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Abstract. An identification method based on functional data analysis (FDA) and extreme learning 
machine (ELM) is presented to identify the contact parameters of a cannon cradle and its bushing. 
A virtual prototype of the cannon is built in ADAMS. The response curves of muzzle vertical 
acceleration with different contact parameters of the cradle and its bushing are obtained by 
simulation experiments and used for FDA as sample data. Features of the sample data are extracted 
by FDA and functional principle component analysis (FPCA), and the features and contact 
parameters are used to train the ELM. Simulation data and test data are used to verify the proposed 
method. The presented method is also proved to be feasible and effective by comparing actual 
muzzle vertical acceleration curve and the muzzle vertical acceleration curve from the virtual 
prototype with respect to the test data identification results. 
Keywords: parameter identification, functional data analysis, extreme learning machine, cradle. 

1. Introduction 

A cradle is the carrier of a cannon recoiling part, which rotates around the trunnion and 
transfers firing load to other carriages. Changes in contact parameters of the cradle and its bushing 
will affect mechanism kinematic accuracy during firing and firing accuracy of the cannon. To 
establish a virtual prototype of the cannon, it is significant to infer the contact parameters of the 
cradle and the front and back bushing. Due to a cannon is a complex and multi-parameter system, 
determination of key parameters is a core problem in the modeling process, but these parameters 
are difficult to measure and can only be obtained by identification. 

Since it is difficult to find the analytic expressions of the measurable response to the parameters 
to be identified, optimization method based on analytic expression cannot be used to identify the 
contact parameters of the cradle and its bushing [1]. Machine learning (ML) can estimate the 
dependence of data based on the known sample, so ML can predict and judge the unknown data. 
Actual experiments can obtain high-quality samples, but for a cannon system, a large number of 
experiments require a lot of cost and resources and it is easier to obtain samples by virtual 
simulation.  

In this paper, a virtual prototype of the cannon is established, and the response curves of 
muzzle vertical acceleration are obtained by sampling and simulation experiments of the 
parameters to be identified and used for FDA as sample data. Using FDA and FPCA to extract the 
sample data, the extracted features and parameters to be identified are used for ELM training as 
training samples. Finally, the simulation data and test data are used to identify the parameters and 
the presented method is proved to be feasible and effective by comparing real muzzle vertical 
acceleration curve and the muzzle vertical acceleration curve from the virtual prototype with 
respect to the test data identification results. 

2. Modeling and simulation of virtual prototype 

The recoiling part of a cannon on zero firing angle is mainly affected by recoil brake force, 
recuperator force, sealing device friction and cradle rail friction. According to the topological 
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structure of the cannon, the dynamics model is established in ADAMS as shown in Fig. 1. 
According to the research purpose, the contact parameters to be identified of the cradle and its 

bushing are the following five parameters: contact stiffness 𝐾 and 𝐾, damping 𝐶, and clearance 𝐷 and 𝐷. Consulting engineering experience, the range of 𝐾 is [100000, 200000] N⋅mm, the 
range of 𝐾 is [150000, 300000] N⋅mm, the range of 𝐶 is [10, 50], and the range of 𝐷 and 𝐷 is 
[0.5, 1.5] mm. The five parameters are sampled within the distribution range, and virtual 
simulation experiments are carried out according to the sampling results. A total of 100 groups of 
muzzle vertical acceleration curves in counter-recoiling movement are obtained as shown  
in Fig. 2. 

 
Fig. 1. Virtual prototype of the cannon 

 
Fig. 2. Sample curves of muzzle vertical acceleration 

3. Features extraction based on FDA and FPCA 

3.1. The FDA and FPCA algorithm 

The basic idea of FDA is to treat the observed data as a whole, expressed as a smooth curve or 
a continuous function, and analyze it from a functional perspective. Assume that the 𝑖 th 
observation sample contains a series of observation values 𝑦ଵ, 𝑦ଶ, ..., 𝑦, it can be transformed 
to be a function 𝑥(𝑡) by FDA, where 𝑡 is the argument. Generally, the non-periodic data are 
expanded by the B-spline basis function system. Its functional form is represented by a linear 
combination of basis functions by letting 𝐜 indicate the vector of length 𝐾 and 𝛟 as the functional 
vector whose elements are the basis functions 𝜙: 𝐱 = 𝐜𝛟 = 𝛟்𝐜. (1) 

For making the estimated curves more stable, a roughness penalty 𝑃𝐸𝑁(𝑥) is introduced: PEN(𝑥) = නሾ𝐷𝑥(𝑠)ሿଶ𝑑𝑠 = නሾ𝐷𝐜்𝛟(𝑠)ሿଶ𝑑𝑠 = න 𝐜்𝐷𝛟(𝑠)𝐷𝛟்(𝑠)𝐜𝑑𝑠 = 𝐜்𝐑𝐜, (2) 

where 𝐷 is the m-order derivative and 𝐑 =  𝐷𝛟(𝑠)𝐷𝛟்(𝑠)𝑑𝑠. 
Define 𝐇 as a weighted matrix and 𝜆 as a smoothing parameter, we obtain: PENSSE(𝐲|𝐜) = (𝐲 െ 𝚽𝐜)்𝐇(𝐲 െ 𝚽𝐜) + 𝜆𝐜்𝐑𝐜. (3) 

The expression for the estimated coefficient vector is: �̂� = (𝚽்𝐇𝚽 + 𝜆𝐑)ିଵ𝚽்𝐇𝐲. (4) 

FPCA is an expansion of Principle Component Analysis to Hilbert space. According to the 
derivation of Ramsay [4], the eigenfunction must satisfy the following equation: 
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න 𝑣(𝑠, 𝑡)𝜉(𝑡)𝑑𝑡 = 𝜌𝜉(𝑠), (5) 

where 𝜌 is the eigenvalue and 𝑣(𝑠, 𝑡) = ଵே ∑ 𝑥(𝑠)𝑥(𝑡)ேୀଵ  is the covariance function.  
Let 𝜉 indicate the eigenfunction and define an integral transform 𝑉, 𝑉𝜉 =  𝑣(⋅, 𝑡)𝜉(𝑡)𝑑𝑡, then 

Eq. (5) can be expressed as: 𝑉𝜉 = 𝜌𝜉. (6) 

The principle component function also needs to be smoothed. Maximizing the variance of the 
samples with a roughness penalty: 

PCAPSV(𝜉) = 𝑣𝑎𝑟  𝜉𝑥𝑑𝑡‖𝜉‖ଶ + 𝜆 × PENଶ(𝜉). (7) 

For sample function, the form of basis function combination is 𝑥(𝑡) = ∑ 𝑐𝜙(𝑡)ୀଵ . Let 𝐀 
be the covariance matrix of vectors 𝐜 and define 𝐖 =  𝛟𝛟், then Eq. (7) can be written as: 

PCAPSV = 𝐛்𝐖𝐀𝐖𝐛𝐛்𝐖𝐛 + 𝜆𝐛்𝐑𝐛. (8) 

The eigenequation corresponding to Eq. (8) is given by: 𝐖𝐀𝐖𝐛 = 𝜌(𝐖 + 𝜆𝐑)𝐛. (9) 

Now, preforming a Choleski factorization 𝐖 + 𝜆𝐑 = 𝐋𝐋் and defining 𝐒 = 𝐋ିଵ, the Eq. (9) 
can be written as: (𝐒𝐖𝐀𝐖𝐒்)(𝐋்𝐛) = 𝜌(𝐋்𝐛). (10) 

Defining 𝐮 = 𝐋்𝐛, the Eq. (10) can be written as: (𝐒𝐖𝐀𝐖𝐒்)𝐮 = 𝜌𝐮. (11) 

This is a eigenvalue problem, and 𝐮, 𝐛 and the eigenfunction can be carried out in turns. 

3.2. Features extraction of muzzle vertical acceleration curves 

In this paper, a 4-order B-spline basis function and a 2-order roughness penalty function with 
smoothing coefficient 𝜆 = 50000 are used. Fig. 3(a) shows the sample data for the muzzle vertical 
acceleration after this functional procedure. Fig. 3(b) shows the first ten principal component 
functions.  

To ensure that the sum of ratio of the principle component functions is greater than 90 %, we 
select the first 10 principal component functions. For every sample, after it is made to be functional 
data, the principal component scores can be acquired by calculating the inner product of the 
functional data and principal component functions, and the principal component scores are the 
eigenvalues we need. 

4. Parameter identification 

4.1. ELM algorithm 

ELM is a typical single-hidden layer feedforward neural network [9]. Assume any independent 
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sample (𝐱, 𝐭), 𝐱 = ሾ𝑥ଵ, 𝑥ଶ, . . . , 𝑥ሿ் ∈ 𝐑, 𝐭 = ሾ𝑡ଵ, 𝑡ଶ, . . . , 𝑡ሿ் ∈ 𝐑, mathematical model 
of ELM with 𝑛 input nodes and 𝑚 output nodes is: 

 𝛃𝑔(𝐱) =  𝛃𝑔(𝐰 ⋅ 𝐱 + 𝑏) = 𝐨ே෩ୀଵே෩ୀଵ ,   𝑗 = 1,2, . . . , 𝑁, (12) 

where 𝑁෩ is the number of hidden layer nodes, 𝑔(𝑥) is the activation function, 𝑤 is the weight 
connectiing the 𝑖th input node and hidden node, 𝛃 is the weight connecting the 𝑖th hidden node 
and output node, and 𝑏 is the threshold of the 𝑖th hidden node. 

 
a) Muzzle vertical acceleration  

after function procedure 

 
b) Proportion of first  

ten principal components 
Fig. 3. The results of FDA and FPCA 

When the number of hidden nodes is equal to training samples, ELM can approximate the 
training sample with zero error. There are 𝛃, 𝐰, 𝑏 and output layer matrix 𝐇 which make: 𝐇𝛃 = 𝐓,𝐇(𝑤ଵ, . . . , 𝑤ே෩, 𝑏ଵ, . . . , 𝑏ே෩, 𝑥ଵ, . . . , 𝑥ே) = 𝑔(𝐰ଵ ⋅ 𝐱ଵ + 𝑏ଵ) ⋯ 𝑔(𝐰ே෩ ⋅ 𝐱ଵ + 𝑏ே෩)⋮ ⋱ ⋮𝑔(𝐰ଵ ⋅ 𝐱ே + 𝑏ଵ) ⋯ 𝑔(𝐰ே෩ ⋅ 𝐱ே + 𝑏ே෩)൩ே×ே෩𝛃 = ሾ𝛃ଵ  𝛃ଶ  . . .  𝛃ே෩ሿே෩×் ,   𝐓 = ሾ𝐭ଵ  𝐭ଶ  . . .  𝐭ேሿே×் . , (13) 

𝛽 can be acquired by solving the least squares solution of Eq. (13): 𝛃 = 𝐇ା𝐓, (14) 

where 𝐇ା is the Moore-Penrose generalized inverse of the output matrix. 
The identification accuracy and generalization performance of ELM are evaluated by average 

relative error 𝐸 and determination coefficient 𝑅ଶ, respectively: 

𝐸 = |𝑦ො െ 𝑦|𝑦 ,    𝑖 = 1,2, . . . , 𝑛,    𝑅ଶ = ൫𝑙 ∑ 𝑦ො𝑦 െୀଵ ∑ 𝑦ො ∑ 𝑦ୀଵୀଵ ൯ଶሾ𝑙 ∑ 𝑦ොଶ െ (∑ 𝑦ොୀଵ )ଶୀଵ ሿሾ𝑙 ∑ 𝑦ଶ െ (∑ 𝑦ୀଵ )ଶୀଵ ሿ. (15) 

4.2. Testing of muzzle vertical acceleration 

The artificial recoil method is used to test the muzzle vertical acceleration by using the wireless 
acceleration node A104EX in the wireless test system. Fig. 4 shows the components of the wireless 
test system. The sensors are installed on the muzzle brake as shown in Fig. 5. The test is repeated 
5 times at a firing angle of 0°, and the test results are shown in the Fig. 6. 
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Fig. 4. Hardware components 

 
Fig. 5. The installation diagram of the sensors 

 
Fig. 6. Test curves of muzzle vertical acceleration 

4.3. Identification results and analysis 

In this paper, 100 groups of sample curves are obtained, of which 95 groups are used for ELM 
training, and the other 5 groups are used to verify the identification effect of ELM. Table 1 shows 
the identification results of five contact parameters, and the first five times are the identification 
results of five groups of simulation data and the last is the identification results of test data. The 
average relative error 𝐸 and determination coefficient 𝑅ଶ of the identification results are shown 
in Table 2. The identification results of 𝐸 and 𝐸 are better and the identification results of 𝐾 
and 𝐾 can also meet the requirements. The identification results of 𝐶 are relatively poor, and the 
probable cause is that 𝐶 has less effect on the muzzle vertical acceleration, or the number of the 
samples used to train ELM is insufficient. 

Table 1. Identification results 
No. of identification 𝐶 𝐷 (mm) 𝐷 (mm) 𝐾 (×105 N⋅mm) 𝐾 (×105 N⋅mm) 

1 Real value 21.2857 0.8438 1.2438 1.7786 2.9587 
Identification value 22.3214 0.8306 1.2275 1.7571 2.9852 

2 Real value 17.6429 1.1844 1.1281 1.3293 2.9913 
Identification value 17.6071 1.1975 1.1206 1.3607 2.8201 

3 Real value 24.5357 0.5594 0.9234 1.3929 1.6229 
Identification value 27.1286 0.5625 0.9313 1.2857 1.9583 

4 Real value 21.6929 0.8825 0.6094 1.3536 2.9737 
Identification value 24.2143 0.9281 0.5813 1.3821 2.8256 

5 Real value 27.7143 0.9625 1.0063 1.6393 1.5703 
Identification value 25.8714 96563 1.0156 1.7071 1.7862 

6 Real value \ \ \ \ \ 
Identification value 14.5357 1.3924 0.8263 2.2214 1.7903 

The parameters identified by the test data are substituted into the virtual prototype model for 
simulation, and the test curve is compared with the simulated curve. As shown in Fig. 7, the two 
curves are more consistent, which proves the reliability of the identification results. 
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Table 2. Average relative error and determination coefficient 
Parameter Average relative error Determination coefficient 𝐶 8.01 % 0.7681 𝐷 1.40 % 0.9902 𝐷 1.47 % 0.9962 𝐾 3.13 % 0.9035 𝐾 9.12 % 0.9749 

  
Fig. 7. Comparison of identification curve and test curve 

5. Conclusions 

In this paper, a virtual prototype of a cannon is established in ADAMS. The muzzle vertical 
acceleration curves are obtained by the sampling of the parameters to be identified and simulation 
experiments and used for FDA as sample data. Using FDA and FPCA to extract the sample data, 
the extracted features and parameters to be identified are used for ELM training. The simulation 
data and test data are used to identify the contact parameters of the cradle and bushing. The 
presented method is proved to be feasible and effective by comparing real muzzle vertical 
acceleration curve and the muzzle vertical acceleration curve from the virtual prototype with 
respect to the test data identification results. 
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