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Abstract. In this paper, a novel fault diagnosis method based on vibration signal analysis is 
proposed for fault diagnosis of bearings and gears. Firstly, the ensemble empirical mode 
decomposition (EEMD) is used to decompose the vibration signal into several subsequences, and 
a multi-entropy (ME) is proposed to make up the fusion features of the vibration signal. Secondly, 
an improved manifold learning algorithm, local and global preserving embedding (LGPE), is 
applied to compress the high-dimensional fusion feature set into a two-dimension feature set. 
Finally, according to the clustering accuracy of different feature set, the fault classification and 
diagnosis can be performed in the reduced two-dimension space. The performance of the proposed 
technique is tested on the fault of wind turbine transmission system. The application results 
indicate that the proposed method can achieve high accuracy of fault diagnosis. 
Keywords: fault detection and diagnosis, ensemble empirical mode decomposition, multi-entropy, 
local and global preserving embedding. 

1. Introduction 

Wind energy as a new clean energy source is the fastest-growing energy source in the world, 
this trend should endure for some time. However, wind turbines are long-term operated in harsher 
environments, have relatively higher failure rates. Fig. 1 shows the percentage of downtime with 
different failure per year at the Dutch wind farm during 3 years operation [1]. It can be seen that 
the primary causes of failure are damage to the gearbox, generator and faults with the control and 
pitch systems. The bearings and gears are important parts of those systems, which faults will 
inevitably cause a long downtimes and increase operating costs. Therefore, proposing a timely 
and accurate diagnosis method to detect those faults are extremely available, which will reduces 
energy losses, improves productively and increases safety of such systems [2, 3]. 

The techniques based on vibration signal analysis are the most popular and useful approaches 
applied in fault diagnosis of rotating machinery [4-6]. In general, the processing of fault diagnosis 
can be divided into three steps: data collection, feature extraction and classification. Feature 
extraction is a key step, which can extract more useful information of the vibration signals from 
their original measured space for fault diagnosis. Some self-adaptive time-frequency analysis 
methods have been proposed for fault diagnosis. Empirical mode decomposition (EMD) [7], 
which were carried out to decompose vibration signals into the sum of intrinsic mode functions 
(IMF) given different frequencies, and some IMFs containing fault feature frequencies are selected 
to reconstruct a new signal for outstanding fault feature for further analysis [8, 9]. But the 
decomposed process of EMD is sensitive to noise and has exist mode mixing problem. Ensemble 
empirical mode decomposition (EEMD) is a newly improved version of EMD, which can 
eliminate the mode mixing problem of EMD automatically [10]. This approach has been applied 
in signal analysis of rotating machinery [11-14]. In conclusion, the self-adaptive time-frequency 
analysis method EEMD can extract sensitive features and improve the fault diagnosis accuracy. 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2019.20132&domain=pdf&date_stamp=2019-11-15
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Fig. 1. Downtimes for the Dutch wind farm Egmond aan Zee 

The vibration signals collected from wind turbine transmission systems are complex and 
non-stationary, which are submerged in noise under the variable speeds conditions. Therefore, the 
fault features from the original signal cannot be comprehensively extracted using single or 
single-domain processing methods [15, 16]. Therefore, the mix-domain features fusion is 
proposed to construct high-dimensional feature set. However, the high-dimensional feature set of 
mixed-domain inevitably contains redundant and disturbed information, and the accuracy of fault 
diagnosis can be reduced using the high dimensional feature set for pattern recognition. Using an 
appropriate dimensionality reduction method to extract the main eigenvectors with low dimension, 
high sensitivity and good clustering characteristics from the high-dimensional feature set for fault 
recognition is necessary.  

Manifold learning [17-20], an effective nonlinear dimension reduction method has gained 
attention in various research fields. The idea of manifold learning is to project the original high 
dimensional data into a lower dimension feature space with the local neighborhood structure 
preserved. This technique including several mainstream algorithms such as locally linear 
embedding (LLE) [18], locality preserving projection (LPP) and kernel locality preserving 
projection (KLPP) [20]. Manifold learning is widely used in the filed of image recognition and 
data classification [21, 22], and there are few researches in fault diagnosis [23, 24]. Due to the 
advantages of the time-frequency analysis and manifold learning techniques in dealing with non-
linear signal, some research works combined fault diagnosis models with time-frequency analysis 
techniques and dimensionality reduction techniques. Su et al. [25] combined EMD, incremental 
enhanced supervised locally linear embedding and adaptive nearest neighbor classifier to build a 
new method for gearbox fault diagnosis. Ding et al. [26] presented a fusion feature extraction 
method on rolling bearings based on wavelet packet transform and LPP. The classification result 
shows that this method can enhance the discrimination between all fault classes for fault 
classification. Huang et al. [27] used a new technique for dimensionality reduction called the 
discriminate diffusion maps analysis, compared with other manifold learning algorithms, which 
has high classification accuracy of the bearings faults. 

In the above literatures, at the process of feature extraction, the dimensionality reduction 
methods of manifold learning, which embed the original high-dimensional data into a lower 
dimension feature space with considering the local nonlinear characteristics preserved. But 
undeniably, in the process of reducing dimensionality, in order to extract more abundant 
information, it is necessary to preserve the intrinsic structure and extract the structure of the high-
dimensional set.  

In this paper, a novel fault diagnosis model based on fusion feature and manifold learning is 
proposed. Firstly, EEMD is used to decompose the vibration signals into a set of intrinsic mode 
functions (IMFs) with different characteristics scales, and several IMFs that containing more 
sensitive information are selected. Secondly, envelope entropy, permutation entropy and energy 
entropy of those selected IMFs are extracted as representative fusion features. Thirdly, local and 
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global preserving embedding (LGPE), is applied to extract the main eigenvectors from the 
high-dimensional fusion feature set. This method considers the local nonlinear characteristics and 
global external structure of the fusion feature set. The feature space dimension is optimally reduce 
to a low dimensional space by using LGPE, achieving the classification and identification of the 
fault. The proposed method is verified on the fault diagnosis of the bearing’s and gearbox’s  
signals.  

The main contributions of the proposed method are presented as follows: 
1) A fusion feature set is established based on EEMD and Mutli-entropy, in which the fault 

features can be comprehensively extracted from mixed time-domain signals.  
2) A LGPE method is proposed to extract fault features from the high-dimensional feature set, 

which makes the fault features in low dimensional space has high sensitivity and good clustering 
characteristics. 

3) A novel fault diagnosis model based on EEMD-ME and LGPE is performed to diagnose the 
faults of bearings and gears, which accurately achieves the identification and classification of 
different faults. 

The organization of the rest of the paper is as follows. In Section 2, the EEMD, ME and LGPE 
are presented. Section 3 describes the proposed model for fault diagnosis. In Section 4, two fault 
diagnosis experiments are carried out to verify our proposed method, and the experimental result 
is discussed. The conclusions are appeared in Section 5. 

2. The proposed fault diagnosis model 

Fig. 2 shows the flow chart of the proposed fault diagnosis method. The relative methods 
including EEMD, ME and LGPE are presented in this section. 

 
Fig. 2. The fault diagnosis process of the proposed method 

2.1. Ensemble empirical mode decomposition (EEMD) 

EEMD is a non-linear multi-resolution self-adaptive decomposition technique, which can 
adaptively decompose a complex signal into a set of IMF. The vibration signal of the rotating 
machinery is nonlinear, non-stationary and submerged in heavy noise, which makes it difficult to 
detect faults using the original signal. Therefore, EEMD is proposed to decompose the vibration 
signal into several IMFs with different frequencies for further analysis. 

The principle of the EEMD is simple: in the process of decomposition, the frequency scales 
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are natural separated by adding white noise in the whole time-frequency space uniformly, which 
can reduce the occurrence of mode mixing. The decomposition steps of EEMD is as follows: 

Step 1: Add a white noise series 𝑛ሺ𝑡ሻ with zero mean and equal variance to the original 
vibration signal 𝑥ሺ𝑡ሻ: 𝑥ሺ𝑡ሻ = 𝑥ሺ𝑡ሻ + 𝑛ሺ𝑡ሻ, (1) 

where 𝑛ሺ𝑡ሻ represents the 𝑖th added white noise series, and 𝑥ሺ𝑡ሻ denotes the noise-added signal 
of the 𝑖th trial, while 𝑖 = 1, 2, …, 𝑀, 𝑀 is the number of ensemble. 

Step 2: Each noise-added signal 𝑥ሺ𝑡ሻ is decomposes into several IMFs using EMD: 

𝑥(𝑡) =  𝑐௦(𝑡) + 𝑟ௌ(𝑡),ௌ௦ୀଵ  (2) 

where 𝑆 represents the number of IMF, 𝑠 = 1, 2, …, 𝑆. 𝑐௦(𝑡) denotes the IMFs (𝑐ଵ, 𝑐ଶ, … , 𝑐ௌ) 
with different frequency bands, and 𝑟ௌ(𝑡) is the residue of 𝑥(𝑡). 

Step 3: Repeat step 1 and step 2 with M times, the different white noise series is added to the 
signal 𝑥(𝑡) to obtain an ensemble of IMFs [{𝑐ଵ௦(𝑡), 𝑐ଶ௦(𝑡), … , 𝑐ெ௦(𝑡)}]. 

Step 4: Obtain the ensemble means of the corresponding IMFs as the final IMFs: 

𝑐௦(𝑡) = 1𝑀 𝑐௦(𝑡),ெୀଵ  (3) 

where 𝑐௦(𝑡) represents the 𝑖th IMF decomposed by EEMD, while 𝑠 = 1, 2, …, 𝑆. 
In order select the IMF that containing useful feature information for further analysis, the 

cross-correlation coefficient 𝜌  and energy index 𝐸  are introduced to eliminate illusive IMF. 
Cross-correlation coefficient 𝑎 is common used in signals analysis and is no longer discussed in 
here. For a IMF obtained by EEMD, the energy index 𝐸(𝑠) is defined as follows: 

𝐸(𝑠) = ඨ∑ |𝑐௦(𝑡)|ଶே௧ୀଵ∑ |𝑥(𝑡)|ଶே௧ୀଵ , (4) 

where 𝑁 is the length of the signal, 𝑐௦(𝑡) denotes the 𝑠th IMF, and 𝐸(𝑠) represents the index of 
energy between the 𝑠th IMF 𝑐௦(𝑡) and the original signal 𝑥(𝑡). 

2.2. Mutil-entropy  

The entropy-based methods, such as envelope entropy, energy entropy and permutation 
entropy [28-30], have been applied in fault diagnosis. In this section, envelope entropy, energy 
entropy and permutation entropy of the selected IMFs obtained from section 2.1 are extracted as 
the fusion features of fault signal. 

Entropy can identify nonlinear parameters and present the information of the signal, and 
envelope entropy can reflect the sparseness of the original signal. The envelope entropy 𝐻ଵ(𝑠) of 
a IMF 𝑐௦(𝑡) (𝑡 = 1,2, … ,𝑁) can be expressed as: 

⎩⎪⎨
⎪⎧𝐻ଵ(𝑠) = − 𝑝௧lg𝑝௧ே௧ୀଵ ,𝑝௧ = 𝑎(𝑡)∑ 𝑎(𝑡),ே௧ୀଵ

 (5) 

where 𝑎(𝑡) is the envelope signal that obtained by the Hilbert demodulation of signal 𝑐௦(𝑡), 𝑝௧ is 
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the normalized form of signal 𝑐௦(𝑡). 
In the same way, the energy entropy of the IMF 𝑐௦(𝑡), which can be defined as: 

𝐻ଶ(𝑠) = − 𝑝௦ௌ௦ୀଵ log𝑝௦, (6) 

where 𝑝௦ = 𝐸(𝑠)/𝐸 is the proportion of the energy of the 𝑠th IMF in the whole signal energies. 
Permutation entropy (PE) is used to analyze the data complexity. For a IMF 𝑐௦(𝑡), constructing 

an embedded d-dimensional delay embedding matrix 𝐶ௗ(𝑡) = {𝑥௧ାఙ , 𝑥௧ାଶఙ ,⋅⋅⋅, 𝑥௧ାௗఙ} , and 
arranging each vector of 𝐶ௗ to an increasing order 𝐶(𝑡) = ൛𝑐ାభ ≤ 𝑐ାమ ≤⋅⋅⋅≤ 𝑐ାൟ. Letting 𝜋 = (𝑗ଵ, 𝑗ଶ, … , 𝑗ௗ) , which is one of the 𝑑 ! permutations of 𝑑  distinct symbols. Then the 
permutation entropy of IMF 𝑐௦(𝑡), with the probability distribution function 𝑝(𝜋) is defined as: 

𝐻ଷ(𝑠) = − 𝑝(𝜋) ln൫𝑝(𝜋)൯ିఙௗାଵ . (7) 

2.3. Local and global preserving embedding (LGPE) algorithm  

The generic reduction problem of feature space dimension is described as follows: let a 𝑛-dimension points 𝑋 = [𝑥ଵ, 𝑥ଶ, … , 𝑥] ∈ 𝑅 , which can be transformed into an 𝑑-dimension  𝑌 = [𝑦ଵ,𝑦ଶ, … ,𝑦ௗ] ∈ 𝑅ௗ, (𝑑 < 𝑛), where 𝑦 = 𝑊்𝑥, and 𝑊 is an transformation matrix. In this 
section, a novel dimensionality reduction method, LGPE is used to project a manifold in 
high-dimensional space 𝑅  to a low-dimensional space 𝑅ௗ  while preserving the local 
neighborhood and global structure of the dataset. 

The objective function of the LGPE can be divided into two parts: the local nonlinear 
characteristics preservation objective function and the global variance maximum objective 
function. The local nonlinear characteristics preservation objective function makes the 
low-dimension feature space has the similar neighborhood structure with high-dimensional feature 
space. The global variance maximum objective function extracts the maximize variance of the 
data during the dimensionality reduction process.  

2.3.1. The local nonlinear characteristics preservation objective function 

Given a set of data 𝑋 = [𝑥ଵ, 𝑥ଶ, … , 𝑥] ∈ 𝑅, 𝑥 is a 𝑛-dimensional feature vector. Firstly, we 
use a possibly nonlinear function 𝜙  to map the data into a high-dimension feature space 𝐻 : 𝜙(𝑋) = [𝜙(𝑥ଵ),𝜙(𝑥ଶ), … ,𝜙(𝑥)]. Inspired by the idea of kernel locality preserving projection 
(KLPP), we seek a projecting transformation 𝑊, which can preserve the local nonlinear structure 
of the data 𝜙(𝑥) by minimizing the sum of the weighted distance of samples. The minimization 
problem of local nonlinear characteristics preservation objective function can be expressed as: 

𝐽(𝑊) = minௐ  ฮ𝑦 − 𝑦ฮଶே,ୀଵ 𝑆, , (8) 

where 𝑦 = (𝜙(𝑥))்𝑊 is the low-dimension projection of 𝜙(𝑥) onto 𝑊. 𝑆 represents a weight 
matrix, which is constructed through the nearest-neighbor graph. It is defined as follows: 

𝑆, = ቐexp ቀ−ฮ𝜙(𝑥) − 𝜙൫𝑥൯ฮଶቁ𝑡  𝜙(𝑥) ,   𝜙(𝑥)  as neighbors,0,   other,                       (9) 

where 𝑡 is a suitable constant. 𝑆,  denotes the relationship of 𝜙(𝑥) and 𝜙(𝑥). The objective 
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Eq. (7) can be transformed as: 

𝐽(𝑊) = minௐ  ฮ𝑦 − 𝑦ฮଶே,ୀଵ 𝑆, = minௐ  ฮ(𝜙(𝑥))்𝑊 − (𝜙(𝑥))்𝑊ฮଶே,ୀଵ 𝑆,     = minௐ {𝑊்൫𝜙(𝑋))்(𝐷 − 𝑆)൫𝜙(𝑋)൯𝑊ൟ,  (10) 

where 𝐷 = ∑ 𝑆,  is a diagonal matrix. Because the projecting transformation 𝑊 must be in the 
span of 𝜙(𝑥ଵ),𝜙(𝑥ଶ), … ,𝜙(𝑥), there have a coefficient vector 𝐴 = (𝑎ଵ,𝑎ଶ, … ,𝑎)் to satisfy the 
equation 𝑊 = ∑ 𝑎𝜙(𝑥)ୀଵ = 𝜙(𝑋)்𝐴 . Then the local nonlinear characteristics preservation 
objective function can be expressed as: 𝐽(𝐴) = min {𝐴்𝜙(𝑋)(𝜙(𝑋))்(𝐷 − 𝑆)𝜙(𝑋)(𝜙(𝑋))்𝐴}     = min {𝐴்𝜙(𝑋)(𝜙(𝑋))்𝐿𝜙(𝑋)(𝜙(𝑋))்𝐴},  (11) 

where 𝐿 = 𝐷 − 𝑆  is a Laplacian matrix. In order to solve this nonlinear problem, a positive 
definite and symmetric kernel matrix 𝐾(𝑖, 𝑗) = 𝜙(𝑥) ⋅ 𝜙(𝑥)் is introduced to the Eq. (11). The 
objective Eq. (11) can be calculated as:  𝐽(𝐴)  = min 𝐴𝐾𝐿𝐾𝐴 = minఈ 𝐴்𝐿𝐴 ,    (𝐿ଵ = 𝐾𝐿𝐾). (12) 

The local nonlinear structure of the high-dimension dataset is preserved by keeping the nearest 
neighbor relation of the dataset in the kernel space. It is obvious that, the solution of local nonlinear 
characteristics preservation objective function will keep the local structural characteristics of 
dataset in the process of dimensionality reduction.  

2.3.2. The global variance maximum objective function 

Given a set of data 𝑋 = [𝑥ଵ, 𝑥ଶ, … , 𝑥] ∈ 𝑅, and using a possibly nonlinear function 𝜙 to map 
the data into a high-dimension feature space 𝐻: 𝜙(𝑋) = [𝜙(𝑥ଵ),𝜙(𝑥ଶ), … ,𝜙(𝑥)]. Inspired by 
the idea of kernel principal component analysis (KPCA), the global variance maximum objective 
function 𝐽(𝑊) is defined as: seeking a projecting transformation 𝑊, which makes the matrix 𝑦 = (𝜙(𝑥))்𝑊  after projection preserves the maximum variance information for the 
high-dimension data 𝜙(𝑥). Then the optimization task can be expressed as: 𝐽(𝑊) = maxௐ  𝑦ଶୀଵ = maxௐ  ((𝜙(𝑥))்ୀଵ 𝑊)ଶ,𝑠. 𝑡.  𝑊்𝑊 = 1.  (13) 

It is well known that exist a coefficient vector 𝐴 = (𝑎ଵ,𝑎ଶ, … ,𝑎)் to satisfy the equation  𝑊 = ∑ 𝑎𝜙(𝑥)ୀଵ = 𝜙(𝑋)்𝐴. Substituting this equation into Eq. (13), the optimization problem 
transformed into: 

𝐽(𝐴) = maxௐ  ቆ(𝜙(𝑥))் 𝑎𝜙(𝑥)ୀଵ ቇଶ ,ୀଵ𝑠. 𝑡.  ቆ 𝑎𝜙(𝑥)ୀଵ ቇ் ቆ 𝑎𝜙൫𝑥൯ୀଵ ቇ = 1,  (14) 

with the introduction of the kernel function 𝐾(𝑖, 𝑗) = 𝜙(𝑥) ⋅ 𝜙(𝑥)் , the Eq. (14) can be 
expressed as: 
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𝐽(𝐴) = maxௐ  ቆ 𝑎𝐾(𝑖, 𝑗)ୀଵ ቇଶୀଵ ,𝑠. 𝑡.    𝑎𝑎𝐾(𝑖, 𝑗) = 1,ୀଵୀଵ
 (15) 

we can further express Eq. (15) as: 𝐽(𝐴) = maxௐ 𝐴்𝐾𝐾𝐴 = maxௐ 𝐴்𝐶𝐴,𝑠. 𝑡.  𝐴்𝐾𝐴 = 1.  (16) 

2.3.3. The objective function of LGPE 

In order to preserve the local nonlinear structure between neighboring data points and extract 
the variance of the maximal high-dimension data, the objective function of the LGPE is to 
minimize 𝐴்𝐿𝐴  (for local structure preserving) and maximize 𝐴்𝐾𝐾𝐴  (for global variance 
extracting). The objective function of LGPE can be transformed to the following optimization 
problem: 𝐽(𝐴) = max ቀ𝐽(𝐴) − 𝐽(𝐴)ቁ =  max (𝐴்𝐶𝐴 − 𝐴்𝐿ଵ𝐴) = max (𝐴்(𝐶 − 𝐿ଵ)𝐴),                          𝑠. 𝑡.  𝐴்𝐾𝐴 = 1.  (17) 

In order to eliminate the influence of noise in the process of dimensionality reduction, an 
orthogonal constraint is introduced. The derivation process is inspired by literature [31]: 𝛼ଵ் 𝛼 = 𝛼ଶ்𝛼 =⋅⋅⋅= 𝛼ିଵ் 𝛼 = 0. (18) 

In order to obtain the 𝑘 orthogonal basis vector 𝛼, the following objective function need to 
be minimized: 𝐽(𝛼) = maxఈ (𝛼்(𝐶 − 𝐿ଵ)𝛼),𝑠. 𝑡.  𝛼ଵ் 𝛼 = 𝛼ଶ்𝛼 =⋅⋅⋅= 𝛼ିଵ் 𝛼 = 0,𝛼ଵ்𝐾𝛼ଵ = 𝛼ଶ்𝐾𝛼ଶ =⋅⋅⋅= 𝛼்𝐾𝛼 = 1.  (19) 

In order to compute the 𝑛th discriminant vector, the lagrange multipliers in introduced to 
transform the 𝐽ఈ. criterion including all the constraints: 

𝐽ఈ = 𝛼்(𝐶 − 𝐿ଵ)𝛼 − 𝜆(𝛼்𝐾𝛼 − 1) − 𝜇𝛼்𝛼ିଵୀଵ . (20) 

The optimization is performed by setting the partial derivative of 𝐽ఈ with respect to 𝛼 equal 
to zero: ∂𝐿∂𝛼 = 0 ⇒ 2(𝐶 − 𝐿ଵ)𝛼 − 2𝜆𝐾𝛼 − 𝜇𝛼ିଵୀଵ = 0. (21) 

Multiplying the left side of Eq. (21) by 𝛼்  obtained: 

2𝛼்(𝐶 − 𝐿ଵ)𝛼 − 2𝜆𝛼்𝐾𝛼 = 0 ⇒ 𝜆 = 𝛼்(𝐶 − 𝐿ଵ)𝛼𝛼்𝐾𝛼 . (22) 
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Multiplying the left side of Eq. (21) successively by 𝛼ଵ்𝐾ିଵ , 𝛼ଶ்𝐾ିଵ , …, 𝛼ିଵ் 𝐾ିଵ , and 
obtaining a set of 𝑘 − 1 expressions: 𝜇ଵ𝛼ଵ்𝐾ିଵ𝛼ଵ +⋅⋅⋅ +𝜇ିଵ𝛼ଵ் 𝐾ିଵ𝛼ିଵ = 2𝛼ଵ்𝐾ିଵ(𝐶 − 𝐿ଵ)𝛼,𝜇ଵ𝛼ଶ்𝐾ିଵ𝛼ଵ +⋅⋅⋅ +𝜇ିଵ𝛼ଶ்𝐾ିଵ𝛼ିଵ = 2𝛼ଶ்𝐾ିଵ(𝐶 − 𝐿ଵ)𝛼,⋮𝜇ଵ𝛼ିଵ் 𝐾ିଵ𝛼ଵ +⋅⋅⋅ +𝜇ିଵ𝛼ଵ் 𝐾ିଵ𝛼ିଵ = 2𝛼ିଵ் 𝐾ିଵ(𝐶 − 𝐿ଵ)𝛼. (23) 

Define the matrix notation: 𝑈ିଵ = [𝜇ଵ,𝜇ଶ, … , 𝜇ିଵ]்,     𝛂 = (𝛼ଵ,𝛼ଶ, … ,𝛼ିଵ)்,    𝑀ିଵ = ൣ𝑀ିଵ൧,     𝑀ିଵ = 𝛼் 𝐾ିଵ𝛼 . 
Then the equations can be transformed in a single matrix relationship: 𝑀ିଵ𝑈ିଵ = 2𝛂ିଵ் 𝐾ିଵ(𝐶 − 𝐿ଵ)𝛼. (24) 

Or in another form: 𝑈ିଵ = 2(𝑀ିଵ)ିଵ𝛂ିଵ் 𝐾ିଵ(𝐶 − 𝐿ଵ)𝛼. (25) 

Multiply the left side of Eq. (21) by 𝐾ିଵ: 2𝐾ିଵ(𝐶 − 𝐿ଵ)𝛼 − 2𝜆𝛼 − 𝐾ିଵ𝛂ିଵ𝑈ିଵ = 0. (26) 

Including Eq. (26), we can obtained: 𝐾ିଵ(𝐶 − 𝐿ଵ)𝛼 − 𝐾ିଵ𝛂ିଵ(𝑀ିଵ)ିଵ𝛂ିଵ் 𝐾ିଵ(𝐶 − 𝐿ଵ)𝛼 = 𝜆𝛼. (27) 

Or in another form: (𝐼 − 𝐾ିଵ𝛂ିଵ𝑀ିଵିଵ 𝛂ିଵ் )𝐾ିଵ(𝐶 − 𝐿ଵ)𝛼 = 𝜆𝛼. (28) 

We need to maximized the criterion 𝜆 of Eq. (28): 𝑅 = (𝐼 − 𝐾ିଵ𝛂ିଵ𝑀ିଵିଵ 𝛂ିଵ் )𝐾ିଵ(𝐶 − 𝐿ଵ). (29) 

Thus, the required the 𝑘 orthogonal basis vector 𝛼 is the eigenvector corresponding to the 
maximum eigenvalue of 𝑅. It is easy to verify that 𝛼ଵ is the eigenvector corresponding to the 
minimum eigenvalue of the generalized eigenvalue equation (𝐶 − 𝐿ଵ) = 𝜆𝐾. 

3. Fault diagnosis process 

In this study, a novel fault diagnosis model based on EEMD-ME and LGPE is proposed. The 
detail frameworks are shown in Fig. 3, the procedures of this model is described in 
successive steps: 

Step 1: For a test signal 𝑥 = [𝑥ଵ, 𝑥ଶ, … , 𝑥ே], EEMD is used to decompose the signal into 
several IMFs. Then calculate cross-correlation coefficient and energy index of each IMF, and 
select the first 𝑠 IMFs to further analysis.  

Step 2: The envelope entropy, permutation entropy and energy entropy of each selected IMFs 
are combined into an 3s-dimension fusion features 𝑥 = [𝑥ଵ, 𝑥ଶ, … , 𝑥ଷ௦]். 

Step 3: The 3s-dimension fusion feature set of test samples is input into LPGE to reduce the 
high-dimension feature space to two-dimension feature set 𝑌 = [𝑦ଵ,𝑦ଶ] . The dimensionality 
reduction steps are shown as follows: 
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1) For a high-dimension feature dataset 𝑋 = [𝑥ଵ, 𝑥ଶ, … , 𝑥ଷ௦] ∈ 𝑅ଷ௦, we can construct the local 
nonlinear characteristics preservation objective function 𝐽(𝐴)by using Eq. (12).  

2) The global variance maximum objective function 𝐽(𝐴) can be obtained by Eq. (16)  
3) The objective function of proposed LGPE is defined at Eq. (19), and calculate the 𝑘 

orthogonal basis vector  𝛼 of projection matrix 𝛂 = (𝛼ଵ,𝛼, … ,𝛼ௗ)  by iteration 𝛼  is the 
eigenvector corresponding to the maximum eigenvalue of Eq. (29). 

4) According to the equation 𝑦 = (𝜙(𝑥))்𝑊 , the low-dimension feature set 𝑌 = [𝑦ଵ,𝑦ଶ] 
after projection space transformation can be obtained. 

Step 5: Classify and recognize the different faults by the degree of clustering in 
two-dimensional space. 

 
Fig. 3. The details framework of the proposed model 

4. Result and discussion 

To investigate the effectiveness of the proposed technology for fault diagnosis, two 
experimental cases are considered. They including the bearing data obtained from the Case 
Western Reserve University (CWRU) Bearing Data Center and the gear data produced by 
QPZZ-II system. 
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4.1. The fault diagnosis of bearings 

The bearing data obtained from CWRU Bearing Data Center has become a standard preference 
at the filed of fault diagnosis in bearings. A ball bearing as shown in Fig. 4, which was installed 
in a motor driven mechanical system. Vibration data is collected using accelerometers, which are 
attached to the housing with magnetic bases. In total four sets of data are obtained form the 
experiment systems, which include under normal conditions, with inner race fault, with ball fault 
and with outer race fault. The sampling frequency is 12 kHz for drive end bearing experiments. In 
this paper, the 0.007 inches fault diameter is selected for fault diagnosis. The vibration signal 
obtained from four different conditions are divided into 100 segments of 1024 sample each, as 
shown in Fig. 5. 

 
a) 

 
b) 

Fig. 4. Experimental system 

 
Fig. 5. Segments of the vibration signals collected from four different conditions of bearing 

Each segment of vibration signal is decomposed into 10 IMFs by EEMD. For a segment, the 
cross-correlation coefficients 𝜌 and energy index 𝐸 of the former 4 IMF are presented in Table 1. 
It can be noticed that the first 4 IMFs have higher cross-correlation coefficients and energy index, 
which are chosen as the sensitive components for further analysis. The envelope entropy, 
permutation entropy and energy entropy of the first 4 IMFs in each segment are extracted as fusion 
features. In total 12 features are extracted for each segments as a point 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥ଵଶ) in 
the feature space with the dimension of 12. And these points make up a fusion feature set  𝑋 = [𝑥ଵ, 𝑥ଶ, … , 𝑥ଵ] in a high-dimension space. Fig. 6(a), (b) and (c) show the envelope entropy, 
permutation entropy and energy entropy of the IMF1, respectively. In Fig. 6, we can see that the 
extracted feature have a certain potential for the fault detection at some extent but it also not for a 
fault diagnosis. 

Since none of the extracted feature of 12 respective features is completely suitable for fault 
diagnosis, it is necessary to extract the features that can achieve a better classification ability 
between different classes of bearing condition. The idea of LGPE is to find a feature space whose 
dimension can be reduced without any loss information, and makes the classification process 
become simple. In this paper, we use the LGPE to solve the classification problem. 
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Table 1. Cross-correlation coefficients and energy index of each IMF 
IMFs Outer race fault Ball fault Inner race fault Normal 

– 𝜌 𝐸 𝜌 𝐸 𝜌 𝐸 𝜌 𝐸 
1 0.8224 0.8094 0.7125 0.6538 0.7209 0.5833 0.6161 0.4591 
2 0.4980 0.4287 0.5783 0.4735 0.7549 0.5519 0.6359 0.4370 
3 0.3009 0.2190 0.4225 0.2260 0.4213 0.3071 0.2940 0.1719 
4 0.1983 0.1502 0.3084 0.2440 0.1838 0.1126 0.4515 0.3830 

 

 
a) 

 
b) 

 
c) 

Fig. 6. a) Envelope entropy, b) permutation entropy, c) energy entropy of the IMF1,  
outer race fault (red), ball fault (green), inner race fault (blue) and normal (magenta) 

In this experiment, the reduce dimensionality of LPGE is set to 𝑑 = 2, and the number of 
neighborhood points 𝑘  is 10. using the mixed-domain feature fusion method EEMD-ME and 
dimensionality reduction method LPGE, the distribution of the low-dimensional feature set after 
dimension reduction as shown in Fig. 7(a). As is can be seen in Fig. 7(a), all these four types of 
samples separated from each other in 𝑑-dimension space. The low dimensional feature set of the 
three fault sample cluster well, which are far away from the normal state. Thus, the fault diagnosis 
is performed. 

The dimension reduction effect of LPGE is compared with other three mainstream dimension 
reduction algorithms KLPP, KPCA and LPP. The dimensionality reduction parameters of these 
algorithms are also set to 𝑑 = 2, 𝑘 = 10. The distributions of the low-dimensional feature sets 
after dimension reduction of KLPP, KPCA, LPP are shown in Fig. 7(b)-(d). Both Fig. 7(b), (c) 
and (d) indicate that KLPP, KPCA and LPP cannot separate the four different type of bearing 
effectively. As it can be notice that while using KLPP and KPCA, there are some overlaps between 
the outer race fault and ball fault, and outer race fault is large mixed with the inner race fault while 
using KPCA. The result proves that LPGE has more excellent clustering and classifying 
performance than KLPP, KPCA and LPP. 

0 20 40 60 80 100
6.76

6.78

6.8

6.82

6.84

6.86

6.88

6.9

Segment

x1

0 20 40 60 80 100

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

x5

Segment

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Segment

x9



FAULT DIAGNOSIS USING AN IMPROVED FUSION FEATURE BASED ON MANIFOLD LEARNING FOR WIND TURBINE TRANSMISSION SYSTEM.  
PING MA, HONGLI ZHANG, WENHUI FAN, CONG WANG 

1870 JOURNAL OF VIBROENGINEERING. NOVEMBER 2019, VOLUME 21, ISSUE 7  

 
a) Dimensionality reduction with LPGE 

 
b) Dimensionality reduction with KLPP 

 
c) Dimensionality reduction with KPCA 

 
b) Dimensionality reduction with LPP 

Fig. 7. The distribution of the low-dimensional feature sets of  
bearing after dimensionality reduction of LPGE, KLPP, KPCA and LPP 

4.2. The fault diagnosis of gear 

In this experiment, the QPZZ-II test rig is designed to perform the fault test of gears. In total 
three types of data are obtained from the experiment systems, which include under normal 
conditions, with wear fault and with broken tooth fault. The sampling frequency is 5120 Hz. Each 
vibration signal is divided into 50 segments of 1024 sample, as shown in Fig. 8. 

 
Fig. 8. Vibration signals collected from three different conditions of the gear 

In the same way, each vibration segment of gear signal is decomposed into 10 IMFs by EEMD. 
Taking one segment as an example, the cross-correlation coefficients 𝜌 and energy index 𝐸 of 
each IMF of a segment are presented in Table 2. From it we can see that the first 3 IMFs have 
higher cross-correlation coefficients and energy index of the original vibrant signal. We select 
these 3 IMFs as the sensitive components for further analysis. Calculating the envelope entropy, 
permutation entropy and energy entropy of the first 3 IMFs in each segment. In total 9 features 
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are extracted for each segments as a point 𝑥 = (𝑥ଵ, 𝑥ଶ, … , 𝑥ଽ) in the feature space with the 
dimension of 9. And these points make up a feature dataset 𝑋 = [𝑥ଵ, 𝑥ଶ, … , 𝑥ଵ]  in a 
high-dimension space. 

Table 2. Cross-correlation coefficients and energy index of each IMF  
IMFs Outer race fault Ball fault Inner race fault 

– 𝜌 𝐸 𝜌 𝐸 𝜌 𝐸 
1 0.6123 0.5342 0.8597 0.8428 0.8915 0.8721 
2 0.7907 0.6791 0.5518 0.4315 0.4841 0.3615 
3 0.3425 0.2322 0.1907 0.1713 0.2242 0.1835 

For the gear vibration signal, using EEMD-ME and LPGE, the distribution of the 
low-dimensional feature set is shown in Fig. 9(a). The proposed method can separate three 
different gear conditions from each other. At the low dimensional space, the normal sample and 
the wear fault sample cluster well, while the broken tooth fault sample which are also has a certain 
degree of dispersion. In general, these samples after dimensionality reduction can effectively 
achieve the different conditions classification of gears. 

 
a) Dimensionality reduction with LPGE 

 
b) Dimensionality reduction with KLPP 

 
c) Dimensionality reduction with KPCA 

 
b) Dimensionality reduction with LPP 

Fig. 9. The distribution of the low-dimensional feature sets of  
gear after dimensionality reduction of LPGE, KLPP, KPCA and LPP 

Fig. 9(b)-(d) show the distribution of the low-dimensional feature set after the dimension 
reduction of KLPP, KPCA, LPP. In Fig. 9(b)-(d), it can be noticed that both the three methods 
cannot effectively separate the wear fault and broken tooth fault. In Fig. 9(b) and (c), when using 
KLPP and KPCA, there are some overlaps between the wear fault and broken fault, and the 
clustering of the samples with same fault is not well. In Fig. 9(d), the three type samples of gear 
are mixed together. The result verifies that the LPGE can achieve higher classification accuracy 
than other methods. 

The above results demonstrate the superior performance of the proposed method. 
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Dimensionality reduction with LPGE is better than other classical dimension reduction  
algorithms. For an online vibration monitoring system, it is necessary to install an automated 
technique for fault diagnosis. The proposed fault diagnosis model can be used as the core diagnosis 
strategy of online vibration monitoring systems. Such the system enables an objective, reliable 
detection and diagnosis of mechanical faults. It also saves time of maintenance technicians and 
improves the economic performance of the equipment. 

5. Conclusions 

Bearings and gears are extensively used in wind turbine transmission systems. Defective 
bearings and gears cause high amplitude of vibration, which can increase power consumption and 
reduce the economic benefits of rotating machinery. Therefore, a reliable and faster fault diagnosis 
technique for bearings and gears is important for wind turbine maintenance decisions and reduce 
operating costs. In this paper, we proposed such a technique to be used for the key components of 
wind turbine transmission systems. The new technique based on the mixed-domain feature fusion 
(EEMD-ME) and dimensionality reduction (LPGE) demonstrates a high classification accuracy. 
The accuracy of the technique was tested on bearing and gear vibration signals. The four classes 
of the recorded bearing vibration signals, i.e. normal, outer race fault, inner race fault and ball 
fault operation, and three classes of the recorded gear vibration signals, i.e. normal, wear fault and 
broken tooth fault operation. The result demonstrates the technology achieves 100 % accuracy.  

As part of further work, we plan to introduced the technique into the fault diagnosis of a wind 
turbine transmission system under variable speeds and alternating loads for wind turbine 
maintenance decision-making. 
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