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Abstract. Bearings are one of the most crucial elements in rotating machine. The condition of 
bearings decides the operation of machine. Consequently, it is necessary to study the assessment 
of bearing degradation in order to develop condition-based maintenance. This paper improves an 
indicator based on entropy which is calculated by wavelet packet decomposition and 
auto-regressive model. By introducing time parameter, the indicator solves the problem of 
instability in the initial stage of operation and it is less influenced by the operational conditions. 
Then, fuzzy c-means clustering can evaluate the process of degradation. Moreover, it can provide 
the threshold adaptively and help to repair by unit replacement. To ensure the applicability, the 
data of this paper comes from two laboratories, FEMTO-ST Institute and Intelligent Maintenance 
System Center. The result indicates that the method is effective to assess bearing degradation 
process. 
Keywords: entropy, time parameter, clustering, bearing degradation assessment. 

1. Introduction 

Bearings play a significant part in most rotating machinery as a crucial component of 
manufacturing industry. The failure of bearings will lead to downtime and economic loss in 
industrial production [1]. So, the real-time monitoring and prediction of bearing degradation will 
help the condition-based maintenance (CBM) [2, 3]. 

At present, most approaches for bearing degradation assessment is based on the vibration 
signals. Researchers have proposed lots of methods to get the indicators from signals mainly 
including time domain, frequency domain and time-frequency domain analysis [4]. Fourier 
transform is an elementary method to turn the time domain into frequency domain. Some 
indicators of both are widely used to express the features of bearings, such as Root Mean Square 
(RMS), energy, kurtosis, skewness, mean frequency, frequency center and so on [5]. Only time 
domain or frequency domain cannot show the non-stationary signals completely. The 
time-frequency domain solves the problem by reflecting the frequency changing according to time. 
Short-time Fourier transform (STFT) [6], Wavelet transform (WT) [7] and Hilbert-Huang 
transform (HHT) [8] are typical methods to get the time-frequency. STFT does not have adaptive 
ability. WT is not accurate enough in high frequency. HHT will lead to end effect and Gibbs 
phenomenon [9]. To decrease the lack of the methods, some other ways were proposed. Auto-
regressive (AR) model is usually used to estimate the spectrum [10]. It helps analyze short signals 
and reduce interference among signals. The methods above are unable to set up a single indicator 
to express bearing degradation process and will lead to abundant numerical computations in the 
assessment. Some researchers put up with entropy is an ideal indicator, but entropy cannot perform 
the initial degradation and may be influenced by operational condition a lot [11]. 

In addition to degradation feature extraction, estimating degradation condition is also an 
important part in CBM [12]. Researchers come up with some methods such as Artificial Neural 
Network (ANN) [13], Hidden Markov Model (HMM) [14], Support Vector Machine (SVM) [15], 
Gaussian mixture model (GMM) [16] etc. These methods are always combined with multi-data 
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and will be a burden with the amount of data increasing. Besides, they are not good at processing 
single dimensional data. Fuzzy c-means clustering can deal with both single dimensional data and 
multidimensional data. Its algorithm is efficient, accurate and usable [7]. 

This paper uses wavelet packet decomposition, AR model and entropy with time parameter to 
perform the process of degradation. Then, fuzzy c-means clustering method will help to evaluate 
the degradation state and warn the failure of bearings. 

2. Technical background 

2.1. Wavelet packet decomposition 

Wavelet packet decomposition is also called subband tree or optimal subband tree structuring. 
It uses parse tree to indicate wavelet packet. Wavelet transform is a popular method to process 
non-stationary signals [17, 18]. Comparing with short time Fourier transform, it can reduce 
computations when examining specific frequencies and giving a flexible time-frequency domain 
feature because of the use of variable sized windows. However, wavelet transform only 
decomposes low frequency signals and that leads to reduction of time-frequency resolution with 
the increase of frequency. Wavelet packet decomposition solves the problem and has a better 
resolution in high frequency signals. Besides, it draws into the concept of optimal basis selection 
to select optimal basis function flexibly. The process of wavelet packet decomposition is as 
follows [19]. 

Assume that 𝜑(𝑥)  is scaling function and 𝜑ଵ(𝑥)  is wavelet function. The basic wavelet 
packet functions are defined as: 

⎩⎪⎨
⎪⎧𝜙ଶ(𝑥) = √2  ℎ(𝑘)𝜙(2𝑥 − 𝑘),𝜙ଶାଵ(𝑥) = √2  𝑔(𝑘)𝜙(2𝑥 − 𝑘),

 (1) 

where ℎ(𝑘) and 𝑔(𝑘) are the quadrature mirror filters. 
For a discrete signal, the decomposition coefficients of wavelet packets can be computed 

iteratively by: 

൞𝐗ଶ,ାଵ =  ℎ(𝑚 − 2𝑘)𝐗, ,𝐗ଶାଵ,ାଵ =  𝑔(𝑚 − 2𝑘)𝐗,,  (2) 

where 𝚾,  denotes the wavelet coefficients at the 𝑗 level, 𝑛 subband and 𝑚 is the number of the 
wavelet coefficients. 

 
Fig. 1. An example of a three-level wavelet packet decomposition tree 

From Eqs. (2), (3), signals can be decomposed into level 𝑗 and the level 𝑗 will get 2 part of 
signals by frequency. For example, a wavelet packet decomposition tree of three levels is 
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illustrated in Fig. 1. 

2.2. Auto regressive (AR) model spectrum  

Auto regressive model is one of the most widely used and discussed parameter models. Auto 
regressive model spectrum consists of two steps. One is building AR model for time domain 
signals. The other is calculating the power spectrum by model coefficient [20]. The AR model is 
defined as: 𝑋௧ = 𝑐 +  𝜙𝑋௧ି +ୀଵ 𝜀௧, (3) 

where 𝜑ଵ, …, 𝜑 are the parameters of the model, 𝑐 is a constant, and 𝜀௧ is white noise. 
Eq. (3) can be regarded as an input or output equation to a system. Single side spectrum of 

signals can be calculated by transfer function: 

𝑆(𝑓) = 𝜎ଶห1 − ∑ 𝜑𝑒ିଶగೖୀଵ หଶ, (4) 

where 𝜎ଶ = 𝑉𝑎𝑟(𝑍௧). In this paper, every subband will be reconstructed by AR model spectrum, 
and the details of subband can be more entire [21]. 

2.3. Entropy with time parameter 

In information theory, entropy is the probability of discrete random evens and is sometimes 
referred to as Shannon entropy. In other words, the entropy increases as the certainty of variable 
increases and the information to understand will increase. Then, the signals of healthy bearing will 
provide orderly and steady information. When the bearing is running to failure, the system of 
bearing will be unsteady, and the signals will provide unordered and chaotic information. Entropy 
can perform the condition of information in the degradation process of bearing. It is a fine index 
to describe the degradation state. Entropy is defined as: 𝐻 = −  𝑝ln𝑝ୀଵ , (5) 

where 𝑝 is the probability of a discrete set [22]. 
From Eq. (5), the energy of every subband can be calculated. If the energy of 𝑖 subband is 𝐸, 𝑝 is defined as: 𝑝 = 𝐸∑ 𝐸ୀଵ . (6) 

At the beginning of operation, the bearing has to work in a wear-in period. That can lead to the 
fluctuation of entropy in initial stage. To solve the problem, this paper put up with the time 
parameter which is used to reflect the wear of bearing accumulated over time. The range of time 
parameter should be between 0 and 1 in order to control the degradation index. Assuming that 
there are 𝑁 samples in a whole life of the bearing, the time parameter (𝑡𝑝) of the 𝑛th set of data is: 𝑡𝑝 = 𝑛 ⋅ 𝑡𝑁 ⋅ 𝑡 = 𝑛𝑁, (7) 

where 𝑡 is the time of each sample. The parameter is also a dimensionless parameter. That means 
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it is more objective to reflect the rule of bearing degradation. Then, a new indicator, entropy with 
time parameter (𝐻𝑡𝑝) can be calculated in Eq. (8) as: 𝐻𝑡𝑝 = 𝐻 ⋅ 𝑡𝑝 = 𝐻 ⋅ 𝑛𝑁. (8) 

2.4. Fuzzy clustering 

Clustering is the task of grouping a set of objects in such a way that objects in the same group 
are more similar to each other than to those in other groups. Fuzzy clustering is always used in the 
classification when things are blurring. To divide the process of degradation, fuzzy clustering is 
an ideal method based on fuzzy mathematics [7].  

Fuzzy c-means (FCM) is a commonly used algorithm in fuzzy clustering. The FCM algorithm 
attempts to partition a finite collection 𝑋 = ሼ𝑥ଵ, 𝑥ଶ, … , 𝑥ሽ. Clustering loss function based on 
membership function is defined as: 

𝐽 =   ൣ𝜇(𝑥)൧ฮ𝑥 − 𝑐ฮଶୀଵୀଵ , (9) 

where 𝜇(𝑥)  is membership function, 𝑐  is the center of the 𝑗 th cluster of 𝑘  clusters, 𝑚  is 
smoothing parameter, and ∑ 𝜇(𝑥)ୀଵ = 1. Then, using Lagrange multiplier method to find the 𝜇 
and 𝑐 , which make 𝐽  get lowest. When the algorithm converges, the fuzzy clustering will 
finish [23].  

In this paper, 𝐻𝑡𝑝 is used as the finite collection to divide stages. The time and threshold of 
the last stage can be regarded as the warn of bearing failure. Flowchart is shown in Fig. 2. 

 
Fig. 2. Procedure of signal processing and bearing assessment 

3. Experimental results and analysis 

3.1. Feature extraction 

The bearing run-to-failure data used at this session have been obtained from FEMTO-ST 
Institute and Intelligent Maintenance System Center (IMS). In the experiment of FEMTO-ST 
Institute, the load is applied to the bearing radially in horizontal direction. Its vibration signal data 
is collected at a sampling frequency of 25.6 kHz every 10 s for 0.1 s. When the acceleration 
amplitude exceeds the threshold of 20, the bearing is considered failure. This paper uses the six 
groups of run-to-failure data and the operation condition is shown in Table 1. 

Table 1. Bearing operation conditions 
Bearing Load (N) Speed (rpm) Time (min) 

Bearing 1-1 4000 1800 467 
Bearing 1-2 4000 1800 145 
Bearing 2-1 4200 1650 151.67 
Bearing 2-2 4200 1650 132.67 
Bearing 3-1 5000 1500 65.67 
Bearing 3-2 5000 1500 272.67 

Taking bearing 1-2 as an example, use WPD to decompose the vibration signal into 8 subband 
at first. And the energy of each subband will be obtained by AR model spectrum analysis, which 
is shown in Fig. 3. 
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Fig. 3. Energy of 8 subband 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 4. Entropy with time parameter of 6 bearings 

Then, calculate the entropy according to Eq. (6) and it is shown in Fig. 3, from which it is 
obvious that the bearing is not stable at the beginning of operation. Introducing the time parameter 
will make the feature more effective. The feature of six bearings is shown in Fig. 4.  

3.2. Degradation process evaluation  

Since the entropy with time parameter has been obtained, fuzzy c-means clustering can be used 
to estimate the state of bearings. In this paper, it is appropriate to divide the operation into 6 stages. 
Taking bearing 1-2, bearing 2-2 and bearing 3-2 as examples, Fig. 5 gives the result of clustering. 

Fig. 5 also gives energy of the bearing. From the comparison, the stage can perform the 
degradation process. More importantly, the last stage will become a nice warning of bearing  
failure. Table 2 shows the details of all the six bearings. From the table, the threshold time is less 
than 15 % ahead of failure time.  

To confirm the effectiveness of the method, the paper also adopts the data from IMS. The 
experiment of IMS provide the vibration data at a sampling frequency of 20 kHz every 10 min for 
1 s in No.2 set. In the set, there are 4 bearings working in 2000 rpm and a load of 6000 lbs for 
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about 163 h. The result is shown in Fig. 6 and Table 3. The threshold time is also less than 15 % 
ahead of failure time. Obviously, the method of degradation evaluation has good universality. 

Table 2. Details of the 6 bearings 
Bearing Threshold after clustering Threshold time (min) Failure time (min) 

Bearing 1-1 1.2711 424.167 456.333 
Bearing 1-2 1.6424 137.333 138.667 
Bearing 2-1 1.1134 145.167 149.167 
Bearing 2-2 1.2681 125.167 131.000 
Bearing 3-1 1.4817 82.167 82.333 
Bearing 3-2 1.5183 238.500 270.667 

 

 
a) 

 
b) 

 
c) 

d) e) f) 
Fig. 5. Entropy with time parameter and energy comparison of the 3 bearings 

 
a) 
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Fig. 6. Entropy with time parameter and energy comparison of the 1-3 bearing 
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Table 3. Details of the 4 bearings 
Bearing Threshold after clustering Threshold time (h) Failure time (h) 

Bearing 1 1.6547 149.667 163.667 
Bearing 2 1.5799 140.500 163.667 
Bearing 3 1.6286 139.500 163.667 
Bearing 4 1.5467 139.333 163.667 

4. Conclusions 

This paper proposes a method to express the degradation feature and evaluate the process. The 
entropy with time parameter based on WPD and AR model provide a steady index in the life of 
bearing operation. The index solves the problem of fluctuation when the bearing is working in the 
initial stage of operation. In addition, the optional condition influences the index less. Even though 
the revolution and load change, the index will stay in a stable range. Then, fuzzy c-means 
clustering base on the indicator divides the process into several stages which can help evaluate 
degradation process. In industrial practice, the method is able to monitor the bearing in real time 
and get the threshold adaptively when repairing by unit replacement. It can also provide a scheme 
for condition-base maintenance. 
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