number of wave modes with different frequencies. The scheme 
is very similar with finding the solutions of continuous Fourier transform. To obtain the time 
histories of the solutions, the Inverse Fourier transform is applied to the infinite set of spectral 
components in the frequency domain. Only in the mathematically simple problems, the continuous 
Fourier transform is feasible. In practice, the Discrete Fourier Transform (DFT) is widely used for 
discontinuous Fourier transform.  

Narayanan and Beskos [15] combined the features of the SAM with those of the DSM by 
introducing the new concept of the Spectral Element Method (SEM). As illustrated in Fig. 1, the 
SEM can be considered as the mixture of the main features of the FEM, SAM, and DSM.  

Kiryu and Gan [16] have derived and implemented the free vibration problems of isotropic 
Levy-type plate theory by using SEM. The results show excellent agreement compared with the 
CPT values reported in the literature. 

In this study, the free vibrations of rectangular plates are analyzed. The Levy-type plate theory 
is based on the first order shear deformation plate theory and the governing equations which can 
be obtained from both the Hamilton principle and Maxwell equation. The exact natural 
frequencies of the free vibration plate are investigated. Comparison studies are performed to 
validate the SEM results. Moreover, the closed-form solutions of isotropic plate based on the RPT 
[11] is also referred for verification purposes. The effects of plate size aspect ratio on the natural 
frequencies of the isotropic Levy-type plates are studied and discussed. 
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Fig. 1. A schematic diagram of the spectral element method 

2. Levy-type plate 

The levy-type plate is defined by a rectangular plate with at least two parallel sides are simply 
supported and arbitrary at the other edge boundary conditions. The governing equations yield to 
the coupled partial differential equations which can be decoupled by introducing supplementary 
functions. The equations that decoupled can be analytically solved by using SEM. 

2.1. The equation of motion of a Levy-type plate 

Fig. 2 shows a rectangular Levy-type plate with two simply supported sides parallel to the 𝑥-axis and the other two arbitrary boundary conditions at the opposite parallel sides to the 𝑦-axis. 

 
Fig. 2. Levy-type rectangular plate in the FEM scheme 

The Levy-type plate has the size of 𝐿௫  and 𝐿௬  in the 𝑥 and 𝑦-directions, respectively. The 
homogeneous partial differential equations of free vibration considering shear deformation, the 
transverse displacement 𝑤(𝑥, 𝑦, 𝑡) of the plate is given by the two-variable RPT as: 

𝐷 ቆ∂ସ𝑤∂𝑥ସ + 2 ∂ସ𝑤∂𝑥ଶ ∂𝑦ଶ + ∂ସ𝑤∂𝑦ସ ቇ − 𝜌ℎଷ12 ቆ∂ଶ𝑤ሷ ∂𝑥ଶ + ∂ଶ𝑤ሷ ∂𝑦ଶ ቇ + 𝜌ℎ(𝑤ሷ  + 𝑤ሷ ௦) = 0,𝐷84 ቆ∂ସ𝑤௦∂𝑥ସ + 2 ∂ସ𝑤௦∂𝑥ଶ ∂𝑦ଶ + ∂ସ𝑤௦∂𝑦ସ ቇ − 5𝐸ℎ12(1 + 𝜇) ቆ∂ଶ𝑤௦∂𝑥ଶ + ∂ଶ𝑤௦∂𝑦ଶ ቇ − 𝜌ℎଷ1008 ቆ∂ଶ𝑤ሷ ௦∂𝑥ଶ + ∂ଶ𝑤ሷ ௦∂𝑦ଶ ቇ     +𝜌ℎ(𝑤ሷ  + 𝑤ሷ ௦) = 0.
 (1) 

The governing equations of the bending moment and transverse shearing force of the plate 
along the 𝑥-direction boundary can be given as: 
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𝑀௫௫(𝑥, 𝑦; 𝜔) = −𝐷 ቈ∂ଶ𝑤∂𝑥ଶ + 𝜇 ∂ଶ𝑤∂𝑦ଶ  ,
𝑄௫௭(𝑥, 𝑦; 𝜔) = −𝐷 ቈ∂ଷ𝑤∂𝑥ଷ + (2 − 𝜇) ∂ଷ𝑤∂𝑥 ∂𝑦ଶ + 𝜌ℎଷ12 ∂𝑤ሷ ∂𝑥 ,
𝑀௫௫௦(𝑥, 𝑦; 𝜔) = −𝐷 ቈ∂ଶ𝑤௦∂𝑥ଶ + 𝜇 ∂ଶ𝑤௦∂𝑦ଶ  ,
𝑄௫௭௦(𝑥, 𝑦; 𝜔) = 5𝐸ℎ12(1 + 𝜇) ∂𝑤௦∂𝑥 − 𝐷84 ቈ∂ଷ𝑤௦∂𝑥ଷ + (2 − 𝜇) ∂ଷ𝑤௦∂𝑥 ∂𝑦ଶ + 𝜌ℎଷ1008 ∂𝑤ሷ∂𝑥 ,

 (2) 

where, 𝜌 is the mass density, ℎ is the thickness and 𝐷 is the bending rigidity which is defined by 𝐷 = ாయଵଶ(ଵିఔమ), 𝜈 is the Poisson’s ratio and 𝐸 is the elastic modulus of the plate. The first and second 
terms in Eq. (1) stand for the shear and bending vertical displacements of the plate. 

2.2. Spectral element method (SEM) 

Assuming the displacement of the plate in 𝑛-domain spectral in the following form: 𝑤(𝑥, 𝑦, 𝑡) = 𝑤௦(𝑥, 𝑦, 𝑡) + 𝑤(𝑥, 𝑦, 𝑡), (3) 

where, 𝑤௦(𝑥, 𝑦, 𝑡) and 𝑤(𝑥, 𝑦, 𝑡) are the assumed shear and bending 𝑧-direction displacement 
functions which are expressed by exponential series as follow: 

𝑤௦(𝑥, 𝑦, 𝑡) = 1𝑁  𝑊௦(𝑥, 𝑦; 𝜔)𝑒ఠ௧ேୀଵ ,    𝑤(𝑥, 𝑦, 𝑡) = 1𝑁  𝑊(𝑥, 𝑦; 𝜔)𝑒ఠ௧,ேୀଵ  (4) 

with: 𝑊௦(𝑥, 𝑦; 𝜔) = 𝑋௦(𝑥)𝑌௦(𝑦),    𝑊(𝑥, 𝑦; 𝜔) = 𝑋(𝑥)𝑌(𝑦), (5) 

where 𝑊௦(𝑥, 𝑦; 𝜔)  and 𝑊(𝑥, 𝑦; 𝜔)  are the spectral components of the 𝑤௦(𝑥, 𝑦, 𝑡)  and 𝑤(𝑥, 𝑦, 𝑡) , 𝑁  is the sampling number and 𝜔  is the 𝑛 th natural frequency. The spectral 
component 𝑊௦(𝑥, 𝑦; 𝜔)  and 𝑊(𝑥, 𝑦; 𝜔)  are obtained from the multiplications of 𝑋௦(𝑥) , 𝑋(𝑥) and 𝑌௦(𝑦), 𝑌(𝑦) which are the shear and bending parts of the displacement functions 
in 𝑥 and 𝑦-directions, respectively. 

By assuming the 𝑌௦(𝑦) and 𝑌(𝑦) solutions in 𝑚-domain spectral form as: 

𝑌௦(𝑦) = 1𝑀  𝑌௦𝑒௬ெୀଵ ,    𝑌(𝑦) = 1𝑀  𝑌𝑒௬ெୀଵ , (6) 

where 𝑘௬ is the sampling number and the wavenumbers in 𝑦-direction which is given by: 𝑘௬ = 𝑚𝜋𝐿௬ ,    (𝑚 = 1,2,3, . . . ). (7) 

Substitutions of Eq. (6) into Eq. (5), results in: 𝑊௦൫𝑥; 𝑘௬, 𝜔൯ = 𝑋௦൫𝑥; 𝑘௬, 𝜔൯𝑌௦,𝑊൫𝑥; 𝑘௬, 𝜔൯ = 𝑋൫𝑥; 𝑘௬, 𝜔൯𝑌. (8) 

After some derivations and substitutions, Eq. (1) can be written as: 
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ቈ𝐷𝑘௫ସ + ቆ2𝐷𝑘௬ଶ − 𝜌ℎଷ12 𝜔ଶ ቇ 𝑘௫ଶ + 𝐷𝑘௬ସ − 𝜌ℎଷ12 𝜔ଶ 𝑘௬ଶ − 𝜔ଶ 𝜌ℎ 𝑊      − 𝜔ଶ 𝜌ℎ𝑊௦ = 0, ቈ 𝐷84 𝑘௫ସ + ቆ2𝐷84 𝑘௬ଶ + 5𝐸ℎ12(1 + 𝜇) − 𝜌ℎଷ1008 𝜔ଶ ቇ 𝑘௫ଶ + 𝐷84 𝑘௬ସ       + 5𝐸ℎ12(1 + 𝜇) 𝑘௬ଶ − 𝜌ℎଷ1008 𝜔ଶ 𝑘௬ଶ − 𝜔ଶ 𝜌ℎ 𝑊௦ − 𝜔ଶ 𝜌ℎ𝑊 = 0. 
(9) 

The general solution of Eq. (9) can be assumed as: 𝑊௦ ൫𝑥; 𝑘௬, 𝜔൯ = 𝑐௦𝑒ିೣ௫,     𝑊 ൫𝑥; 𝑘௬, 𝜔൯ = 𝑐𝑒ିೣ௫. (10) 

Substituting Eq. (10) into the spectral governing equations of Eq. (9), results in: 

ቈ𝐷𝑘௫ସ + ቆ2𝐷𝑘௬ଶ − 𝜌ℎଷ12 𝜔ଶ ቇ 𝑘௫ଶ + 𝐷𝑘௬ସ − 𝜌ℎଷ12 𝜔ଶ 𝑘௬ଶ − 𝜔ଶ 𝜌ℎ 

     · ⎣⎢⎢⎢
⎡ 𝐷84 𝑘௫ସ + ቆ2𝐷84 𝑘௬ଶ + 5𝐸ℎ12(1 + 𝜇) − 𝜌ℎଷ1008 𝜔ଶ ቇ 𝑘௫ଶ
+ 𝐷84 𝑘௬ସ + 5𝐸ℎ12(1 + 𝜇) 𝑘௬ଶ − 𝜌ℎଷ1008 𝜔ଶ 𝑘௬ଶ − 𝜔ଶ 𝜌ℎ⎦⎥⎥⎥

⎤ − 𝜔ସ 𝜌ℎ = 0. (11) 

In the matrix form, Eq. (8) can be written as: 𝑊 ൫𝑥; 𝑘௬, 𝜔൯ = 𝑊௦ ൫𝑥; 𝑘௬, 𝜔൯      +𝑊 ൫𝑥; 𝑘௬, 𝜔൯ = 𝐄൫𝑥; 𝑘௬, 𝜔൯𝐜, (12) 

where: 𝐄൫𝑥; 𝑘௬, 𝜔൯ = 𝑒ିೣభ௫ 𝑒ିೣమ௫ 𝑒ିೣయ௫ 𝑒ିೣర௫𝑒ିೣఱ௫ 𝑒ିೣల௫ 𝑒ିೣళ௫ 𝑒ିೣఴ௫൨, 𝐜 = ሾ𝑐ଵ 𝑐ଶ 𝑐𝑛𝑚3 𝑐ସ 𝑐ହ 𝑐 𝑐 𝑐଼ሿ்.  
2.3. Simply supported Levy-type plate 

Per definition, the Levy-type plate is defined by a rectangular plate with at least two parallel 
sides simply supported and arbitrary at the other edges boundary conditions. 

The spectral DOF of a simply supported condition of the plate with the boundary conditions 
at 𝑥 = 0 and 𝑥 = 𝐿௫; is given by: 

𝐝(𝜔) ≡
⎩⎪⎪⎪
⎨⎪
⎪⎪⎧𝑊ଵ௦(𝑦; 𝜔)Θଵ௦(𝑦; 𝜔)𝑊ଵ(𝑦; 𝜔)Θଵ(𝑦; 𝜔)𝑊ଶ௦(𝑦; 𝜔)Θଶ௦(𝑦; 𝜔)𝑊ଶ(𝑦; 𝜔)Θଶ(𝑦; 𝜔) ⎭⎪⎪⎪

⎬⎪
⎪⎪⎫ =

⎩⎪⎪⎪
⎨⎪
⎪⎪⎧ 𝑊௦ (0, 𝑦; 𝜔)𝑊௦ᇱ (0, 𝑦; 𝜔)𝑊 (0, 𝑦; 𝜔)𝑊ᇱ (0, 𝑦; 𝜔)𝑊௦ (𝐿௫, 𝑦; 𝜔)𝑊௦ᇱ (𝐿௫, 𝑦; 𝜔)𝑊 (𝐿௫, 𝑦; 𝜔)𝑊ᇱ (𝐿௫, 𝑦; 𝜔)⎭⎪⎪⎪

⎬⎪
⎪⎪⎫. (13) 

Substituting Eq. (12) into Eq. (13), results in: 
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𝐝൫𝑘௬, 𝜔൯ = 𝚽൫𝑘௬, 𝜔൯𝐜. (14) 

In the matrix form, by applying the boundary conditions, the resultant transverse shearing force 
and bending moment of the plate in Eq. (2) along the 𝑥-direction boundary can be given as: 

𝐟(𝜔) ≡
⎩⎪⎪⎪
⎪⎨
⎪⎪⎪⎪
⎧𝑄ଵ௦൫𝑘௬, 𝜔൯𝑀ଵ௦൫𝑘௬, 𝜔൯𝑄ଵ൫𝑘௬, 𝜔൯𝑀ଵ൫𝑘௬, 𝜔൯𝑄ଶ௦൫𝑘௬, 𝜔൯𝑀ଶ௦൫𝑘௬, 𝜔൯𝑄ଶ൫𝑘௬, 𝜔൯𝑀ଶ൫𝑘௬, 𝜔൯⎭⎪⎪⎪

⎪⎬
⎪⎪⎪⎪
⎫

=
⎩⎪⎪⎪
⎪⎨
⎪⎪⎪⎪
⎧ −𝑄௫௭௦൫0; 𝑘௬, 𝜔൯𝑀௫௫௦൫0; 𝑘௬, 𝜔൯−𝑄௫௭൫0; 𝑘௬, 𝜔൯𝑀௫௫൫0; 𝑘௬, 𝜔൯−𝑄௫௭௦൫𝐿௫; 𝑘௬, 𝜔൯𝑀௫௫௦൫𝐿௫; 𝑘௬, 𝜔൯−𝑄௫௭൫𝐿௫; 𝑘௬, 𝜔൯𝑀௫௫൫𝐿௫; 𝑘௬, 𝜔൯ ⎭⎪⎪⎪

⎪⎬
⎪⎪⎪⎪
⎫

. (15) 

Substituting Eq. (12) into Eq. (2), results in: 𝑀௫௫(𝑥, 𝑦; 𝜔) = −𝐷ൣ𝐄ᇱᇱ (𝑥) − 𝜇𝑘௬ଶ 𝐄(𝑥)൧𝑐,𝑄௫௭(𝑥, 𝑦; 𝜔) = −𝐷ൣ𝐄ᇱᇱᇱ (𝑥) − (2 − 𝜇)𝑘௬ଶ 𝐄ᇱ (𝑥)൧𝐜 − 𝜔ଶ 𝜌ℎଷ12 𝐄ᇱ (𝑥)𝑐,𝑀௫௫௦൫𝑥; 𝑘௬, 𝜔൯ = −𝐷ൣ𝐄௦ᇱᇱ (𝑥) − 𝜇𝑘௬ଶ 𝐄௦(𝑥)൧𝑐,𝑄௫௭௦൫𝑥; 𝑘௬, 𝜔൯ = 5𝐸ℎ12(1 + 𝜇) 𝐄௦ᇱ (𝑥)𝑐 − 𝐷84 ൣ𝐄௦ᇱᇱᇱ (𝑥) − (2 − 𝜇)𝑘௬ଶ 𝐄௦ᇱ (𝑥)൧     · 𝑐 − 𝜔ଶ 𝜌ℎଷ1008 𝐄௦ᇱ (𝑥)𝑐.
 (16) 

By substitution of Eq. (15), Eq. (16) can be written as: 𝐟൫𝑘௬, 𝜔൯ = 𝐆൫𝑘௬, 𝜔൯𝐜. (17) 

The constant vector 𝐜 can be eliminated by taking the inverse of Eq. (14) and substituting 
into Eq. (17) to obtain the force-displacement relationship of spectral element governing equation 
for the Levy-type plate element as follow: 𝐟൫𝑘௬, 𝜔൯ = 𝐆൫𝑘௬, 𝜔൯𝚽ିଵ ൫𝑘௬, 𝜔൯ · 𝐝൫𝑘௬, 𝜔൯     = 𝐒൫𝑘௬, 𝜔൯𝐝൫𝑘௬, 𝜔൯,  (18) 

where, 𝐒൫𝑘௬, 𝜔൯ = 𝐆൫𝑘௬, 𝜔൯𝚽ିଵ ൫𝑘௬, 𝜔൯. 
The size of the matrix 𝐒൫𝑘௬, 𝜔൯ is 8×8 which is the function of natural frequency 𝜔 

and wavenumber 𝑘௬. 

3. Numerical examples 

Consider the geometry of two different aspect ratio of width and length of Levy-type plates as 
shown in Fig. 3. The following material properties of the isotropic plate are used in the calculation: 
mass density 𝜌 = 1.0; elastic modulus 𝐸 = 1 and Poisson’s ratio 𝜈 = 0.3. The shear modulus is 
computed from 𝐺 = 𝐸/2(1 + 𝜈). The plates are restrained at both opposite parallel sides by 
simply supported boundary conditions. Non-dimensional natural frequencies 𝜔ഥ = 𝜔ℎඥ𝜌/𝐺 
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of simply-supported SEM plate with ℎ/𝐿௬ = 0.1 for 𝑛 = 1 to 5 are computed. 

 
Fig. 3. Numerical examples of free vibration of the Levy-type plate using SEM 

The natural frequencies of the plates are found by solving the homogeneous equation of the 
spectral element model of Eq. (18): 𝐟൫𝑘௬, 𝜔൯ = 𝐒൫𝑘௬, 𝜔൯𝐝൫𝑘௬, 𝜔൯ = 0. (19) 

The natural frequencies 𝜔, (𝑚 = 1,2,3. . . ; 𝑛 = 1,2,3. . . ) are solved by using the condition 
that the determinant of 𝐒൫𝑘௬, 𝜔൯ is zero at 𝜔 = 𝜔, that is: ห𝐒൫𝑘௬, 𝜔൯ห = 0. (20) 

The algorithm of Wittrick-Williams [17] is implemented to compute the natural frequencies 
of the plates. The results of the normalized natural frequencies of the plates are compared with the 
RPT solutions [11] as shown in Tables 1, 2 for the square and rectangular Levy-type plates. The 
present results obtained by using the SEM are found to give accurate and complete natural 
frequencies values compared with the RPT and exact solutions reported. 

Table 1. Comparison of normalized natural frequencies 𝜔ഥ of Levy-type plates 𝑚 𝑛 𝐿௫/𝐿௬ = 1.0 𝐿௫/𝐿௬ = √2 
Exact [18] RPT [11] Present Exact [18] RPT [11] Present 

1 1 0.0932 0.0930 0.0930 0.0704 0.0704 0.0704 
1 2 0.2226 0.2220 0.2220 0.1376 0.1373 0.1373 
2 1 0.2018 0.2012 0.2012 
2 2 0.3421 0.3406 0.3406 0.2634 0.2625 0.2625 
1 3 0.4171 0.4151 0.4151 0.2431 0.2424 0.2424 
3 1 0.3987 0.3968 0.3968 
2 3 0.5239 0.5208 0.5208 0.3612 0.3596 0.3596 
3 2 0.4535 0.4511 0.4511 
1 4 − 0.6525 0.6525 0.3800 0.3783 0.3783 
4 1 − − 0.6365 
3 3 0.6889 0.6840 0.6840 0.5411 0.5378 0.5378 
2 4 0.7511 0.7454 0.7454 0.4890 0.4863 0.4863 
4 2 − − 0.6840 
3 4 − 0.8908 0.8908 − − 0.6525 
4 3 − − 0.7604 
1 5 0.9268 0.9187 0.9187 0.5411 0.5378 0.5378 
5 1 − − 0.9048 
2 5 − 1.0001 1.0001 0.6409 0.6365 0.6365 
5 2 − − 0.9462 
4 4 1.0889 1.0785 1.0785 − − 0.8626 
3 5 − 1.1292 1.1292 − − 0.7901 
5 3 − − 1.1013 
4 5 − − 1.2982 − − 0.9867 
5 4 − − 1.1040 
5 5 − − 1.4991 − − 1.2152 

Lx=1

x

z y
Lx=√2

h=Ly /10

square rectangular
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Table 2. Normalized natural frequencies 𝜔ഥ of simply-supported SEM plates 
RPT, 𝐿௫/𝐿௬ = 1.0 RPT, 𝐿௫/𝐿௬ = √2 

  

  

  

  

4. Conclusions 

The present method using SEM featured with the FEM meshing and assembling capabilities 
was proved to be effective and efficient to solve free vibration problems of two-variable RPT 
plates. The present SEM gives a good accuracy of the natural frequencies of plates without element 
discretization procedures necessary. The present SEM has shown that the transcendental stiffness 
matrices which are well established in free vibration problems can be derived from any theories 
provided with the governing differential equations of the plate element. The effectiveness of the 
Wittrick-Williams algorithm also has been found suitable for use in the SEM formulation, as 
opposed to the approximation method by using the FEM. 
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