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Abstract. In the present work, we present a new algorithm for assessing causality in 
uni-directionally coupled chaotic oscillators with small frequency mismatch embedded in heavy 
white Gaussian noise. This method is based on the correlation between changes in the phase 
dynamics of the slave oscillator and the dynamics of the phase difference between the oscillators. 
To recover the phase at low signal-to-noise ratio, a nonlinear adaptive denoising algorithm based 
on finding sinusoidal fits to the local neighbourhood of the reconstructed phase space is used. 
Application of the proposed approach to master-slave Rössler systems showed that the new 
algorithm is well-suited for assessing the presence and direction of coupling in highly noisy 
uni-directionally coupled chaotic oscillators, especially in the case of weak and moderate 
coupling. 
Keywords: chaotic oscillators, causality, phase synchronization, unidirectional coupling. 

1. Introduction 

Quantification of the causal effects between simultaneously observed systems from the 
analysis of time series recordings is essential in many scientific fields, including economics, 
climatology, ecosystems, electrical activity of the brain, or cardiorespiratory relations. Estimating 
the interdependence between the observed variables provides valuable knowledge regarding the 
processes that generate time series [1]. The Granger causality method [2] is the most well-known 
and principal method for identifying directional interactions between variables from their time 
series, and many modifications and extensions of the Granger causality test has been developed. 
The Granger test focuses on determining whether one time series is useful in forecasting another. 
If useful, the first system causally affects the second system. The conventional Granger causality 
test is based on autoregressive models and is particularly useful in stochastic linearly 
interconnected systems [3]. However, the appropriateness of direct application to nonlinear 
systems depends on the specific problem to be analyzed [4-6]. Therefore, new approaches have 
been proposed, including nonlinear extensions of Granger causality [4], transfer entropy [7], 
conditional mutual information [8], evolution map approach (EMA) [9, 10], convergent 
cross-mapping (CCM) method [5, 11, 12], and measures evaluating distances of conditioned 
neighbours in reconstructed state spaces [13-17], to name a few. A comprehensive review can be 
found in Focus Issue [18]. Specifically, CCM involves evaluating distances between conditioned 
neighbours in reconstructed state spaces and tests for causation between the driver (“master”) 
system 𝑋 and the driven (“slave”) system 𝑌, by measuring the extent to which the historical states 
of reconstructed state space, 𝑀 can reliably estimate states of reconstructed state space, 𝑀. To 
infer the direction of coupling, the opposite direction must also be assessed. Then, the direction of 
coupling is inferred based on asymmetries emerging from the calculations of the two possible 
causal directions. Most of the existing tools for detecting causality can make determinations of 
directionality in idealized conditions of sufficiently long, noise-free time series, but those 
determinations are relatively fragile in the presence of noise. However, the real-world datasets 
possess observational and process noise and may lack sufficient data. Taking the Rössler system 
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as an example, it is shown in [19] that in the case of a small mismatch between the mutually 
incommensurate frequencies of the oscillators, changes in the phase dynamics of the slave 
oscillator are highly correlated with the dynamics of the phase difference between the oscillators. 
On the contrary, the phase dynamics of the master oscillator are not disturbed and do not correlate 
with the dynamics of the phase difference between the oscillators. This principle of asymmetries 
in correlations allows for efficiently assessing the presence and direction of coupling, especially 
in the case of weak coupling. 

In this paper, we show that this method for estimating the causal effect in uni-directionally 
coupled chaotic oscillators can be successfully applied to a time series in high-noise environments 
due to its robustness against distortions caused by the noise reduction algorithms. 

2. Description of the algorithm 

We first give a brief introduction of the method [19] for assessing causality in uni-directionally 
coupled chaotic oscillators with small frequency mismatch. The approach is based on the 
correlation between changes in the phase dynamics of the slave oscillator and the dynamics of the 
phase difference between the oscillators. The instantaneous phase 𝜙ሺ𝑡ሻ  of a signal 𝑠ሺ𝑡ሻ  is 
estimated using the Hilbert transform 𝐻௧ሼ∙ሽ: 𝑧ሺ𝑡ሻ = 𝑠ሺ𝑡ሻ + 𝑖𝐻௧ሼ𝑠ሺ𝑡ሻሽ = 𝐴ሺ𝑡ሻ𝑒థሺ௧ሻ, (1) 

where the analytic signal 𝑧ሺ𝑡ሻ  can be understood as an embedding of the one-dimensional 
time-series in the two-dimensional complex plane and the function 𝐻௧ሼ𝑠ሺ𝑡ሻሽ  is the Hilbert 
transform of 𝑠ሺ𝑡ሻ: 

𝐻௧ሼ𝑠ሺ𝑡ሻሽ = 𝜋ିଵ𝑃. 𝑉. න 𝑠ሺ𝜏ሻ𝑡 − 𝜏 𝑑𝜏,ାஶ
ିஶ  (2) 

and P.V. means that the integral is taken in the sense of the Cauchy principal value. In the case 
that 𝑧ሺ𝑡ሻ  evolves around a central region, the cyclic phase is computed by the following 
expression: 

𝜙ሺ𝑡ሻ = arctan ቆ𝐼𝑚ሼ𝑧ሺ𝑡ሻሽ𝑅𝑒ሼ𝑧ሺ𝑡ሻሽቇ, (3) 

and ∆𝜙ሺ𝑡ሻ = 𝜙ଵሺ𝑡ሻ − 𝜙ଶሺ𝑡ሻ is the instantaneous phase difference between the corresponding 
signals 𝑠ଵሺ𝑡ሻ  and 𝑠ଶሺ𝑡ሻ  at time 𝑡 . Furthermore, the phase difference is determined by absሺ𝑚𝑜𝑑𝑢𝑙𝑜 𝜋ሻ, to specify the closeness of the phases between two oscillators without indicating 
the direction of the difference. As a result, the instantaneous phase difference oscillates between 
0 and 𝜋  at a low instantaneous frequency defined as the time rate of change of Δ𝜙ሺ𝑡ሻ  and 
determined by the difference in natural frequencies of the signals and by the coupling strength 
(more details in [20, 21]). In order to obtain the continuous dynamics of the phases 𝜙ଵሺ𝑡ሻ and 𝜙ଶሺ𝑡ሻ, the phases are unwrapped by tracing the ≈2𝜋 jumps in the time course of 𝜙ଵሺ𝑡ሻ and 𝜙ଶሺ𝑡ሻ: 𝜙ሼ𝑡ሺ𝑘ሻ: 𝑡ሺ𝑘 + 1ሻ − 1ሽ = 𝜙ሼ𝑡ሺ𝑘ሻ: 𝑡ሺ𝑘 + 1ሻ − 1ሽ ⋯ + 𝜙ሼ𝑡ሺ𝑘ሻ − 1ሽ, (4) 

where 𝜙 = 𝜙 + 𝜋; 𝑖 = 1, 2; 𝑡 are time points at which 𝜙 reaches its maximum, i.e., 𝜙 ≈ 2𝜋, 𝑘 = 1, …, 𝑁. For practical use, there is a convenient Matlab function unwrap. The unwrapped 
phases are detrended to detect subtle changes in their dynamics. Furthermore, the high-frequency 
small-amplitude irregular fluctuations of the 𝜙ሺ𝑡ሻ  and Δ𝜙ሺ𝑡ሻ  are neglected, and only the 
oscillations at a low averaged frequency ( Ω = 〈𝑑Δ𝜙ሺ𝑡ሻ 𝑑𝑡⁄ 〉  for the instantaneous phase 
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difference and Ω = 〈𝑑𝜙 𝑑𝑡⁄ 〉 for the detrended 𝜙ሺ𝑡ሻ) are considered. The method is grounded 
on the fact that the unwrapped and detrended phase 𝜙ሺ𝑡ሻ of the slave oscillator exhibits significant 
low-frequency oscillations synchronously with Δ𝜙ሺ𝑡ሻ, i.e., is modulated according to the distance 
between phases and changes significantly with transition from in-phase to anti-phase state 
between coupled oscillators already at a weak coupling strength. On the contrary, no changes are 
observed in the unwrapped and detrended phase 𝜙ሺ𝑡ሻ of the master oscillator synchronously with 
the phase difference. Therefore, the direction of coupling is inferred based on the asymmetries 
emerging from the correlations between Δ𝜙ሺ𝑡ሻ and 𝜙ሺ𝑡ሻ for the slave oscillator and for the master 
oscillator. It is worth emphasizing that a high value of the correlation coefficient between Δ𝜙ሺ𝑡ሻ 
and 𝜙ሺ𝑡ሻ for system 𝑌 compared to the value of the correlation coefficient between Δ𝜙ሺ𝑡ሻ and 𝜙ሺ𝑡ሻ  for system 𝑋  indicates that system 𝑋  drives system 𝑌 . This runs in accordance with 
Granger’s method and counter to the CCM method. To recover the phase of the oscillating time 
series under high noise levels, we propose a nonlinear adaptive algorithm to recover continuous-
time chaotic signals in heavy noise environments, based on a least-squares fit of the sum of sines 
and cosines, each with a time-varying phase to the state vectors of the neighbourhood of the 
reconstructed phase space. Let 𝑋 = ሼ𝑥௧ሽ௧ୀଵ  and 𝑌 = ሼ𝑦௧ሽ௧ୀଵ  be two time series of finite length 𝐿 ∈ 𝑁 contaminated by additive white Gaussian noise with zero mean and signal-to-noise ratio 
(SNR) of 0-5 dB. As a first step, 𝐷-dimensional attractor manifolds 𝐌 and 𝐌 are reconstructed 
from lags of observable 𝑋  and 𝑌  so that the state of the system in time 𝑡  is  𝐱௧ = ൣ𝑥௧, 𝑥௧ାఛ, 𝑥௧ାଶఛ, ⋯ , 𝑥௧ାሺିଵሻఛ൧்  and 𝐲௧ = ൣ𝑦௧, 𝑦௧ାఛ, 𝑦௧ାଶఛ, ⋯ , 𝑦௧ାሺିଵሻఛ൧்  respectively for 𝑡 = 1 to 𝑡 = 𝐿 − ሺ𝐷 − 1ሻ, i.e., 𝐌 = ሼ𝐱௧ሽ௧ୀଵିሺିଵሻఛ  and 𝐌 = ሼ𝐲௧ሽ௧ୀଵିሺିଵሻఛ , where 𝜏 is the time 
delay, and ሺ∙ሻ் denotes the transpose of a real matrix. One unit time delay and an embedding 
dimension approximately equal to one and a half of the fundamental period 𝑇෨  of the oscillations 
are used. The over-embedding technique contributes to the determination of valid neighbours at 
strong noise and to obtain a tradeoff between noise suppression and a distortion of the local chaotic 
dynamics. Further, the vector time series 𝐱௧ and 𝐲௧ are subjected to an identical preprocessing 
procedure as shown for vector time series 𝐱௧ . For every 𝑖 , 𝑖 = 1, 𝑊, 2𝑊, ⋯ , 𝐿 − ሺ𝐷 − 1ሻ𝜏 ,  𝑊 = 𝐷/2, point 𝐱௧ in the reconstructed 𝐷-dimensional phase space, 𝑟, temporarily uncorrelated 
nearest neighbour points ൛𝐱ൟୀଵ

 are determined and mean value 𝑥ොሺ𝑡ሻ, 𝑡 = 1, ⋯ , 𝐷, for this 
cloud of nearest neighbour points is calculated. We write: 

𝑥ሺ𝑡ሻ =  ቀ𝛽ଵଵsin ቀ𝜔𝑡 + 𝜙ሺ𝑡ሻቁ +𝛽ଶଵcos ቀ𝜔𝑡 + 𝜙ሺ𝑡ሻቁொ
ୀଵ       + ⋯ 𝛽ଵଶsin ቀ𝜔𝑡 − 𝜙ሺ𝑡ሻቁ + 𝛽ଶଶcos ቀ𝜔𝑡 − 𝜙ሺ𝑡ሻቁ + 𝛽ሻ, (5) 

as an approximation to 𝑥ොሺ𝑡ሻ, where 𝜔 = 2𝜋/𝑇෨  is the fundamental frequency of the sinusoids, 𝜙ሺ𝑡ሻ = 𝑏ሺ𝑞 − 1ሻ𝑡 , and 𝛽ଵଵ , 𝛽ଶଵ , 𝛽ଵଶ , 𝛽ଶଶ , and 𝛽  are parameters to be estimated. The 
parameters 𝑄 and 𝑏 are chosen experimentally. The vector parameter 𝛃 is estimated using the 
known least-squares method: 𝛃 = ሾ𝐌்𝐌ሿற𝐌்𝑥ො, (6) 

where: 𝐌 = ሾ𝐌𝒔ା 𝐌ା 𝐌௦ି 𝐌ି 𝐌ூሿ, (7) 

and 𝐌௦ା , 𝐌ା  are submatrices of size 𝐷×𝑄  encompassing 𝑄  sines and 𝑄  cosines respectively 
with a linear growth of the instantaneous frequency, 𝐌௦ି , 𝐌ି  are submatrices of size 𝐷×𝑄 
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encompassing 𝑄  sines and 𝑄  cosines respectively with a linear decrease of the instantaneous 
frequency, 𝐌ூ is column vector 𝐷×1 of ones, and ሺ∙ሻற denotes the Moore-Penrose pseudo-inverse 
of a given matrix. Knowing parameter 𝛃, we can rewrite Eq. (5) as: 𝑥ሺ𝑡ሻ = 𝛃ሺ1: 𝑄ሻ் ∗ 𝐌௦ା் + 𝛃ሺ𝑄 + 1: 2𝑄ሻ் ∗ 𝐌ା்      + ⋯ 𝛃ሺ2𝑄 + 1: 3𝑄ሻ் ∗ 𝐌௦ି் + 𝛃ሺ3𝑄 + 1: 4𝑄ሻ் ∗ 𝐌ି் + 𝛃ሺ4𝑄 + 1ሻ. (8) 

Estimated segments 𝑥ሺ𝑡ሻ  overlap by 𝑊  points. To ensure that the fitting is continuous 
everywhere and to eliminate the jumps or discontinuities around the boundaries of neighbouring 
segments, we used the fitting for the overlapped region as described in [22]. Denote the fitted 
curve for the 𝑖th and (𝑖 + 1)th segments by 𝑥ሺ𝑡ሻ and 𝑥ାଵሺ𝑡ሻ, respectively. Then the fitting for 
the overlapped region can be defined as: 𝑥ሺ𝑡ሻ = 𝑤ଵ𝑥ሺ𝑡ାௐሻ + 𝑤ଶ𝑥ାଵሺ𝑡ሻ,   𝑡 = 1, 2, ⋯ , 𝑊 + 1, (9) 

where 𝑤ଵ = 1 − ሺ𝑡 − 1ሻ/𝑊 , and 𝑤ଶ = ሺ𝑡 − 1ሻ/𝑊 . As follows from Eq. (9), the weights 
decrease linearly with the distance between the point and the center of the segment. Such a 
weighting ensures symmetry and effectively eliminates any jumps or discontinuities around the 
boundaries of neighbouring segments. Numerical experiments on the Rössler system show that 
the proposed algorithm provides about 13 dB, on average, improvement in SNRs at initial  
SNR = 0 dB. The efficacy of this preprocessing algorithm enables to properly recover the phase 
of the noisy chaotic oscillator and, in consequence ensures the effectiveness of the proposed 
algorithm for inferring causality from highly noisy uni-directionally coupled chaotic oscillators. 

3. Simulation results 

To demonstrate the performance of the method we considered two examples of 
uni-directionally connected chaotic Rössler systems [12] with small frequency mismatch and 
having variable coupling strengths. The oscillators were coupled via a one-way driving 
relationship between variable 𝑥ଵ of the driving system and variable 𝑦ଵ of the responsive system: 𝑥ሶଵ = −𝜔ଵሺ𝑖ሻ𝑥ଶ − 𝑥ଷ,𝑥ሶଶ = 𝜔ଵሺ𝑖ሻ𝑥ଵ + 0.15𝑥ଶ,𝑥ሶଷ = 0.2 + 𝑥ଷሺ𝑥ଵ − 10ሻ,𝑦ሶଵ = −𝜔ଶሺ𝑖ሻ𝑦ଶ − 𝑦ଷ + 𝑐ሺ𝑥ଵ − 𝑦ଵሻ,𝑦ሶଶ = 𝜔ଶሺ𝑖ሻ𝑦ଵ + 0.15𝑦ଶ,𝑦ሶଷ = 0.2 + 𝑦ଷሺ𝑦ଵ − 10ሻ,

 (10) 

where 𝜔ଵሺ1ሻ =  1.015, 𝜔ଶሺ1ሻ =  0.985, 𝜔ଵሺ2ሻ =  0.980, and 𝜔ଶሺ2ሻ =  1.020. The coupling 
strength c was chosen from 0 to 0.14 with the step 0.01 for the first case and from 0 to 0.045 with 
the step 0.005 for the second case. The data were generated by Runge-Kutta integration with a 
step size of 0.1. The first 2000 data points were discarded. The total number of obtained data was 
14000, and this resulted in around 60 samples per one average orbit around the attractor. 
Approximation parameters 𝑄 and 𝑏 were chosen as 𝑄 = 10, 𝑏 = 0.0012, i.e., the total number of 
sinusoids and cosines were 40, and the maximum deviation of the fundamental frequency 
amounted to approximately 11 %. The performance of the algorithm was evaluated by means of 
a 30-trial Monte Carlo simulation whereby the signals are contaminated by various realizations of 
additive zero-mean white Gaussian noise at a SNR = 0 dB. All data processing and analyses were 
performed using Matlab software (MathWorks, Natick, MA). Consequently, we denoted the 
direction from system 𝑋 to system 𝑌 as 𝑌|𝑋 and the direction from 𝑌 to 𝑋 as 𝑋|𝑌. Taking, for 
example, the measure 𝜌 (correlation coefficient): if 𝑋 drives 𝑌, the measure 𝜌ሺ𝑌|𝑋ሻ is expected 
to be higher than 𝜌ሺ𝑋|𝑌ሻ. As we can see from Fig. 1 and Fig. 2, the measure 𝜌 shows that system 
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𝑋 drives system 𝑌 until the onset of synchronization, i.e., when their phases are locked, and when 
this method becomes meaningless. The mean gap between the measures 𝜌ሺ𝑌|𝑋ሻ and 𝜌ሺ𝑋|𝑌ሻ for 
noise-free signals and for signals contaminated with white Gaussian noise becomes roughly the 
same. For comparison two state-of-art algorithms were chosen: CCM and EMA. In the latter case, 
the directionality index 𝑑 was calculated using the Matlab code freely available on Ref. [23]. As 
we can see from Fig. 3, both methods fails to detect the causality at the conditions under study. 
CCM method shows false, i.e., weak opposite or bidirectional coupling direction, and the 
directionality index 𝑑 randomly oscillates between coupling directions. It is worth noting that the 
sign of correlation coefficient 𝜌  between Δ𝜙ሺ𝑡ሻ  and 𝜙ሺ𝑡ሻ  for the responsive system can be 
positive or negative. In our example, 𝜌 is positive when the frequency of the driving system is 
higher than the frequency of the responsive system and negative when the frequency of the driving 
system is lower than the frequency of the responsive system. 

 
a) 

 
b) 

Fig. 1. Correlation coefficient 𝜌 between Δ𝜙ሺ𝑡ሻ and 𝜙ሺ𝑡ሻ computed for two uni-directionally coupled 
Rössler oscillators with natural frequencies 𝜔ଵ = 1.015, 𝜔ଶ = 0.985: a) for noise-free signals,  

b) the mean values and standard deviations (with error bars) from 30 independent  
Monte Carlo trials consisting of the noise-added signal at a SNR = 0 dB 

 
a) 

 
b) 

Fig. 2. Correlation coefficient 𝜌 between Δ𝜙ሺ𝑡ሻ and 𝜙ሺ𝑡ሻ computed for two uni-directionally coupled 
Rössler oscillators with natural frequencies 𝜔ଵ = 0.980, 𝜔ଶ = 1.020: a) for noise-free signals,  

b) the mean values and standard deviations (with error bars) from 30 independent  
Monte Carlo trials consisting of the noise-added signal at a SNR = 0 dB 

 
Fig. 3. Measures 𝜌 obtained by CCM method and directionality index 𝑑 obtained by  

EMA method for two uni-directionally coupled Rössler oscillators with natural  
frequencies 𝜔ଵ = 1.015, 𝜔ଶ = 0.985 and contaminated with noise at SNR = 0 dB 
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4. Conclusions 

A simulation involving examples of uni-directionally connected chaotic Rössler-type systems 
shows that the algorithm for assessing causality in uni-directionally coupled chaotic oscillators 
based on the correlation between changes in the phase dynamics of the slave oscillator and the 
dynamics of the phase difference between the oscillators in combination with the proposed 
nonlinear adaptive denoising algorithm is an effective method to reveal the presence and the 
direction of coupling in uni-directionally coupled chaotic oscillators with a small frequency 
mismatch and embedded in heavy white Gaussian noise. The success of this approach is due to 
the robustness of the phase-based algorithm for assessing causality against unavoidable distortions 
of the local chaotic dynamics during the denoising process, and the comparison with the 
state-of-the-art methods shows that the proposed method is superior to the other approaches. 
Although in this work we explored a classical example of coupled chaotic Rössler oscillators 
frequently used for studying phase synchronization and causation, we believe that similar results 
can be obtained in other systems and future work should confirm this. 
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