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Rolling element bearings health status indictor analysis 
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Abstract. According to the vibration mechanism of ship gas turbine rolling element bearings 
common failure modes, the variation of the common indicators during the rolling element bearings 
health status degradation process is analyzed, and the reflection ability of the various indicators is 
studied based on the consistency and sensitivity. The results show that the Root-Mean-Square 
value, Peak-Peak value, Wavelet Energy Spectrum Entropy and Singular Spectrum Entropy can 
effectively reflect the health state change of rolling element bearings. 
Keywords: rolling element bearings, health status, mechanism analysis, status indicator, gas 
turbine system. 

1. Introduction 

There are so many rolling element Bearings in the ship gas turbine system, which is the most 
prone failure device. Gas turbine system working in bad and complex force conditions, with a 
long time running, the health status of rolling element bearings will gradually degenerate, which 
may lead to serious accidents, resulting in significant economic losses, and even endanger 
personnel safety. Therefore, it is necessary to study the health status indicators of rolling element 
bearings, in order to supporting the ship gas turbine health status assessment [1]. 

During the operation of the rolling element bearings, its health condition will gradually 
degenerate until failure, such as fracture, fatigue, wear, corrosion and so on. Degradation of the 
state of health of the rolling element bearings not only results in increased vibrations, but also 
severely damages the equipment. During the gradual degradation of the rolling element bearings 
health state, the vibration intensity of the rolling element bearings will gradually increase, the 
frequency of the bearing failure characteristic frequency will gradually appear on the frequency 
spectrum, at the same time, harmonics and side bands will also appear. In addition, if a crack or 
dent occurs in the bearing outer ring or the inner ring, it will also cause an impulse response at the 
rotational frequency of the outer ring or the inner ring. 

Through the analysis of the common failure modes of rolling element bearings, it can be found 
that with the continuous operation of rolling element bearings, the crossovers and deteriorations 
of multiple faults often accompany, resulting in more severe vibration of the monitoring signals 
and more complicated spectrum distribution. If only focus on the perspective of fault feature 
frequency, researching the health indicators of rolling element bearings often fails to meet the 
requirements that effectively reflect the changes in the rolling element bearings health state. At 
present, how to extract valid characteristics of rolling element bearings health indicators has 
become a key issue [2]. 

2. Health state indicators analysis 

In order to characterize the health status of rolling element bearings, the commonly used 
condition indicators are [3]: 

(1) Root mean square (RMS): 
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𝑋ோெௌ = ඨ1𝑁  𝑥ଶேୀଵ . (1) 

(2) Peak-peak value (P-P): 𝑋ି = 𝑚𝑎𝑥ሺ𝑥ሻ − 𝑚𝑖𝑛ሺ𝑥ሻ. (2) 

(3) Shape factor (SF): 𝑆ி = 𝑋ோெௌ|𝑋ത| . (3) 

(4) Crest factor (CF): 𝐶ி = 𝑋𝑋ோெௌ. (4) 

(5) Impulse factor (IF): 𝐼ி = 𝑋|𝑋ത|. (5) 

(6) Clearance factor (CLF): 𝐶𝐿ி = 𝑋𝑋 . (6) 

(7) Wavelet energy spectrum entropy (WESE). 
The wavelet transform is used to decompose the original signal into components on each scale 

and calculate its energy value 𝐸, which is called the wavelet energy spectrum. It represents the 
division of the original signal in the time-frequency domain space and can define the wavelet. The 
energy spectrum entropy is: 

⎩⎪⎪⎨
⎪⎪⎧𝐻ௐ = −  𝑝ேୀଵ ln 𝑝 ,𝑝 = 𝐸∑ 𝐸ேୀଵ , 𝑝ேୀଵ = 1.  (7) 

(8) Singular spectral entropy (SSE). 
For a time sequence 𝑋 = ሾ𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥ேሿ, the signal is mapped into the embedding space in 

conjunction with the delay embedding technique. If the length of the space is set to 𝑀, a 𝑁 row 𝑀 
column trajectory matrix 𝐴 can be obtained, which is: 

𝐴 = ൦ 𝑥ଵ 𝑥ଶ ⋯ 𝑥ெ𝑥ଶ 𝑥ଷ ⋯ 𝑥ெାଵ⋯ ⋯  ⋯𝑥ேିெ 𝑥ேିெାଵ ⋯ 𝑥ேିଵ൪. (8) 

At this time, singular value decomposition is performed on the matrix 𝐴, and 𝑀 singular values 
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of the decomposition result are calculated, i.e. 𝛿ଵ ≥ 𝛿ଶ ≥ ⋯ ≥ 𝛿ெ, so the singular spectrum of the 
signal is composed of 𝛿 . Assuming that there are 𝐾  non-zero singular values, 𝐾  reflects the 
number of different modes in the 𝑀 column of matrix 𝐴. The singular spectrum {𝛿} represents a 
division of the signal in the time domain. Therefore, the singular spectral entropy of the signal in 
the time domain can be defined as: 

⎩⎪⎨
⎪⎧𝐻ௌ = −  𝑝ேୀଵ ln 𝑝,𝑝 = 𝛿∑ 𝛿ேୀଵ .  (9) 

Singular spectral entropy reflects the distribution of signal vibration energy under singular 
spectral division, and also reflects the time domain complexity of signal energy distribution. If the 
signal energy distribution is more concentrated, the singular value decomposition results are more 
concentrated, and the calculated 𝐻ௌ  value is smaller; if the signal energy distribution is more 
dispersed, the singular value decomposition results are more dispersed, and the obtained 𝐻ௌ is 
larger. So, the singular spectral entropy reflects the complexity of the energy distribution of the 
singular components of the signal. 

During the degradation of the rolling element bearings health state, the vibration energy will 
change, and an impact signal will also appear. The RMS value characterizes the magnitude of the 
vibration energy. The Crest Factor and Impulse Factor characterize the impact energy of the signal 
and can better reflect the change of health status. Spectral kurtosis can reflect the strength of 
transient shock, but also can indicate the change of frequency spectrum. It can also be used to 
reflect the change of health status of rolling element bearings. The wavelet energy spectrum 
entropy and the singular spectral entropy provide an overall comprehensive assessment of the 
signal from a certain spatial domain. The evaluation results are dimensionless and have nothing 
to do with the strength of the signal. These characteristics can just meet the indicator requirements 
of the rolling element bearings health state assessment. 

3. Experimental analysis of rolling element bearings health status indicators 

3.1. Rolling element bearing experiment 

 There are a large number of rolling bearings in ship propulsion systems, and rolling bearings 
are more prone to failure. Taking the rolling bearing as the research object, the ability of each 
index to reflect the life cycle health state degradation of the rolling bearing was studied. The 
life-cycle test data of the rolling bearing carried out by the NSF I/UCR Center of the United States 
and the installation position of the accelerating fatigue test device and the sensor of the rolling 
bearing are shown in Fig. 1. The test device is mainly composed of the AC motor, the drive shaft 
and the four rolling bearings on the shaft. Eight acceleration and four thermocouples sensors were 
placed on the respective rolling bearings for vibration signal and temperature signal monitoring, 
and 6000 pounds of radial load was added to bearings 2 and 3 [4, 5]. The rolling bearings used in 
the experiment were all Rexnord ZA-2115 double row bearings. Each row of the bearings 
consisted of 16 rollers. The diameter of the bearing pitch circle was 71.50 mm, the roller diameter 
was 8.41 mm, and the contact angle was 15.171°. The full life cycle test keeps the system running 
until the rolling bearing has suffered serious damage. 

3.2. Rolling element bearing experimental data analysis 

Excellent state indicators not only need to have a better sensitivity to the health status of rolling 
element bearings, but also to keep their trends consistent with their health status degradation 
process, thus effectively characterizing the health of rolling element bearings degradation. In the 
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whole life cycle of rolling element bearings during the operation, respectively, the study of the 
changes in conventional indicators, as shown in Fig. 2. 

 
Fig. 1. Rolling element bearings accelerated fatigue test device 

 
a) RMS 

 
b) Peak-Peak value 

 
c) Shape factor 

 
d) Crest factor 

 
e) Impulse factor 

 
f) Clearance factor 

 
g) Wavelet energy spectrum entropy 

 
h) Singular spectral entropy 

Fig. 2. Rolling bearings status indicators changes during the full life time 
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It can be seen from Fig. 2. that the RMS value and Peak-peak value increase slightly at 120 h, 
then remains stable until it increases slightly after 120 h, and finally increases sharply near the 
time of failure. Shape Factor and Impulse Factor, pre-are more stable, after 150 h began to 
fluctuate slightly, the final failure of a sharp increase. The Crest Factor and Clearance Factor 
fluctuated before 160 h, and fluctuated violently after 160 h, which reflected the change of rolling 
element bearing health status more than Shape Factor and Impulse Factor. Wavelet Energy 
Spectrum Entropy and Singular Spectrum Entropy change smooth in the bearing normal state 
before 100 h, and increase gradually between 100 h to 150 h, which are consistent with the change 
of the bearing health state.  

3.3. Analysis of experimental results 

According to the analysis of the changes of the indicators during rolling element bearing health 
status degradation process, the reflectivity of each index can be found based on the consistency 
and sensitivity: 

(1) Peak-peak value and Root-Mean-Square value can reflect the normal status, rapid 
degradation and eventual failure. The RMS value is better than Peak-peak value in the stability. 

(2) Shape Factor, the Crest Factor and the Impulse Factor do not reflect the initial degradation, 
which couldn’t effectively reflect the failure occurrence and status degradation. 

(3) Wavelet Energy Spectrum Entropy and Singular Spectral Entropy can be used to 
characterize the change of health state of rolling element bearing. The change of indicators has a 
good consistency with the degradation process. 

4. Conclusions 

Based on the study of the common failure mode of rolling element bearing, the changes of 
many kinds of status indictors in the rolling element bearing health degradation process are 
analyzed theoretically. Through analyzing the indictors’ changes in the rolling element bearing in 
the rolling element bearing state degradation process, the reflectivity of each index is studied based 
on the consistency and sensitivity. It is found that the Root-Mean-Square value, Peak-Peak value, 
Wavelet Energy Spectrum Entropy and Singular Spectrum Entropy are more sensitive to the 
change of rolling element bearing health state. But wide fluctuations could happen in a single 
indicator during health degradation process, affecting the reliability of the assessment results. It is 
need to study the combination of a variety of indicators, take the advantage of multiple indicators 
to reflect the degree of health status deterioration. 
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