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Abstract. This paper provides the formulation of the problem of forced vibrations of structures, 
which has the following peculiarities: equations of motion are formulated in absolute coordinates 
allowing to take into account the asynchronous excitations of the supports, smoothing of the time 
functions for forced displacements with the help of Hermite polynomials, and also the possibility 
of considering damping that does not obey the Rayleigh hypothesis. 
Keywords: finite element method, structural dynamics, seismic analysis, asynchronous 
excitations, local and material damping. 

1. Introduction 

In the classical formulation of the seismic problem, the motion of the finite element design 
model is considered in the coordinate system associated with the mobile rigid platform supporting 
the entire structure (Fig. 1). 

 
Fig. 1. The classical formulation of  

a seismic problem 

 
Fig. 2. The formulation of a seismic  

problem in absolute coordinates 

The equations of motion are written as follows: 

M𝐮ሷ  + C𝐮ሶ  + 𝐊𝐮 = −M𝐮ሷ (𝑡), (1) 

here 𝐌, 𝐂 , 𝐊  are mass, dissipation and stiffness matrices respectively, 𝐮  is the displacement 
vector, the subscript 𝑒 denotes the components of the bulk motion – movement of the platform 
points with respect to a fixed coordinate system 𝑂𝑥𝑦𝑧. Components of the relative motion – 
movement of the points of the structure with respect to the mobile platform, denoted by the 
subscript 𝑟, are the unknowns. The input action is the given accelerogram 𝐮ሷ (𝑡).  

In the case of the asynchronous excitation of the supports the equations of motion are written 
as follows [1]:  
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M𝐮ሷ ௗ + C𝐮ሶ ௗ + 𝐊𝐮ௗ = − ሾM𝐊ିଵ𝐊ଵଶ+𝐌ଵଶሿ𝐮ሷ (𝑡), (2) 𝐮(𝑡) = 𝐮ௗ(𝑡) + 𝐮௦(𝑡), (3) 

where 𝐮(𝑡) are the displacements of nodes of the design model in the absolute coordinate system 
fixed to the stationary ground, 𝐮ௗ(𝑡) are the displacements with respect to the quasistatic state 𝐮௦(𝑡), determined by solving the problem: 𝐊𝐮௦ = −𝐊ଵଶ𝐮ሷ (𝑡). (4) 

In Eqs. (2) and (4) 𝐊ଵଶ  and 𝐌ଵଶ  are stiffness and mass submatrices corresponding to the 
degrees of freedom for which the accelerations 𝐮ሷ (𝑡) are given. As a rule, the problems Eqs. (1) 
and (2) are solved by the method of expansion in natural modes determined for a structure with 
fixed supports (𝐮 = 0). In order to separate the equations of motion Eqs. (1), (2) into unrelated 
equations in normal coordinates, the dissipation matrix 𝐂  has to be represented as a linear 
combination of the mass and stiffness matrices, i.e. the Rayleigh hypothesis has to be fulfilled. 
However, in the case of multi-component damping, when different structural elements are made 
of materials with different damping, and also in the case of local dampers, the application of this 
approach causes significant difficulties. 

Moreover, the approach Eq. (2) in the case of an asynchronous excitation of supports requires 
an additional solution of the quasistatic problem Eq. (4) with subsequent superposition Eq. (3) of 
solutions of the dynamic and static problems, which substantially complicates the solution 
procedure. 

The equations of motion are written in absolute coordinates in SCAD [2], (Fig. 2), which 
provides the natural solution of the problem of forced vibrations at the asynchronous excitation of 
supports both in the case of the Rayleigh damping and the multi-component damping, and in the 
case of the local dampers as well. The proposed formulation of the problem is presented in this 
paper. 

2. Problem formulation in absolute coordinates 

The equation of motion (Fig. 2) has the form: ቀ0 00 𝐌ቁ ቀ𝐮ሷ 𝐮ሷ ቁ + ൬𝐂ଵଵ 𝐂ଵଶ𝐂ଶଵ 𝐂 ൰ ቀ𝐮ሶ 𝐮ሶ ቁ + ൬𝐊ଵଵ 𝐊ଵଶ𝐊ଶଵ 𝐊 ൰ ቀ𝐮𝐮 ቁ = ൬ 0𝐩(𝑡)൰, (5) 

where the subscript 𝑒 corresponds to the specified displacements, velocities and accelerations of 
the bulk motion, and 𝐩(𝑡) is the vector of the external forces of the finite element design model. 
In the case of the seismic action 𝐩(𝑡) = 0. It follows from Eq. (5) that: 

M𝐮ሷ + Cuሶ + 𝐊𝐮 = −𝐊ଵଶ𝐮(𝑡) − 𝐂ଵଶ𝐮ሶ (𝑡) + 𝐩(𝑡) . (6) 

The left-hand side Eq. (6) contains displacements, velocities and accelerations that have to be 
determined, and the right-hand side expression contains known displacements and velocities. All 
components of the displacement, velocity and acceleration vectors are given in the absolute 
coordinate system 𝑂𝑥𝑦𝑧 fixed to the stationary ground. Dissipation matrix blocks 𝐂 and 𝐂ଵଶ are 
assembled in exactly the same way as the stiffness matrix blocks 𝐊 and 𝐊ଵଶ, using a standard 
assembly procedure covering the finite elements of the design model [3]. It is stated in [1] that the 
term 𝐂ଵଶ𝐮ሶ (𝑡) in Eq. (6) can be neglected. However, we will keep this term for the sake of 
precision. In the proposed approach the input signal is not an accelerogram, as is in the case of the 
classical approach described by Eqs. (1) and (2), but a vibrogram 𝐮(𝑡) and a velocigram 𝐮ሶ (𝑡). 
Therefore, the given accelerogram 𝐮ሷ (𝑡) must be integrated twice, using the Accelerogram Editor 
from SCAD Office [2]. 
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If Eq. (6) is complemented with the initial conditions (usually accepted: 𝐮(0) =  𝐮ሶ (0) = 0), 
we obtain the Cauchy problem. The direct implicit 𝛼 – HHT method [4] is usually used for its 
numerical integration. 

3. Smoothing of forced displacements 

Let’s consider the problem of vibrations of a linear oscillator excited by a given displacement 
of the support (Fig. 3). 

 
Fig. 3. The linear oscillator with a rigid link 

 
Fig. 4. The given acceleration and displacement in the node 1 

A peculiarity of this problem is modeling a rigid link connecting nodes 1 and 2 using the 
method of penalty functions [5]. This approach is widely used in SCAD and has a number of 
advantages over the traditional method of accounting for rigid links, based on kinematic and static 
relationships of structural mechanics. The physical essence of the method of penalty functions is 
equivalent to setting springs, the stiffness of which is several orders of magnitude greater than the 
stiffness of the finite elements adjacent to the nodes connected by a rigid link. In the exact solution 
of this problem, the horizontal displacements, velocities, and accelerations of the node 2 must be 
exactly equal to the respective displacements, velocities, and accelerations of the node 1. 

The Newmark method is used for the numerical solution (the 𝛼 parameter in the 𝛼 – HHT 
method is taken as zero). Displacements of the nodes 1 and 2 turn out to be practically equal, the 
velocities differ insignificantly, and the horizontal acceleration of the node 2 is completely 
distorted by the high-frequency component (Fig. 5), which appeared due to the high stiffness 
caused by the application of the penalty function method in the modeling of a rigid link. It should 
be noted that the displacements, velocities and accelerations of the node 3, as well as the forces 
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and bending moments in the bar are obtained correctly. 

 
Fig. 5. Acceleration in the node 2. High-frequency component distorts the solution 

The reason for the distortion of the acceleration in the node 2 was the application of the linear 
interpolation to approximate the time function of the given displacements of the node 1. The 
velocity-time relationship is represented by a piecewise constant function with discontinuities at 
the interpolation nodes (Fig. 6). Accelerations between the interpolation nodes are zero, and those 
at the nodes are represented by Dirac delta functions. 

 
Fig. 6. Approximation of the displacements, velocities, and accelerations  

when using the linear interpolation for the given displacements 

While the linear interpolation was used to approximate the time function for the external forces 𝐩(𝑡), the inertial properties of the design model were smoothing the jumps shown in the Fig. 6. In 
the classical approach to seismic problems Eqs. (1) and (2), the input action is a given acceleration, 
so applying the linear interpolation to the time function for accelerations also does not lead to the 
excitation of high-frequency components. 

In order to eliminate parasitic high-frequency oscillations arising in the proposed approach 
Eq. (6) when using forced displacements and velocities as input, we apply Hermite polynomials 
for the interpolation of forced displacements between the nodes: 𝑢 (𝜉) = ൫𝑁ଵ(𝜉)  𝑁ଶ(𝜉)  𝑁ଷ(𝜉)  𝑁ସ(𝜉)൯ ∙ (𝑑ିଵ  𝑣ିଵ  𝑑  𝑣)், (7) 

where 𝜉 = 𝜉 = (𝑡 − 𝑡ିଵ)/Δ𝑡,  𝑁ଵ(𝜉) = 2𝜉ଷ − 3𝜉ଶ + 1,  𝑁ଶ(𝜉) = −Δ𝑡(𝜉ଷ − 2𝜉ଶ + 𝜉),  𝑁ଷ(𝜉) = −2𝜉ଷ + 3𝜉ଶ , 𝑁ସ(𝜉) = −Δ𝑡(𝜉ଷ − 𝜉ଶ) , 𝑑ିଵ , 𝑣ିଵ , 𝑑 , 𝑣  are the displacements and 
velocities in the interpolation nodes 𝑖 − 1 and 𝑖 (Fig. 7). The superscript 𝑖 over the displacement 𝑢 denotes the interval number, which is circled in the Fig. 7. Therefore, here 𝜉 =  𝜉. It follows 
from Eq. (7) that: 𝑢ሶ  (𝜉) =  1∆𝑡 ቀ𝑁ሶଵ(𝜉) 𝑁ሶଶ(𝜉) 𝑁ሶଷ(𝜉) 𝑁ሶସ(𝜉)ቁ ∙  (𝑑ିଵ 𝑣ିଵ 𝑑 𝑣)், (8) 𝑢ሷ  (𝜉) =  1∆𝑡ଶ ቀ𝑁ሷଵ(𝜉) 𝑁ሷଶ(𝜉) 𝑁ሷଷ(𝜉) 𝑁ሷସ(𝜉)ቁ ∙  (𝑑ିଵ 𝑣ିଵ 𝑑 𝑣)். (9) 

This approach provides the absence of discontinuities of the displacements and velocities in 
the interpolation nodes: 
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𝑢 (𝜉 = 1) =  𝑢ାଵ(𝜉ାଵ = 0),   𝑢ሶ  (𝜉 = 1) =  𝑢ሶ ାଵ(𝜉ାଵ = 0). (10) 

The values of the displacements in the interpolation nodes are given, and the values of the 
velocities are not. Our task is to select such nodal values of the velocities so that there are no 
discontinuities in the accelerations in the nodes: 𝑢ሷ  (𝜉 = 1) =  𝑢ሷ ାଵ(𝜉ାଵ = 0). (11) 

Applying Eq. (11) to each internal interpolation node and supplementing it with the boundary 
conditions 𝑣 =  𝑣ே = 0, where 𝑁 is the number of the last point where the displacements are 
specified, we obtain a system of linear algebraic equations with a tridiagonal symmetric matrix, 
solving which, we determine the values of the velocities 𝑣, 𝑖 = 1, 2, …, 𝑁 − 1 at the interpolation 
nodes. 

 
Fig. 7. Interpolation nodes and local coordinates 

As a result of applying the proposed approach based on the interpolation of forced 
displacements by Hermite polynomials, the horizontal acceleration of the node 2 turned out to be 
exactly the same as the horizontal acceleration of the node 1 (Fig. 4).  

4. Asynchronous excitation of supports 

If a structure has a considerable length, it becomes necessary to take into account the fact that 
the excitations in the soil reach some supports before the others ([7], [8] and so on). Fig. 8 shows 
the general view of the New Safe Confinement over the fourth power unit of the Chernobyl nuclear 
power plant, Fig. 9 shows the design model created in SCAD, and Fig. 10 shows an accelerogram 
of the input action [6]. 

 
Fig. 8. The new confinement “Arka” before the sliding over the old confinement,  

covering the damaged structures of the fourth power unit of the Chernobyl nuclear power plant 

According to the geophysical surveys [6], the velocity of the seismic wave propagation 𝑣௦ is 
200-300 m/s, and the predominant period of ground vibration is 𝑇௩ = 0.4 s. Thus, the seismic 
wave length lies in the range 𝜆௦ = 𝑣௦ ∙ 𝑇௩ = 80-120 m. When the seismic wave propagates 
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along the 𝑂𝑦  axis, the delay time of the wave arrival at the distant support is  𝑡 = 𝐿/𝑣௦ = 0.86-1.29 s, i.e. 𝑡 = (2.14-3.2)∙𝑇௩. 
The Rayleigh damping model is used. According to recommendations [6], the factor for the 

mass matrix is assumed to be 0.16, and the factor for the stiffness matrix is 0.01. 

 
Fig. 9. The design model. The red arrow depicts the direction of a seismic input motion 

 
Fig. 10. Accelerogram of the input motion 

Fig. 11 shows the longitudinal force-time relationship in the element #1687 (Fig. 9), of the 
bottom chord of the middle arch truss. This element turned out to be one of the most loaded 
structural elements under the seismic action. 

 
Fig. 11. The longitudinal force in the element #1687,  𝑡 = 0 – synchronous excitation, 𝑡 = 1.2 s – asynchronous excitation 

The delay in achieving a seismic excitation of a distant support leads to a significant change 
in the longitudinal force-time relationship. Fig. 11 shows a time interval, where the longitudinal 
force reaches its largest absolute values. Although the maximum absolute values at 𝑡 = 0 and 
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𝑡 = 1.2 s differ insignificantly in this example, the character of these relationships are completely 
different, and as a result the maximum force values are reached at different moments in time. 

5. Multi-component damping 

Fig. 12 shows a design model of the spatial frame, the lower two floors of which are made of 
reinforced concrete (𝛾 = 𝛿/𝜋 = 0.1, 𝛾 is the coefficient of internal inelastic resistance, 𝛿 is the 
logarithmic decrement of oscillations), and the upper two floors are made of steel (𝛾 = 0.03). Soil 
compliance in the direction of the translational displacements is modeled by the springs with 
stiffness 𝑘௫ = 𝑘௬ = 𝑘௭ = 10 MN/m, installed in the level of the supports, and the soil dissipation 
is modeled by local dampers with viscosity 𝛽௫ = 𝛽௬ = 𝛽௭ = 10 MN∙s/m. The oscillations are 
excited by the synchronous movement of the supports in the direction of the 𝑂𝑦 axis, and the time 
function is taken as 𝑓(𝑡) = 1 − cos(Ω𝑡) , where the frequency of the forced oscillations is  Ω = 𝜔ଶ, and 𝜔ଶ is the second natural frequency of oscillations, at which the structure moves 
mainly in the direction of the ground excitation. 

Since the seismic action takes the structure through all the resonance modes, we set such a 
testing load so as to create the resonance conditions. The only factor limiting the resonance 
amplitude of the oscillations of the linear design model is damping. Therefore, it is very important 
to take into account the damping correctly under seismic actions. Curve 1 (Fig. 13) describes the 
horizontal displacements of the node 5 in the direction of load action when only local dampers 
modeling the soil dissipation are taken into account, and curve 2 describes them in the case when 
both the soil dissipation and damping in structural elements are taken into account. 

It should be noted that a dissipation model not corresponding to the Rayleigh hypothesis was 
used when solving this problem. The dissipation matrix for column and beam finite elements is 
determined as follows: 𝐂 = 𝛾𝐊, (12) 

where 𝐂, 𝐊 are dissipation and stiffness matrices of the finite element 𝑒, 𝛾 is the coefficient of 
internal inelastic resistance of the material. 

 
Fig. 12. Design model for a reinforced 

concrete and steel spatial frame 

 
Fig. 13. Horizontal displacement of the node 5. 1 – only  
local dampers, 2 – local dampers and material damping 

6. Conclusions 

The presented formulation of the problem of forced structural vibrations enables to solve 
problems for large span structures that require the consideration of the asynchronous excitation of 
supports and to consider both the Rayleigh damping model and the material dumping, that allows 
one on the creation of the design models with multi-component damping. It is shown that with the 
forced excitation of supports, linear interpolation of displacements in time can lead to the 
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appearance of parasitic high-frequency oscillations. A method for constructing a local cubic 
approximation based on the use of shape functions in the form of Hermite polynomials, which 
does not lead to the above-mentioned high-frequency oscillations, is also proposed. 
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