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Abstract. A feature extraction of fault bearing has attracted considerable attention in recent years. 
However, weak fault feature is difficult to extract under heavy background noise. To solve this 
problem, a novel multi-layer filtering method is proposed to filter out noise and extract weak fault 
feature. The first layer introduces a metric based on de-trended fluctuation analysis (DFA) to 
identify intrinsic mode function (IMF) that reflect period impulsive information for vibration 
signal adaptively. The second layer uses non-local mean (NLM) method as a pre-filter of the third 
layer to realize extraction of singular value decomposition (SVD) which reflect the most 
information of IMFs. The last layer introduces a relative energy difference criterion of a singular 
value to extract important feature of Hankel matrix of IMFs. The filtered signal is obtained by 
re-constructed signal from identified singular value of SVD. Experiment results on simulation and 
real vibration signals indicate that the hybrid filtering method removes heavy noise successfully 
and extract weak fault feature of rolling bearing effectively. 
Keywords: hybrid filtering, de-trended fluctuation analysis, relative energy difference, fault 
feature. 

1. Introduction  

Bearing is a critical component in rotary machine. The reliability directly affects machine 
health status. Thus, an effective condition monitoring (CM) and fault diagnosis (FD) method is 
required to detect and recognize potential abnormalities which reduce risk of unexpected severity 
and other disastrous events [1-4]. 

Vibration analysis technology is a key topic in CM and FD research domain. This technology 
may extract fault feature of rolling bearing effectively. Conventional methods, such as fast Fourier 
transform (FFT), are used to address stationary and linear signals [5] widely. However, FFT is 
unsuitable to extract fault feature on account of characteristic of non-linear and non-stationary for 
vibration signal. Wavelet transform is a typical application in bearing fault diagnosis [6-8]. This 
technique has attracted considerable attention of researchers in the past two decades. However, 
wavelet transform is difficult to select wavelet base function. Recently, empirical mode 
decomposition (EMD) has been proposed to process complex non-linear and non-stationary signal 
[9]. EMD is an adaptive decomposition method that decomposes complicated signals into a set of 
multi-component with intrinsic mode function (IMF). Every IMF indicates a mono-component 
amplitude- and frequency-modulated signal. EMD has been applied to bearing [10], gearbox [11], 
and rubbing [12] fault diagnoses. However, EMD have several limitations, such as mode mixing 
and end effect. To solve the problem, Huang [13] proposed an ensemble EMD (EEMD) to 
alleviate the limitations of EMD. This method reflected the frequency of every IMF accurately 
and effectively. Moreover, EEMD has attracted significant attention in fault diagnoses domain. 
For example, Wang [14] proposed a method based on multi-scale principal component analysis to 
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extract fault frequency of slewing bearing. Chen [15] improved EEMD by adding white noises 
and adaptively determining an ensemble number to extract fault features. However, EEMD has 
caused spurious mode and residual noise because of interaction of noise and signal. Subsequently, 
Torres [16] introduced a complete EEMD with adaptive noise (CEEMDAN) to overcome this 
drawback. CEEMDAN has been applied to fault diagnoses [17, 18] successfully. 

For vibration signal being immersed by heavy noise, it is important to develop a de-noised 
method to extract the early detection of weak fault. However, filtering method based on EMD or 
its improved versions (EEMD and CEEMDAN) do not filter out noise in vibration signal fully. 
The reason is that IMF do not effectively reflect frequency component of fault because of noise 
interference. Recently, the hybrid filtering method based on singular-value decomposition (SVD) 
and EMD or its improved versions have been proposed to extract weak fault feature. Cheng [19] 
used EMD to decompose impulse signal, and used SVD and support vector machine to extract 
fault feature and classify fault pattern of gearbox and bearing. Yang [20] adopted EEMD with 
sample entropy and SVD to diagnose fault by acoustic emission signal. It is found that SVD is an 
effective method to filter out noise and extract fault feature. However, important fault information 
losses because of spurious mode and heavy noise interference in IMF.  

To solve this problem, this study introduces a multi-layer filtering (hybrid filtering) method to 
extract weak fault feature of bearing. In the first layer, vibration signal is decomposed to obtain 
IMFs by CEEMDAN. Then, a de-trended fluctuation analysis (DFA) is utilized to identify 
effective IMF and spurious mode adaptively. In second layer, a non-local mean (NLM) de-noised 
method is used to filter out noise in each IMF. In last layer, SVD is used to remove residual noise 
in vibration signal. The hybrid filtering method is applied to simulated and measured vibration 
signal from rolling bearing. The result indicates that this method extracts weak fault effectively 
and operate well for bearing fault diagnose. 

The remainder of this paper is organized as follows: Section 2 introduces the CEEMDAN 
algorithm. Section 3 describes the hybrid filtering algorithm. Section 4 verifies the effectiveness 
of the proposed algorithm for fault extraction. Section 5 presents the conclusion. 

2. CEEMDAN algorithm 

Traditional EEMD have high computational cost and residue noise because of interaction of 
signal and added noise. To solve this problem, CEEMDAN is introduced in reference [16]. 
Principle of CEEMDAN is as follows: 

(1) Generate the noisy signal 𝑥ሺ𝑡ሻ , 𝑥ሺ𝑡ሻ = 𝑥ሺ𝑡ሻ + 𝜔𝜉ሺ𝑡ሻ  (𝑖 = 1,…, 𝑁 ), where 𝜉ሺ𝑡ሻ is 
white noise with unit variance, and 𝜔 is coefficient of added white noise.  

(2) Obtain the first IMF (𝑐ଵሺ𝑡ሻ) of each noisy signal 𝑥ሺ𝑡ሻ by EMD; 
(3) Obtain the first decomposed IMF (𝑐ଵሺ𝑡ሻ) by taking average of each 𝑐ଵሺ𝑡ሻ: 

𝑐ଵሺ𝑡ሻ = 1𝑁𝑐ଵሺ𝑡ሻே
ୀଵ . (1) 

(4) Compute the first residue by Eq. (2); 𝑟ଵሺ𝑡ሻ = 𝑥ሺ𝑡ሻ − 𝑐ଵሺ𝑡ሻ. (2) 

(5) Apply EMD to decompose 𝑟ଵሺ𝑡ሻ + 𝑤ଵ𝐸ଵ ቀ𝜀ሺ𝑡ሻቁ, and extract the first IMF to obtain the 
decomposed second IMF (𝑐ଶሺ𝑡ሻ), where 𝐸ሺ⋅ሻ signifies that EMD is used to decompose 𝑥ሺ𝑡ሻ to 
get the 𝑚th IMF: 



NOVEL COMPLETE ENSEMBLE EMD WITH ADAPTIVE NOISE-BASED HYBRID FILTERING FOR ROLLING BEARING FAULT DIAGNOSIS.  
XIAOJUN SONG, HONGWEI SUN, LIWEI ZHAN 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 1847 

𝑐ଶሺ𝑡ሻ = 1𝑁𝐸ଵ ൬𝑟ଵሺ𝑡ሻ + 𝑤ଵ𝐸ଵ ቀ𝜀ሺ𝑡ሻቁ൰ே
ୀଵ . (3) 

(6) Compute the 𝑚th residue (𝑚 = 2,…, 𝐾), and extract the first decomposed IMF to obtain ሺ𝑚 + 1ሻth decomposed IMF by Eq. (4): 

𝑐ାଵሺ𝑡ሻ = 1𝑁𝐸ଵ ൬𝑟ሺ𝑡ሻ + 𝑤𝐸 ቀ𝜀ሺ𝑡ሻቁ൰ே
ୀଵ . (4) 

(7) Repeat above steps until the residue 𝑅ሺ𝑡ሻ contain less than two extrema: 

𝑅ሺ𝑡ሻ = 𝑥ሺ𝑡ሻ −  𝑐ሺ𝑡ሻ
ୀଵ . (5) 

The signal 𝑥ሺ𝑡ሻ can be written as: 

𝑥ሺ𝑡ሻ =  𝑐ሺ𝑡ሻ + 𝑅ሺ𝑡ሻ
ୀଵ . (6) 

3. Hybrid filtering method 

3.1. Selection of spurious IMFs 

When CEEMDAN is used to decompose vibration signal, the obtained IMF contains periodic 
impulsive component (IPIC) and non-IPIC (NIPIC). The IMF with impulsive component can 
reflect physical meaning of vibration signal, and the residue is a non-effective IMF, which is called 
“spurious mode” or “spurious IMF”. It is necessary to develop a method to distinguish IPIC and 
NIPIC effectively. It is found that there is obvious fluctuation difference between IPIC and NIPIC. 
Recently, DFA [21-23] has been regarded as analysis tool of scale and is suitable to analyze 
fluctuation of non-linear and non-stationary time series. Thus, DFA is proposed to evaluate the 
fluctuation of IPIC and NIPIC. The following is the principle of DFA: 

(1) Generate the integrated time series, where �̅� indicates the mean of time series 𝑥ሺ𝑖ሻ: 
𝑦ሺ𝑘ሻ = ሾ𝑥ሺ𝑖ሻ − �̅�ሿ

ୀଵ ,   𝑘 = 1,2, … ,𝑁. (7) 

(2) Divide 𝑦ሺ𝑘ሻ into 𝑛 length sections; 
(3) Use least square method to determine the local trend 𝑦ሺ𝑘ሻ; 
(4) Get fluctuation function 𝐹ሺ𝑛ሻ by 𝑦ሺ𝑘ሻ: 

𝐹ሺ𝑛ሻ = ൭1𝑁ሾ𝑦ሺ𝑘ሻ − 𝑦ሺ𝑘ሻሿଶே
ୀଵ ൱ଵ/ଶ. (8) 

(5) Obtain different 𝐹ሺ𝑛ሻ using different length segments; 
(6) Calculate slope between log൫𝐹ሺ𝑛ሻ൯ and log𝑘, where the slope is called Hurst exponent 𝛼: 𝐹ሺ𝑛ሻ ∝ 𝑛ఈ. (9) 
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Reference [24] indicated that the larger value of Hurst exponent (𝛼) is, the smoother a time 
series is. Numerous experiments found that NIPIC is smoother than IPIC. It means that Hurst 
exponent (𝛼) decreases with the increase of IMF index. When the Hurst exponent (𝛼) of the ሺ𝑘 + 1ሻth IMF become large suddenly, and the IMF that corresponds to the index is a spurious 
mode. Then, effective vibration signals with impulsive components are adaptively constructed by 
subtracting first 𝑘th IMFs. The identified steps are summarized as follows: 

(1) Decompose signal 𝑥ሺ𝑡ሻ into a set of IMFs by CEEMDAN: 

𝑥ሺ𝑡ሻ = 𝐼𝑀𝐹
ୀଵ +  𝐼𝑀𝐹ே

ୀାଵ + 𝑅ேሺ𝑡ሻ. (10) 

(2) Calculate Hurst exponent (𝛼) of every IMF by DFA (𝑖 = 1,…, 𝑁);  
(3) Identify index of the relevant 𝑘th from 𝛼: 𝑘 = argminሺ𝛼ሻ. (11) 

(4) Extract all IMFs up to index 𝑘th. 
To verify the effectiveness of proposed method, the following simulated vibration signal [25] 

is used to identify IPIC and NIPIC: 𝑦ሺ𝑡ሻ = 𝑥ሺ𝑡ሻ + 𝑛ሺ𝑡ሻ, (12) 

where, 𝑦ሺ𝑡ሻ is noisy signal, 𝑥ሺ𝑡ሻ indicates the real signal and 𝑛ሺ𝑡ሻ is the noise. Eq. (13) and (14) 
is expression of 𝑥ሺ𝑡ሻ: 𝑥ሺ𝑡ሻ = 𝐴𝑒ି௧sinሺ2𝜋𝑓ଵ𝑘𝑇ሻ + 𝐵sinሺ2𝜋𝑓𝑘𝑇ሻsinሺ2𝜋𝑓ଶ𝑘𝑇ሻ, (13) 𝑡 = modሺ𝑘𝑇, 1/𝑓ሻ, (14) 

here, 𝑎 is the modulated factor, and 𝑇 is the sample period. 𝑘 is the sample points (𝑘 = 1000), 𝑓 
is fault frequency of bearing, 𝑓 is the rotation frequency, 𝑓ଵ and 𝑓ଶ are the carrier frequencies 
from system resonance. Table 1 are the parameters of simulated vibration signal. Where the 
sample rate is 1.6 kHz, and the input signal-to-noise ratio (𝑆𝑁𝑅) is −10 dB. 

Table 1. Parameters of the simulated vibration signal 𝑎 𝑇 (s) 𝑓 (Hz) 𝑓 (Hz) 𝑓ଵ (Hz) 𝑓ଶ (Hz) 
800 1/16000 160 30 2000 7000 

Fig. 1(a) and (b) are the simulated noisy signal and the corresponding fast Fourier transform 
(FFT), respectively. It is found that FFT cannot identify characteristic frequency of simulated fault 
signal, and extract only the carrier frequencies (𝑓ଵ and 𝑓ଶ).  

To extract the fault frequency, CEEMDAN is first used to decompose noisy vibration signals. 
Fig. 2 are the decomposed IMFs. It is found that there are nine IMFs and residue. The first five 
IMFs contain PICs obviously, and periodic information of fifth IMF is shown red box in the fifth 
IMF. However, it is obvious that the sixth IMF mainly contains NPIC. To identify the PIC, DFA 
is used to calculate Hurst exponent (𝛼 ) of each IMF to distinguish PIC and NPIC. Fig. 3 
demonstrates the DFA of IMF1, and Fig. 4 exhibits the Hurst exponent (𝛼) for all IMFs. It is found 
that Hurst exponent (𝛼) decreases with increase of IMF index. The Hurst exponent (𝛼) of IMF6 
rapidly become large when Hurst exponent (𝛼) of IMF5 is smallest. It indicates that the spurious 
modes are from IMF6 to IMF10 (expected residue). The identified result is in accordance with the 
analysis result in Fig. 2. It means that the proposed DFA method is suitable to identify IPIC and 
NIPIC. Fig. 5 presents the combination of signals with first five IMFs. It is found that the signal 
still contains heavy noise. 
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a) Noisy signal 

 
b) Noisy signal FFT 

Fig. 1. Noisy signal and corresponding FFT 

 
a) 

 
b) 

Fig. 2. CEEMDAN decomposed IMFs for simulation vibration signal 

 
Fig. 3. DFA of IMF1 
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Fig. 4. Hurst exponent of each IMF 

    
Fig. 5. Summed signal of the first five IMFs 

3.2. Non-local mean (NLM) de-noising method  

In this section, NLM method is used to filter out noise in each IMF. Furthermore, the method 
also improves effectiveness of third layer filtering to enhance feature extraction of fault signal. 
NLM [26-28] is first used in image processing to process 2D signal rather than 1D signal. In this 
paper, NLM is introduced to be considered as pre-filter of third layer filtering. The following is 
the principle of NLM: 𝑦(𝑡ሻ = 𝑥(𝑡ሻ + 𝑛(𝑡ሻ, (15) 

where 𝑥(𝑡ሻ is the real signal, and 𝑛(𝑡ሻ is the noisy signal. Recovered signal 𝑥(𝑡ሻ is the weighted 
sum of value at point 𝑡 being located in “search neighborhood” 𝑁(𝑠ሻ and is expressed as: 

𝑥(𝑠ሻ = 1𝑍(𝑠ሻ  𝑤(𝑠, 𝑡ሻ𝑦(𝑡ሻ௧∈ே(௦ሻ , (16) 

where, 𝑠 is sample point. The expression of 𝑍(𝑠ሻ is the following: 𝑍(𝑠ሻ = 𝑤(𝑠, 𝑡ሻ௧ . (17) 
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The weights 𝑤(𝑠, 𝑡ሻ are as follows: 

𝑤(𝑠, 𝑡ሻ = exp൭−∑ ൫𝑦(𝑠 + 𝛿ሻ − 𝑦(𝑡 + 𝛿ሻ൯ଶఋ∈ 2𝐿𝜆ଶ ൱ ≡ expቆ−𝑑ଶ(𝑠, 𝑡ሻ2𝐿𝜆ଶ ቇ, (18) 

where, 𝜆 is the bandwidth, Δ is the local patch of surrounding 𝑠 and contains 𝐿 length samples. 
The second filtering layer principle is expressed as follows:  
(1) The NLM method is used to filter out noise of identified PIC; 
(2) The filtered PIC are combined to obtain the second layer de-noised signal.  
Fig. 6 depicts filtered result. It is found that periodic impulse component is more obvious than 

signal in Fig. 5 (parameter in NLM is determined on the basis of SURE criterion [29]). 

3.3. Singular value decomposition de-noising  

3.3.1. Singular value decomposition principle 

The final layer filtering utilizes SVD to remove extra noise. SVD demonstrates an excellent 
performance in noise removal and is extensively used in fault extraction of rolling bearing [30-32]. 
It is assumed that noisy series 𝑥(𝑘ሻ is expressed as: 𝑥(𝑘ሻ = ሾ𝑥(1ሻ, 𝑥(2ሻ, … 𝑥(𝑁 − 1ሻ, 𝑥(𝑁ሻሿ,   𝑘 = 1, … ,𝑁. (19) 

 
Fig. 6. Second filtering layer  

Signal 𝑥(𝑘ሻ is consisted of real signal and noise. It is expressed as follows: 𝑥(𝑘ሻ = 𝑠(𝑘ሻ + 𝑛(𝑘ሻ, (20) 

where, 𝑠(𝑘ሻ is real signal, and 𝑛(𝑘ሻ is noise. The following is Hankel matrix 𝐻 (𝐻 ∈ 𝑅×ሻ of 
signal 𝑥(𝑘ሻ: 
𝐻 = ൦𝑥(1ሻ 𝑥(2ሻ ⋯ 𝑥(𝑞ሻ𝑥(2ሻ 𝑥(3ሻ ⋯ 𝑥(𝑞 + 1ሻ⋮ ⋮ ⋯ ⋮𝑥(𝑝ሻ 𝑥(𝑝 + 1ሻ ⋯ 𝑥(𝑁ሻ ൪

×
, (21) 

where, 𝑝 + 𝑞 − 1 = 𝑁, 𝑝 ≥ 𝑞, and 𝐻(𝑖, 𝑗ሻ = 𝑥(𝑖 + 𝑗 − 1ሻ. Eq. (21) is furtherly expressed as: 
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𝐻 = ൦𝑠(1ሻ 𝑠(2ሻ ⋯ 𝑠(𝑞ሻ𝑠(2ሻ 𝑠(3ሻ ⋯ 𝑠(𝑞 + 1ሻ⋮ ⋮ ⋯ ⋮𝑠(𝑝ሻ 𝑠(𝑝 + 1ሻ ⋯ 𝑠(𝑁ሻ ൪
×

+ ൦𝑛(1ሻ 𝑛(2ሻ ⋯ 𝑛(𝑞ሻ𝑛(2ሻ 𝑛(3ሻ ⋯ 𝑛(𝑞 + 1ሻ⋮ ⋮ ⋯ ⋮𝑛(𝑝ሻ 𝑛(𝑝 + 1ሻ ⋯ 𝑛(𝑁ሻ ൪
×

. (22) 

The Eq. (22) is simplified as: 𝐻 = 𝐻௦ + 𝐻, (23) 

here, 𝐻௦(𝑖, 𝑗ሻ = 𝑠(𝑖 + 𝑗 − 1ሻ and 𝐻(𝑖, 𝑗ሻ = 𝑛(𝑖 + 𝑗 − 1ሻ are Hankel matrices of the real signal 
and noisy signal, respectively. Thus, the main task is to found 𝐻௦ to obtain de-noised signal �̂�(𝑘ሻ. 
Here, 𝐻 is first decomposed into the following expression: 

𝐻 = 𝑈𝐷𝑉் = 𝜎𝑢𝑣்
ୀଵ = 𝜎𝐴

ୀଵ , (24) 

here, 𝑈 (𝑈 ∈ 𝑅×ሻ and 𝑉 (𝑉 ∈ 𝑅×ሻ are two orthogonal matrices, 𝐷 is a diagonal matrix and 
defined as 𝐷 = ൣdiag൫𝜎ଵ,𝜎ଶ,⋯ ,𝜎൯,𝑂൧ , 𝑂  is a zero matrix, and 𝜎ଵ > 𝜎ଶ,⋯ ,𝜎 ,⋯ , > 𝜎 > 0. 
Here, 𝜎 is assumed to be last singular value of Hankel matrix 𝐻௦. Other values are set to zero if 
the previous 𝑖  singular values are preserved. Then, reverse re-construction can obtain the 
de-noised signal. Thus, parameter 𝑖 must be determined. The next part uses a relative energy 
difference spectrum of a singular value to identify important parameter 𝑖. 
3.3.2. Relative energy difference spectrum  

In principle, real signal 𝑠(𝑘ሻ and noise 𝑛(𝑘ሻ are non-correlated. The energy of the real signal 
is concentrated. However, the noise is relatively decentralized. It indicates that the singular values 
of real signal components are rounded to certain numerical value, and singular value of noise 
components are around other numerical value. It means that the energy of first 𝑖 singular value 
(singular value of real signal component) is different from energy of the others (𝑟 − 𝑖) singular 
value (noise component). If the energy difference of adjacent singular value is done, it is found 
that the energy difference of singular value are almost same as energy for real signal component 
or noise component, respectively. However, the energy difference of singular value is biggest in 
demarcation point of real signal component and noise component. It proves that the relative energy 
difference spectrum of SVD changes at the demarcation point of singular value of the real and 
noise signal components abruptly. This paper introduces the following relative energy difference 
spectrum to identify singular value 𝜎: 𝜌(𝑖ሻ = 𝜎ଶ − 𝜎ାଵଶmax(𝜎ଶሻ − min(𝜎ଶሻ × 100%,    𝑖 = 1, … , 𝑟, (25) 

when the singular value of real signal components are extracted by identifying demarcation point 
by proposed method, the de-noised signal can been obtained by Eq. (24). It means that the signal 
can been re-constructed by finding the maximum 𝜎. Here, the size of Hankel matrix is determined 
on the basis of Reference [33]. 

Now, the proposed de-noising method is used to filter out residual noise of vibration signal in 
Fig. 6. Fig. 7 displays singular value of Hankel matrix. Figs. 8(a) and (b) depict the local large of 
singular value (first 50 singular values are displayed) and the corresponding relative energy 
difference spectrum, respectively. It is found that the 10th singular value is the maximum in all 
different spectra. Thus, the first 10 singular values are selected to re-construct the de-noised signal. 
Fig. 9 are comparison result of second-layer and third-layer filtered signal. It is found that 
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periodical information of the third layer filtered signal is more obvious than that of the second 
layer. 

 
Fig. 7. Singular value 

 
a) Singular value 

 
b) Difference spectrum of singular value 

Fig. 8. Singular value and corresponding difference spectrum 

 
Fig. 9. Comparing of filtered signal with second the third layer filtering method 
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Analysis technique of envelope spectrum is used to extract fault feature. Fig. 10 presents the 
envelope spectrum of the filtered signal. It is found that fault characteristics 1𝑋 and 2𝑋 (159.7 and 
319.4 Hz, respectively) and rotational frequency 2𝑋 (63.87 Hz) are extracted in the envelope 
spectrum. It indicates that the proposed hybrid filtering method is effective in extracting fault 
frequency of bearing. 

 
Fig. 10. Envelope spectrum of hybrid filtered signal 

Finally, the three-layer de-noising method is presented as follows: 
(1) Decompose vibrated signal 𝑥(𝑡ሻ into a set of IMFs by CEEMDAN; 
(2) Select the real and spurious IMF component by DFA adaptively; 
(3) Filter out noise in each real IMF by NLM; 
(4) Combine the filtered IMFs to obtain effective signal 𝑥ᇱ(𝑡ሻ; 
(5) Use SVD to filter out noise to obtain signal 𝑥ᇱᇱ(𝑡ሻ; 
(6) Calculate the envelope spectrum of signal 𝑥ᇱᇱ(𝑡ሻ; 
(7) Extract the weak feature of vibration signal 𝑥ᇱᇱ(𝑡ሻ; 
Fig. 11 is flow chart of the hybrid filtering method. 

 
Fig. 11. Flow chart of hybrid filtering method 

4. Results and discussions 

In this section, the fault data from the website of Case Western Reserve University [34] is used 
to evaluate the performance of proposed method. Fig. 12 exhibits the experiment rig which 
consists of a 2 HP motor, a torque transducer, a dynamometer, and control electronics. The test 
bearing is 6205-2RS SKF deep groove ball bearing. Table 2 is the bearing parameters.  

( )'x t( )x t ( )''x t
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Table 2. Bearing parameters for 6205-2RS deep groove ball bearing 
Bearing type Ball number 𝑛  Pitch diameter 𝐷 (mm) Ball diameter 𝑑 (mm) Contact angle 𝛼 (°) 

6205-2RS 9 52 8 0 

 
Fig. 12. Bearing experiment rig: (1) – motor, (2) – torque transducer, (3) – dynamometer 

The theoretical characteristic frequency of inner race 𝑓 can be calculated using the following 
expression: 

𝑓 = 0.5𝑛 ൬1 + 𝑑𝐷 cos𝛼൰𝑓 , (26) 

where, 𝑓 is the rotation frequency.  
In this experiment, single point fault is introduced to the test bearing using electro-discharge 

machining with fault diameters of 0.018, 0.036, 0.054, and 0.072 mm. Fault data from fault 
diameter of 0.018 mm is used to identify fault recognition as early as possible. The sample rate is 
12 kHz. The selected data length is 1000. Figs. 13(a) and (b) display the time domain signal and 
corresponding FFT, respectively. It is found that FFT of vibration signal do not extract frequency 
feature of vibration signal, and the vibration signal contain heavy noise. Here, the proposed 
method is first used to remove noise by flow chart in Fig. 11, then analysis technology of envelope 
spectrum of vibration signal is employed to extract fault feature. Moreover, typical filtering 
methods, namely, EMD-SVD [25], SVD, and NLM, are also used to extract fault feature for the 
same vibration signal. The filtered result and the corresponding envelope spectrum are 
demonstrated in Figs. 14(b), (c), and (d). It is found that more noise is observed using EMD-SVD, 
SVD, and NLM methods than proposed method (CEEMAN-DFA-NLM-SVD) for a time domain 
waveform. Moreover, for envelope spectrum, it also has similar result and contains a noisy 
frequency component (high-frequency component or interference frequency as shown elliptical 
annotation in red box in Fig. 14) among EMD-SVD, SVD, and NLM methods (envelope spectrum 
is only displayed in the first 2 kHz). However, the envelope spectrum of the proposed method 
does not reflect a high frequency and only reflect fault frequency of bearing (low-frequency 
information in Fig. 14). It indicates that the proposed method more effectively remove noise than 
other de-noising methods. The envelope spectrum of the CEEMAN-DFA-NLM-SVD presents the 
maximum frequency (155.7 Hz) and multiplication frequency (311.4 Hz). The identified 
frequency is nearly consistent with the theoretical frequency (151.44 Hz) by Eq. (26). For the 
EMD-SVD, SVD method, although the fault frequency and corresponding multiplication 
frequency can be reflected in Fig. 14, the multiplication frequency is difficult to identify because 
of interference frequency. For NLM method, it is not found fault frequency and multiplication 
frequency in the envelope spectrum, and it also produce the interference frequency in red box in 
Fig. 14. In addition, the amplitude of envelope spectrum of proposed method is bigger than the 
other methods. It makes the fault frequency be more identified. Based on above analysis, the 
proposed method demonstrates an outstanding performance than the other filtering methods. 
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a) Noisy signal 

 
b) Noisy signal FFT 

Fig. 13. Noisy signal and corresponding FFT 

 
Fig. 14. Comparing of filtered results and feature extraction  

5. Conclusions 

This study proposes a novel hybrid filtering method based on the CEEMDAN-DFA-NLM-
SVD to extract weak fault features under heavy background noise. On the basis of the 
abovementioned research results, the conclusions are as follows: 

1) The first layer filtering introduces criterion of the smallest Hurst exponent to identify the 
periodic impulse among the IMFs by CEEMDAN adaptively.  

2) The second filtering layer uses NLM to filter out noise in each IMF that contains a PIC. 
3) In the final layer filtering, the relative energy difference spectrum, which identifies the 

singular value of Hankel matrix of real signal, is applied to adaptively remove noise for the 
second-layer filtered signal.  

Finally, the proposed method is used to effectively filter out noise and extract weak fault 
features of the simulation and measured signal. Furthermore, the method is also compared with 
typical filtering methods, respectively. The result indicates that the proposed method demonstrates 
the optimum performance among the filtering methods for extracting fault feature of bearing. 
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