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Abstract. In the article, the flight trajectory of a material point in the atmosphere is considered. 
For its calculation the Runge-Kutta method and the system of the equations of external ballistics 
are used. Moreover, the approximation of the resistance function according to the 1943-year law 
for subsonic and supersonic speeds is made. The expansion of dependences of the excess above 
the line of aiming and flight time from the distance in Taylor’s series is implemented. The results 
of researches are used in solving the direct problem of external ballistics for the definition of 
trajectory parameters with an increased accuracy. 
Keywords: external ballistics, flight trajectory, coordinate system, mathematical model. 

1. Introduction 

In light targets and opto-electronic blocks for speed measurement and bullet deceleration (a 
form coefficient) an indirect measurement method is used. Initial measurable physical 
characteristics are time moments of the bullet flight through light screens (block planes). A 
measurement accuracy of time moments and accuracy of their binding to trajectory coordinates in 
the points of its meeting with the planes determine the accuracy of the computation of trajectory 
parameters. A measurement accuracy of time moments depends on the ratio of signal/noise, the 
steepness of the rising edge of the signal and the way of time moment registration (according to 
signal maximum, the middle of the time interval of the excess signal, the excess moment of the 
border level on the front and back signal line). Because of the inertness of opto-electronic 
transformers a back signal line is tightened more than a front one and the signal has unlimited 
duration theoretically. Therefore, it is worthwhile to use the fixation of time moment according to 
the excess method of border level signal by taking, obviously, an optimal time measurement, 
whose filter has maximum ratio of signal/noise [1]. 

The binding accuracy of time moments to trajectory coordinates partly connects with the 
measurement accuracy since block planes have finite thickness and it is difficult or practically 
impossible to set how deep a bullet is in this plane when a time meter has worked out. If the planes 
are identical, all the planes have the same spatial and, correspondingly, time shift and time 
intervals between the planes stay invariable. In other words, during the speed change or 
deceleration base offset happens but the base line stays unchangeable.  

It is quite another matter when we talk about the spatial position of the planes because it is 
rather problematic to set a value exactly enough, so it is worthwhile to identify the time models 
and the meeting points of the trajectory and the plane. 

2. System model 

Now we will take the right coordinate system, accepted in external ballistics [2-5]. In the case 
of the target, it is more convenient to use the coordinate system of the target (Fig. 1), the plane 𝑌𝑂𝑍 is matching with the target plane, the axis 𝑂𝑌 is vertical, but the axis 𝑂𝑋 is horizontal and it 
is directed to the line of fire. The equation of the block plane 𝑃(𝑎, 𝑏, 𝑟) is presented below [6-8]: 
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𝑥 + 𝑎𝑦 + 𝑏𝑧 = 𝑟, (1) 

where: 𝑎 = tg𝛾, 𝑏 = −tg𝛽. 
Next, we will take the trajectory of the close target as a line and set it in a parametric form 

(Fig. 2): 𝑥 = 𝑥 + 𝑙𝑝,   𝑦 = 𝑦 + 𝑚𝑝,   𝑧 = 𝑧 + 𝑛𝑝, (2) 

where 𝑙 = cos𝛼, 𝑚 = cos𝛽, 𝑛 = cos𝛾 – the guide cosines of the trajectory, 𝑝 – the parameter, 
representing the distance along the trajectory between points А(𝑥ெ, 𝑦ெ, 𝑧ெ)  and 𝐵(𝑥, 𝑦, 𝑧) , 𝑥ெ = 0. 

The setting of the spatial position concerning the coordinate system 𝑋′𝑌′𝑍′, connected with the 
position in the point 𝑂′ (Fig. 3), formalizes by means of matrix transformations, used in CAD and 
robotics [9-11]. A parallel translation from the point О of the coordinate system 𝑋𝑌𝑍 in the point 𝑂′ of the coordinate system 𝑋′𝑌′𝑍′ is described like a matrix equation: 𝑃்(𝑥ᇱ, 𝑦ᇱ, 𝑧ᇱ) = 𝑃்൫𝑥 − 𝑥, 𝑦 − 𝑦, 𝑧 − 𝑧൯, (3) 

where 𝑇 – the transportation index, 𝑃்(𝑥ᇱ, 𝑦ᇱ, 𝑧ᇱ) – the row vector of suitable coordinates. 
Now we will mark through 𝑀(𝑥, 𝛼), 𝑀(𝑦, 𝛽), 𝑀(𝑧, 𝛾) the rotation matrixes about the axes 𝑋, 𝑦, 𝑍 respectively on the angles 𝛼, 𝛽, 𝛾. In the right coordinate system at the turn anticlockwise we 

have: 

𝑀(𝑥, 𝛼) = 1 0 00 𝑐ଵ 𝑠ଵ0 −𝑠ଵ 𝑐ଵ൩ ,   𝑀(𝑦, 𝛽) = 𝑐ଶ 0 −𝑠ଶ0 1 0𝑠ଶ 0 𝑐ଶ ൩ ,   𝑀(𝑧, 𝛾) =  𝑐ଷ 𝑠ଷ 0−𝑠ଷ 𝑐ଷ 00 0 1൩, (4) 

where: 𝑐ଵ = cos𝛼, 𝑐ଶ = cos𝛽, 𝑐ଷ = cos𝛾, 𝑠ଵ = sin𝛼 , 𝑠ଶ = sin𝛽, 𝑠ଷ = sin𝛾 represent the guide 
cosines and sinus. 

The transfer from the coordinate system 𝑋𝑌𝑍  to the coordinate system 𝑋ଷ𝑌ଷ𝑍ଷ  (Fig. 3) is 
performed by the parallel translation to the point (𝑥, 𝑦, 𝑧) and the turn consistently about the 
axis 𝑌′ on the angle of  the course 𝜓, about the axis 𝑍ଵ on the angle of elevation 𝜗∗ and about the 
axis 𝑋ଶ on the angle of dump 𝜑. As a result, we get: (𝑥ଷ, 𝑦ଷ, 𝑧ଷ)் = 𝑀(𝑥ଶ, 𝜑)𝑀(𝑧ଵ, 𝜗∗)𝑀(𝑦, Ψ)(𝑥, 𝑦, 𝑧)், 𝑥 = 𝑥 − 𝑥,   𝑦 = 𝑦 − 𝑦,   𝑧 = 𝑧 − 𝑧,   𝑥 = −𝐿. (5) 

The angles of the cast and the course are situated on the coordinates of two points of the line 
(Fig. 4) in the following way: 

tgΨ = 𝑧 − 𝑧ு𝐿 ,   tg𝜗 = 𝑦ு − 𝑦𝐿 ,   tg𝜗∗ = tg𝜗ඥ1 + tgଶΨ. (6) 

The guide cosines of the line with the angles of the cast and the course, corresponding Eq. (6), 
are equal: 

𝑙 = 1ඥ1 + tgଶΨ + tgଶ𝜗 ,   𝑚 = tg𝜗ඥ1 + tgଶΨ + tgଶ𝜗 ,   𝑛 = tgΨඥ1 + tgଶΨ + tgଶ𝜗. (7) 

In the close target on the blocked area of the length 4-6 m along the axis 𝑂𝑋 a trajectory turns 
into a line, a tangent trajectory in the point of impact in the target (the registration plane 𝑋′𝑌′𝑍′ on 
Fig. 5). 
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Fig. 1. Setting of the equation of the light plane 

 
Fig. 2. Setting of the line in a parametric form 

 

 
Fig. 3. Spatial scheme of  
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Fig. 4. Scheme for  

the definition of the guide cosines  
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Fig. 5. Firing corridor 

The point of intersection of this line and the position plane creates a conventional (fictitious) 
flight point with the coordinates 𝑦∗, 𝑧. 

For the calculation of the flight trajectory of a material point in the atmosphere according to 
the Runge-Kutta method [12] we will use the equations of external ballistics, recorded by 
arguments 𝑡, 𝑥 and 𝜃 in Cartesian coordinate system 𝑋𝑌𝑍 (right three), the plane 𝑋𝑌 coincides 
with fire plane [2-5]. The axis 𝑂𝑋 is horizontal and coincides with fire line, the axis 𝑂𝑌 is vertical, 
and the beginning of coordinates coincides with the point of the bullet flight. The coordinate 
system by the argument 𝑡 [3, 4] at a height 𝑦 = 0: 𝑑𝑢𝑑𝑡 = −𝑐𝑣𝐺(𝑣)cos𝜃,      or      𝑑𝑉𝑑𝑡 = −𝑐𝑉𝐺(𝑉) − 𝑔sin𝜃, (8) 𝑑𝜃𝑑𝑡 = − 𝑔cos𝜃𝑉 = − 𝑔𝑢 ,    𝑑𝑥𝑑𝑡 = 𝑢 = 𝑉cos𝜃, (9) 𝑑𝑦𝑑𝑡 = 𝑤 = 𝑉sin𝜃. (10) 

The coordinate system by the argument 𝑥: 
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𝑑𝑢𝑑𝑥 = −𝑐𝐺(𝑉),     𝑑𝛾𝑑𝑥 = − 𝑔𝑢ଶ ,     𝑑𝑦𝑑𝑥 = 𝛾 = tg𝜃,     𝑑𝑡𝑑𝑥 = 1𝑢 ,   𝑉 = 𝑢ඥ1 + γଶ. (11) 

The coordinate system by the argument 𝜃: 𝑑𝑢𝑑𝜃 = 𝑐𝑉ଶ𝑔 𝐺(𝑉),     𝑑𝑦𝑑𝜃 = − 𝑉ଶ𝑔 𝛾 = − 𝑉ଶ𝑔 tg𝜃,      𝑑𝑡𝑑𝜃 = − 𝑉𝑔cos𝜃. (12)𝑑𝑥𝑑𝜃 = − 𝑉ଶ𝑔 ,     (13)

In Eqs. (8-13) 𝑢 – velocity vector projection 𝑉 on the axis 𝑂𝑋; 𝜃 – angle of inclination of 
tangent to trajectory; 𝐹(𝑉) = 𝑉𝐺(𝑉) = 0,00048104𝑉ଶ𝑐௫(𝑉 𝑎⁄ ), 𝐹(𝑉), 𝐺(𝑉), 𝑐௫(𝑉 𝑎⁄ ) – table 
functions of air consistency, 𝑐 – ballistic coefficient of the bullet. 

For caliber bullet 7,62 mm we have 𝑐 = 6,9 m2/kg In the speed range 540 ≤ 𝑉 ≤ 900 m/s 
resistance function under the law of 1943-year is approximated by regressive dependence: 𝐺(𝑉) = 0,0456965 + 0,00008262𝑉. (14) 

In which connection the standard error of the approximation does not exceed 0,16 %. In the 
speed range 580 ≤ 𝑉  ≤ 900 m/s resistance function is 0,0466002 + 0,00008144𝑉 , in which 
connection the standard error of the approximation does not exceed 0,11 % and is conditioned 
more by the presentation of function values using three decimal places. 

3. Computational experiment 

In the case of the flat trajectory, which the bullet trajectory is during the firing from the small 
arms by direct fire, we will take the decomposition of the functions 𝑦(𝑥) and 𝑡(𝑥) in Taylor’s 
series in the area of a starting point (a flight point): 𝑦(𝑥) = 𝑦(𝑥) + 11! 𝑦ᇱ(𝑥)𝑥 + 12! 𝑦ᇱᇱ(𝑥)𝑥ଶ + ⋯, (15) 𝑡(𝑥) = 𝑡(𝑥) + 11! 𝑡′(𝑥)𝑡 + 12! 𝑡′′(𝑥)𝑡ଶ + ⋯. (16) 

For the series Eq. (15) with a cubic term inclusive, we will use famous ratios [4]: 

𝑦(0) = 0,   𝑦ᇱ(𝑥) = 𝛾,   𝑦ᇱᇱ(𝑥) = 𝛾ᇱ = − 𝑔𝑢ଶ ,   𝑦′′′(𝑥) = 𝛾′′ = − 2𝑔𝑐𝐺(𝑉)𝑢ଷ , (17) 

and for the term from the 𝑥ସ series Eq. (15) and all the five terms of the series Eq. (16) we will 
get ratios analogically, using the equations of higher ballistics Eq. (8-13).  

We have: 

𝑦ସ(𝑥) = 𝛾′′′ = 𝜕𝛾′′𝜕𝑢 𝑑𝑢𝑑𝑥 + 𝜕𝛾′′𝑑𝑣 𝑑𝑉𝑑𝑥. (18) 

From Eqs. (8) and (10): 𝑑𝑢𝑑𝑥 = −𝑐𝐺(𝑉),   𝑑𝑉𝑑𝑥 = − 𝑐𝑉𝐺(𝑉) + 𝑔sin𝜃𝑉cos𝜃 . (19) 

We have: 
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𝜕𝛾′′𝜕𝑢 = 6𝑔𝑐𝐺(𝑉)𝑢ସ ,   𝜕𝛾′′𝜕𝑉 = − 2𝑔𝑐𝐺′௩(𝑉)𝑢ଷ , (20) 

where 𝐺′௩(𝑉) – partial derivative with respect to 𝑉. 
Now: 

𝑦ସ(𝑥) = − 6𝑔𝑐ଶ𝐺ଶ(𝑉)𝑢ସ + 2𝑔𝑐𝐺′௩(𝑉)𝑢ସ [𝑐𝑉𝐺(𝑉) + 𝑔sin𝜃]. (21) 

Thus, a quartic polynomial, corresponding to the series Eq. (15), looks like: 𝑦(𝑥) = 𝑎 + 𝑎ଵ𝑥 + 𝑎ଶ𝑥ଶ + 𝑎ଷ𝑥ଷ + 𝑎ସ𝑥ସ, (22) 𝑎 = 0,   𝑎ଵ = 𝛾 = tg𝜃,   𝑎ଶ = − 𝑔2𝑉ଶcosଶ𝜃 ,   𝑎ଷ = − 𝑔𝑐𝐺(𝑉)3𝑉ଷcosଷ𝜃, (23) 𝑎ସ = − 𝑔𝑐ଶ𝐺ଶ(𝑣)4𝑣ଶcosସ𝜃 + 𝑔𝑐𝐺′௩(𝑣)12𝑣ସcosସ𝜃 [𝑐𝑣𝐺(𝑣) + 𝑔sin𝜃]. (24) 

In the case of the series Eq. (16) we find consistently: 

𝑡(0) = 0,   𝑡ᇱ(𝑥) = 1𝑢,   𝑡ᇱᇱ(𝑥) = ∂𝑡ᇱ∂𝑢 𝑑𝑢𝑑𝑥 = 𝑐𝐺(𝑣)𝑢ଶ , (25) 𝑡ᇱᇱᇱ(𝑥) = ∂𝑡ᇱᇱ∂𝑢 𝑑𝑢𝑑𝑥 + ∂𝑡ᇱᇱ∂𝑣 𝑑𝑉𝑑𝑥 = 2𝑐ଶ𝐺ଶ(𝑉)𝑢ଷ − 𝑉𝑐ଶ𝐺ᇱ௩(𝑉)𝐺(𝑉) + 𝑐𝑔𝐺ᇱ௩(𝑉)sin𝜃𝑢ଷ , (26) 𝑡ூ(𝑥) = ∂𝑡ᇱᇱᇱ∂𝑢 𝑑𝑢𝑑𝑥 + ∂𝑡ᇱᇱᇱ∂𝑉 𝑑𝑉𝑑𝑥 + ∂𝑡ᇱᇱᇱ∂𝜃 𝑑𝜃𝑑𝑥, (27) ∂𝑡′′′∂𝑢 = − 3𝑢ସ [2𝑐ଶ𝐺ଶ(𝑉) − 𝑉𝑐ଶ𝐺ᇱ(𝑉)𝐺(𝑉) − 𝑔𝑐𝐺ᇱ(𝑉)sin𝜃], (28) ∂𝑡′′′∂𝑉 = − 1𝑢ଷ [3𝑐ଶ𝐺ᇱ(𝑉)𝐺(𝑉) − 𝑐ଶ𝑉(𝐺ᇱ(𝑉))ଶ − 𝑐ଶ𝑉𝐺ᇱᇱ(𝑉)𝐺(𝑉) − 𝑔𝑐𝐺ᇱᇱᇱ(𝑉)sin𝜃], (29) ∂𝑡′′′∂𝜃 = − 𝑐𝑔𝐺′(𝑉)cos𝜃𝑢ଷ . (30) 

From Eq. (27) taking into consideration Eqs. (28)-(30) and (13), (19) we have 𝑡ସ(𝑥) and the 
expansion coefficients in the series: 𝑡(𝑥) = 𝑏 + 𝑏ଵ𝑥 + 𝑏ଶ𝑥ଶ + 𝑏ଷ𝑥ଷ + 𝑏ସ𝑥ସ, (31) 𝑏 = 0,   𝑏ଵ = 1𝑉cos𝜃 ,   𝑏ଶ = 𝑐𝐺(𝑉)2𝑉ଶcosଶ𝜃, (32) 𝑏ଷ = 16𝑉ଷcosଷ𝜃 [2𝑐ଶ𝐺ଶ(𝑉) − 𝑐ଶ𝑉𝐺ᇱ(𝑉)𝐺(𝑉) − 𝑐𝑔𝐺ᇱ(𝑉)sin𝜃], (33) 𝑏ସ = 𝑐ଶ𝐺(𝑉)8𝑉ସcosସ𝜃 [2𝑐𝐺ଶ(𝑉) − 𝑐𝑉𝐺′(𝑉)𝐺(𝑉) − 𝑔sin𝜃𝐺′(𝑉)]      − 𝑐𝑉𝐺(𝑉) + 𝑔sin𝜃24𝑉ସcosସ𝜃 [3𝑐ଶ𝐺′(𝑉)𝐺(𝑉) − 𝑐ଶ𝑉𝐺′′(𝑉)𝐺(𝑉)
     −𝑐ଶ(𝐺′(𝑉))ଶ − 𝑐𝑔sin𝜃𝐺′′(𝑉)] + 𝑐𝑔ଶ𝐺′(𝑉)24𝑉ହcosଶ𝜃 .  (34) 

Since in coefficients, beginning from 𝑎ସ and 𝑏ଷ, derivatives from the table function 𝐺(𝑀) are 
included, we will limit 𝑎ସ  and 𝑏ସ . In the case of the approximation 𝐺(𝑉)  using the ratio 
derivatives Eq. (14), beginning from the second one, vanish, through this the expressions for 
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subsequent coefficients simplify and if necessary they are easy to be calculated. 
According to the Taylor’s range theory it will accurately represent the functions in the point, 

if the last one from accounted derivatives is calculated in some mid-point. If we take an 
arithmetical mean (for this segment) argument value, for example, then the accuracy with a limited 
number of terms of series increases and corresponds to the accuracy of the series with an additional 
term [4]. Without calculating the coefficient of an additional term, we will use the following 
technique. Since time 𝑡 and the coordinate 𝑦 at a given range can be determined by the numerical 
integration of the equations of external ballistics, for example, by the Runge-Kutta method, then 
we will add an additional term of the series, after that we will find its coefficient from the condition 
of given time or coordinate at a given range. 

Though, for example, the coefficients of the series Eqs. (22) are known and we will add the 
following coefficient 𝑎ହ, that we have determined from the condition 𝑦(𝐿) = 𝑦ெ, i.e. from the 
condition of the known (counted) coordinate 𝑦ெ at the distance of the target 𝐿. The coordinate 𝑦ெ 
can be determined as the point of impact in the target with the shot then: 𝑎ହ = (𝑦ெ − 𝑎 − 𝑎ଵ𝐿 − 𝑎ଶ𝐿ଶ − 𝑎ଷ𝐿ଷ − 𝑎ସ𝐿ସ) 𝐿ହ⁄ . (35) 

If starting conditions γ = tg𝜃, 𝑣 and ballistic coefficient 𝑐 are unknown, we are able to try 
to approximate excess and time by polynomials in the presence of changes in some points of the 
trajectory. In this case, the coefficients of the polynomials will be devoid of physical meaning. 

4. Conclusions 

The models of the trajectory of a straight shot for the excess above the line of aiming and flight 
time with elaboration by additional terms of Taylor’s series have been developed, their 
coefficients are found from the condition of the passage of solution through a final point (at a 
given range) of the trajectory. The approximation of the trajectory for excess and time using 
polynomials can be accurate enough. At the same time, we can approximate not the whole 
trajectory but only the interesting segment for us, for example, in the area of placing of block 
planes and a light target. 

The regressive equation for the function of air resistance 𝐺(𝑉), which error does not exceed 
0,11 % in the speed range 540 ≤ 𝑉 ≤ 900 m/s has been found. 

In the case of a flat trajectory it is possible to calculate the trajectory with the 1 mm error for 
supersonic speeds and the 2 mm error for subsonic speeds and also to calculate the time at a given 
range with the error under minimum MSK by analytical formulas without resorting to the 
integration of differential equations of external ballistics. 

The results of researches are used in solving the direct problem of external ballistics for the 
definition of trajectory parameters with an increased accuracy. 
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