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Abstract. Condition monitoring and fault diagnosis play the most important role in industrial 
applications. The gearbox system is an essential component of mechanical system in fault 
identification and classification domains. In this paper, we propose a new technique which is based 
on the Fast-Kurtogram method and Self Organizing Map (SOM) neural network to automatically 
diagnose two localized gear tooth faults: a pitting and a crack. These faults could have very 
different diagnostics; however, the existing diagnostic techniques only indicate the presence of 
local tooth faults without being able to differentiate between a pitting and a crack. With the aim 
to automatically diagnose these two faults, a dynamic model of an electromechanical system 
which is a simple stage gearbox with and without defect driven by a three phase induction machine 
is proposed, which makes it possible to simulate the effect of pitting and crack faults on the 
induction stator current signal. The simulated motor current signal is then analyzed by using a 
Fast-Kurtogram method. Self-organizing map (SOM) neural network is subsequently used to 
develop an automatic diagnostic system. This method is suitable for differentiating between a 
pitting and a crack fault. 
Keywords: fast kurtogram, gear faults detection, MCSA, signal analysis, self-organizing map 
(SOM) neural network, fault classification. 

1. Introduction 

Gearbox based induction motors are one of the most popular mechanisms in industrial 
machinery. Their safety, reliability, efficiency and performance are highly considered by 
engineers. Although induction motors and their transmission mechanisms are reliable, they are 
subject to failures. Recent studies show that more than 40 % of gearbox-induction machine failures 
are related to bearings and gear tooth [1]. In this type of failure, they must be detected as soon as 
possible to avoid fatal machine breakdowns which may cause an increase in maintenance costs 
and leads to production loss. The gear crack tooth and gear pitting tooth are the most common 
gear faults. 

Nowadays, many methods have been developed for detection gear tooth pitting and gear tooth 
crack. The early detection and diagnosis of gear tooth pitting, spalls, and gear tooth cracks is 
becoming an important issue in modern machines operating with high speed and high-power 
environment. Many different methods to detect and diagnose localized gear faults have been 
proposed including: vibration analysis [2], acoustic emission analysis [3, 4] and motor current 
signal analysis (MCSA) [5-8]. The induction stator current signal-based fault diagnostic method 
is one of the most used ones for monitoring failure and the most effective non-intrusive method 
available.  

The approach of MSCA was developed in the 80s at the Oak Ridge National labs [9]. The 
MSCA method has been mostly applied for motor detection fault such as the bearings faults and 
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broken bar [10]. However, we take the most challenging task to detect fault in gear system related 
to the driven system. 

By using this technique based on the MCSA method (i.e. time, frequency and time-frequency), 
it is possible to monitor the health of an operating machine and to detect faults. Many researchers 
have developed methods to detect and locate faults in a gear tooth but, do not differentiate between 
a tooth crack and a tooth pitting, because tooth damage causes a reduction in gear tooth stiffness 
and the severity of tooth damage can be assessed by determining this reduction in stiffness. All 
these reduction in gear tooth stiffness have been studied by many authors [11-14] and these studies 
show the correlation between the severity of the damage and the reduction in stiffness, but 
unfortunately which give as the same characteristics of signature for each fault. For this reason, 
we have proposed our approach based on MCSA, spectral kurtosis and the SOM neural network 
for diagnosis, which provides valuable information on the presence and differentiate of gear tooth 
defects. 

However, a proposed signals processing method, namely Fast-Kurtogram method developed 
by Antoni and Randall [15], was demonstrated to be superior to wavelet analysis in many 
applications [16]. The Kurtogram is a fourth order spectral analysis tool recently introduced for 
detecting and characterizing transients in a signal. The paradigm relies on the assertion that each 
type of transient is associated with an optimal frequency/frequency resolution (dyad {𝑓, 𝐵𝑤}) 
which maximizes its kurtosis, and hence its detection. 

The self-organizing map (SOM) neural network was developed by Kohonen [17]. The SOM 
neural network learning without instructors, which has self-adaptive and self-learning 
characteristics [18].The SOM neural network has the unique ability to efficiently create spatially 
organized internal representations of several input data characteristics, providing a topology that 
preserves the high-dimensional spatial map in only two-dimensional spaces [19].The SOM feature 
can be used to separate neurons with small similarities, because the neurons with large similarities 
on the map are very close [20]. Therefore, the SOM neural network is applied for automatic gear 
defects identification and classification. 

With the aim of developing an automatic system which makes it possible to diagnose 
differentially these two faults, a dynamic model of an electromechanical system, which is a simple 
stage gearbox (with and without defect) driven by a three-phase induction machine, is proposed. 
After that, we are simulated the induction stator current signal of three working mode, the healthy 
mode, the gear crack tooth and the gear pitting tooth. Finally, Self-organizing map (SOM) neural 
network is used to develop an automatic diagnostic system. This method is suitable for 
differentiate automatically between a pitting tooth and a crack tooth fault. 

2. Electromechanical system modeling 

In this study, an electromechanical system was proposed, composed of an induction motor 
physically coupled with a new single stage gearbox . Furthermore, the induction motor was 
supposed to be perfectly symmetrical, and the squirrel cage can be considered as a winding in 
short circuit with the same number of phases as the stator. Hence, the electrical equations yield in 
the case of a Three-phase motor. In the other side, in the mechanical part, the major assumptions 
of the dynamic model are based upon are [21]: 

1) Neglect the resonances of the gear case and the shaft transverse resonances; 
2) Inertia and shaft mass are lumped at the bearings; 
3) Ignore the shaft torsional stiffness (because the flexible coupling torsional stiffness is very 

low) and inter-tooth friction; 
4) Gear teeth profiles are perfect involutes curves, with no geometrical, pitch or run out errors. 
The system is presented in order to simulate the effects of the tooth cracking, and tooth pitting 

on the dynamical behavior. The corresponding mathematical model has been developed: 
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൥𝑣௦௔𝑣௦௕𝑣௦௖൩ ൌ ൥𝑅௦ 0 00 𝑅௦ 00 0 𝑅௦൩ ൥𝑖௦௔𝑖௦௕𝑖௦௖൩ ൅ 𝑑𝑑𝑡 ൥𝜙௦௔𝜙௦௕𝜙௦௖൩, (1) 

൥𝑣௥௔𝑣௥௕𝑣௥௖ ൩ ൌ ൥𝑅௥ 0 00 𝑅௥ 00 0 𝑅௥൩ ൥𝑖௥௔𝑖௥௕𝑖௥௖൩ ൅ 𝑑𝑑𝑡 ൥𝜙௥௔𝜙௥௕𝜙௥௖൩ ൌ ൥000൩, (2) 

where ሾ𝑣௦௜ሿ; ሾ𝑣௥௜ሿ are the stator and rotor voltages, 𝑅௦ and ሾ𝜙௦௜ሿ ሺ𝑅௥; ሾ𝜙௥௜ሿሻ are, respectively, the 
stator (rotor) resistance and fluxes (see Fig. 1) 

 
Fig. 1. Asynchronous machine modeling (three-phase case) 

Using the inductance matrix ሾ𝐿ሺ𝑝𝜃௠ሻሿ, 𝑝 which represents the number of poles pairs and 𝜃௠ 
the mechanical angular position of the rotor, Eqs. (3), (4) can be rewritten as functions of the 
currents. 

The Concordia matrix combined with a rotation matrix under balanced conditions; this allows 
the reference frame to change from (𝑎𝑏𝑐) to (𝑑𝑞) and inversely: 

𝑇ௗ௤/௔௕௖ ൌ ඨ23 ൦cosሺ𝑝𝜃௠ሻ cos ൬𝑝𝜃௠ − 2𝜋3 ൰ cos ൬𝑝𝜃௠ ൅ 2𝜋3 ൰sinሺ𝑝𝜃௠ሻ sin ൬𝑝𝜃௠ − 2𝜋3 ൰ sin ൬𝑝𝜃௠ ൅ 2𝜋3 ൰൪. (3) 

The voltages ሾ𝑣௦௔,𝑣௦௕,𝑣௦௖ሿ்  and the stator currents ሾ𝑖௦௔, 𝑖௦௕, 𝑖௦௖ሿ்  are consistent with the 
physical values. Can be expressed the Park model of the induction driver in the rotor reference 
frame ሺ𝑑, 𝑞ሻ as follows: 𝑑𝑑𝑡 𝑖ௗ௦ ൌ −൬ 1𝜎𝑇௥ ൅ 𝑅௦𝜎𝐿௦൰ 𝑖ௗ௦ ൅ 1𝜎𝑇௥𝐿௦ 𝜙ௗ௦ ൅ 𝑝𝜔𝜎𝐿௦ 𝜙௤௦ ൅ 1𝜎𝐿௦ 𝑣ௗ௦, (4) 𝑑𝑑𝑡 𝑖௤௦ ൌ −൬ 1𝜎𝑇௥ ൅ 𝑅௦𝜎𝐿௦൰ 𝑖௤௦ − 𝑝𝜔𝜎𝐿௦ 𝜙ௗ௦ ൅ 1𝜎𝑇௥𝐿௦ 𝜙௤௦ ൅ 1𝜎𝐿௦ 𝑣௤௦, (5) 𝑑𝑑𝑡 𝜙ௗ௦ ൌ −𝑅௦𝑖ௗ௦ ൅ 𝑝𝜔𝜙௤௦, (6) 𝑑𝑑𝑡 𝜙௤௦ ൌ −𝑅௦𝑖௤௦ ൅ 𝑝𝜔𝜙ௗ௦, (7) 

where 𝑅௦ is the stator resistance, 𝐿௦ is the stator inductance, 𝜎 is the leakage factor, 𝑇௥ is the rotor 
time constant, 𝑝 which represent the number of poles pairs, and 𝜔 which represent the angular 
speed (i.e. mechanical speed). 
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For developing the electromagnetic torque equation, we need the electric power supplied to 
the rotor in the 𝑑𝑞  frame. In relation to the different electrical and magnetic parameters, the 
electromagnetic torque of the multi-polar induction motor is obtained, independently of the angle 
defining the 𝑑𝑞 frame as: 𝑇௘௠ = 𝑝൫𝑖௤௦𝜙ௗ௥ − 𝑖ௗ௦𝜙௤௥൯. (8) 𝐼௠𝜃ሷ௠ = 𝑇௘௠ − 𝑘௖ሺ𝜃௠ − 𝜃ଵሻ − 𝑐௖൫𝜃ሶ௠ − 𝜃ሶଵ൯, (9) 𝐼௣𝜃ሷଵ = 𝑘௖ሺ𝜃௠ − 𝜃ଵሻ + 𝑐௖൫𝜃ሶ௠ − 𝜃ሶଵ൯ − 𝑅௣𝑘௠௕ሺ𝑡ሻ൫𝑅௣𝜃ଵ − 𝑅௚𝜃ଶ − 𝑋ଶ + 𝑋ହ൯     −𝑅௣𝑐௠௕ሺ𝑡ሻ൫𝑅௣𝜃ሶଵ − 𝑅௚𝜃ሶଶ − 𝑋ሶଶ + 𝑋ሶହ൯,  (10) 𝐼௚𝜃ሷଶ = −𝑘௖(𝜃ଶ − 𝜃௥) − 𝑐௖(𝜃ሶଶ − 𝜃ሶ௥) − 𝑅௚𝑘௠௕(𝑡)(−𝑅௚𝜃ଶ + 𝑅௣𝜃ଵ + 𝑋ହ − 𝑋ଶ)     +𝑅௕ଶ𝑐௠௕(𝑡)൫𝑅௚𝜃ሶଵ − 𝑅௣𝜃ሶଶ − 𝑋ሶଶ + 𝑋ሶହ൯,  (11) 𝐼௥𝜃ሷ௥ = −𝑇௥ − 𝑘௖(𝜃ଶ − 𝜃௥) − 𝑐௖൫𝜃ሶଶ − 𝜃ሶ௥൯, (12) 𝑚𝑋ଵ.. = 𝐶௕𝑋ሶଵ + 𝑘௕𝑋ଵ + 𝑘௦(𝑋ଵ − 𝑋ଶ) = 0, (13) 𝑚௣𝑋ሶଶ = 𝑘௠௕(𝑡)(𝑅௣𝜃ଶ − 𝑅௚𝜃ଷ − 𝑋ଶ + 𝑋ହ) + 𝑐௠௕(𝑡)(𝑅௣𝜃ሶଶ − 𝑅௚𝜃ሶଷ − 𝑋ሶଶ + 𝑋ሶହ)     −𝑘௦(𝑋ଵ − 𝑋ଶ) − 𝑘௦(𝑋ଶ − 𝑋ଷ),  (14) 𝑚𝑋ሶଷ = 𝐶௕𝑋ሶଷ + 𝑘௕𝑋ଷ + 𝑘௦(𝑋ଷ − 𝑋ଶ) = 0, (15) 𝑚𝑋ሷସ = 𝐶௕𝑋ሶସ + 𝑘௕𝑋ସ + 𝑘௦(𝑋ସ − 𝑋ହ) = 0, (16) 𝑚௚𝑋ሷହ = 𝑘௠௕(𝑡)(𝑅௣𝜃ଶ − 𝑅௚𝜃ଷ − 𝑋ଶ + 𝑋ହ) + 𝑐௠௕(𝑡)(𝑅௣𝜃ሶଶ − 𝑅௚𝜃ሶଷ − 𝑋ሶଶ + 𝑋ሶହ)   −𝑘௦(𝑋ସ − 𝑋ହ) − 𝑘௦(𝑋ହ − 𝑋଺),  (17) 𝑚𝑋ሷ଺ = 𝐶௕𝑋ሶ଺ + 𝑘௕𝑋଺ + 𝑘௦(𝑋଺ − 𝑋ହ) = 0, (18) 

where 𝑘௠௕(𝑡) and 𝑐௠௕(𝑡) denote the gear mesh stiffness and damping functions, respectively. 
The inertias for the motor are 𝐼௠ , for the driven machine is 𝐼௥  , 𝐼௚ for the gear, and 𝐼௣ for the  
pinion. The transverse stiffness of input and output of shafts is 𝑘௦. The stiffness and damping 
elements of input and output Bearings are 𝑘௕ and 𝑐௕, respectively. The stiffness and damping of 
the flexible couplings between the motor-pinion and the gear-load of the machine are 𝑘௖ and 𝑐௖, 
respectively. 

 
a) 

 
b) 

Fig. 2. Diagram of the 16 degree of freedom DOF’s gear dynamic model 

3. Gearmesh stiffness modeling 

The gears are designed so that a pair of teeth starts contact before the previous pair of gears is 
completed. In general, a square waveform is adopted to express this variation; the maximum value 
represents the gear mesh stiffness of two pairs in contact; the minimum value represents single 
pair gear mesh stiffness (Fig. 3). 
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Fig. 3. Stiffness of healthy tooth gear mesh 𝑘(𝑡) which represent the Pair of Gears in the case of healthy gear tooth (no crack). As a 

consequence, gear mesh stiffness can be approximated by Eq. (7): 

𝑘(𝑡) = ቊ𝑘௠௔௫sin𝑇௘௡௚ ൑ 𝑡 ൑ (𝑛 + 𝜀 − 1)𝑇௘௡௚,𝑘௠௜௡sin(𝑛 + 𝜀 − 1)𝑇௘௡௚ ൑ 𝑡 ൑ (𝑛 + 1)𝑇௘௡௚, (19) 

where 𝜀 represents the contact ratio and 𝑛 is an integer representing the 𝑛th gear mesh period. 
Fourier development of 𝑘(𝑡) Eq. (14) yields: 

𝑘(𝑡) = 𝑘௠ + Δ𝑘𝜋 ෍ 1𝑖ஶ௜ୀଵ ቈsin൫2𝑖𝜋(𝜀 − 1)൯cos 2𝑖𝜋𝑡𝑇௘௡௚ + ቀ1 − cos൫2𝑖𝜋(𝜀 − 1)൯ቁ sin 2𝑖𝜋𝑡𝑇௘௡௚቉, (20) 

with: 𝑘௠ = 𝑘௠௔௫(𝜀 − 1) + (2 − 𝜀)𝑘௠௜௡, and Δ𝑘 = 𝑘௠௔௫ − 𝑘௠௜௡. 
By introducing the gear stiffness ratio and using some geometrical and material properties, the 

maximum and minimum value of the gear stiffness can be calculated: 𝑘௠௔௫ = 14 ൈ 10ଽ 𝐸2.1 ൈ 10ଵଵ 𝑏𝑠𝑘௠௜௡ = 𝑟𝑘௠௔௫.  𝐸 = 2.068×1011 N/m² which represent the mean value of Young’s modulus, 𝑏 = 0.16 m which 
represent the effective width of meshing gears, 𝑠 = 0.47 is the shape factor and 𝑟 = 0.5476 which 
represent the stiffness ratio. 

3.1. Gear tooth pitting and gear tooth crack modeling  

It has been proved, that the failure of a gear tooth will lead to changes in amplitude and phase 
in the stiffness of the gear mesh [22, 23]. The variations induced by tooth failure in the stiffness 
of the gears used for the simulations are given in Fig. 4. 

 
a) 

 
b) 

Fig. 4. Stiffness gear mesh in the case of: a) tooth pitting, b) tooth cracking 
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The normal functioning of the stiffness gear mesh is configured by 0 % phase change and 0 % 
amplitude reduction. The variation of amplitude and phase of gear mesh stiffness applied as a 
reference when the faults are introduced. After that, two faults have been simulated: tooth pitting 
and tooth crack. 

The change of the amplitude modulation of the gear meshes signal lead to the defect. 
Furthermore, in case of tooth surface pitting, both magnitude and phase change from their 
reference values, as shown in Fig. 4(a). By contrast, in case of tooth cracking only magnitude of 
the mesh stiffness is changed as shown in Fig. 4(b).  

In this approach, the effects of change in magnitude and phase of the mesh stiffness at one 
particular tooth in the pinion were evaluated in order to simulate the effects of tooth cracking and 
tooth surface pitting. Obviously, the change in the meshing stiffness will have consequences on 
the system dynamic behavior. In other words, as a result of such changes, modulation of the 
gearmesh stiffness is expected which will begin an exciting force. Hence the system frequency 
response will be changed. The new stiffness gear mesh 𝑘ௗ(𝑡) resulting from the defect modeling: 𝑘ௗ(𝑡) = 𝑘(𝑡)൫1 − 𝑑(𝑡)൯, (21) 

where 𝑑(𝑡) which represent the modulating function. 

4. Numerical simulations of the electromechanical system 

For simulation in Matlab, it is necessary to write the model of the electromechanical system in 
state space representation. In this order, each second-order differential equation is written in the 
form of two first order differential equations. Thus, 14 nonlinear first order differential equations 
with time varying coefficients are obtained. These equations are written such that each equation 
contains the time derivative of only one variable. 

 
Fig. 5. Flowchart of the proposed method 

The dynamic response of the electromechanical system is computed to look for the different 
statoric current signatures obtained from each introduced fault. We obtained the electrical motor 
stator current in time domain, and the spectrum is obtained by the Fast Fourier transform. 

A healthy gear is modeled by 0 % phase change and 0 % amplitude reduction in the gear mesh 
stiffness. This report will be used as a reference for subsequent simulations where faults are 
introduced. 

From Fig. 6(b), we show that the spectrum of the stator current only presents a fundamental 
component at frequency 𝑓௦ = 50 Hz and tow frequency component at frequency 𝑓௘௡௚ − 𝑓௦  and 𝑓௘௡௚ + 𝑓௦  (where 𝑓௘௡௚  is the mesh frequency) which are the result of modulation of the 
fundamental frequency by mesh frequency. 
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Table 1. Parameters of the electromechanical system 
Moments of inertia for electric motor (𝐼௠) 0.023976 kg·m2 
Moments of inertia for pinion (𝐼௣) 4.3659e-4 kg·m2 
Moments of inertia for output gear (𝐼௚) 8.3602e-3 kg·m2 
Moments of inertia for driven machine (𝐼௥) 0.01015 kg·m2 
Mass of the bearing and part of the shaft (𝑚) 0.5134 kg 
Mass of the input pinion (𝑚௣) 0.96 kg 
Mass of the gear (𝑚௚) 2.88 kg 
Output torque from load (𝑇௘௠) 25 Nm 
Torsional stiffness of the flexible coupling (𝑘௖) 4.4e4 Nm/rad 
Viscous damping coefficient of flexible coupling (𝑐௖) 5e5 Nm·s/rad 
Base circle radius of pinion (𝑅௣) 0.0301 m 
Base circle radius of output gear (𝑅௚) 0.0761 m 
Radial stiffness of the bearing (𝐾௕) 6.56e7 N/m 
Viscous damping coefficient of the bearing (𝐶௕) 1.8e5 N·s/m 
Shaft transverse stiffness (𝐾௦) 7.42e7 N/m 
Number of teeth on pinion and gear 19/48 
Stator resistance (𝑅௦) 2.68 𝛺 
Stator inductance (𝐿௦) 0.605 H 
Leakage factor (𝜎) 0.049 
Rotor time constant (𝑇௥) 0.219 
Number of poles pair (𝑝) 1 
AC supply 310V, 50 Hz 

 

 
a) 

 
b) 

Fig. 6. Simulated results: a) stator current in the time domain, b) stator current spectrum 

4.1. Effect of pitting tooth and crack tooth in stator current signal 

A pitting fault is simulated on the pinion by an amplitude reduction and a phase change of gear 
mesh stiffness of 2.5 %. The second simulation is done with the pinion tooth having a crack 
modeled by a 2.5 % amplitude loss. Obtained spectrums for these two cases are shown in Fig. 7. 

From these spectrums we can observe that in the case of these two defects (pitting or crack) 
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new frequencies components at frequencies 𝑓௦ + 𝑛𝑓௥ଵ are highlighted. These are the results of the 
modulation of the fundamental component 𝑓௦ by the rotational frequency of the defective tooth 𝑓௥ଵ.  

On the other hand the comparison of these two spectrums: the spectrum obtained in the 
presence of pitting fault Fig. 7(a) and that obtained in the presence of cracked tooth Fig. 7(b) failed 
to differentiate these two defects. To overcome this problem we propose in the next section to use 
the Fast-Kurtogram method. 

 
a) 

 
b) 

Fig. 7. Electrical motor stator current spectrum: a) pitting tooth fault, b) tooth crack fault 

4.2. Fast kurtogram method for differentiation of the pitting fault from the tooth cracks 

Although conventional method gives as good indication for the presence of the fault 
frequencies, existing diagnostic techniques do not differentiate between a crack and a pitting fault. 
The Kurtogram is a fourth-order spectral analysis tool recently introduced for detecting and 
characterizing transients in a signal. The paradigm depends on the assertion that each type of 
transient is correlated with an optimal dyad {𝑓, 𝐵𝑤} in the Kurtogram. In our case, transients 
created in stator current signal by a pitting fault differ from transients created by a tooth crack 
fault in nature because the effect in the meshing gear is different, and therefore different associated 
dyad in the Kurtogram.  

The spectral kurtosis method uses kurtosis as a measure of the distance between an arbitrary 
random process and a Gaussian process in order to detect the existence of transients in a signal. 
The SK value of the signal is determined by measuring the kurtosis of each frequency component 
contained in the signal.  

SK represents the frequency-dependent transient characteristics of the signal. SK can identify 
not only the transient components in the signal, but also their locations in the frequency domain, 
and thus overcome the drawbacks of power spectral density for the detection and characterization 
of signal transients. The SK of a signal 𝑥(𝑡) is defined as the normalized fourth order spectral 
moment as follows: 

𝐾௫(𝑡) = ⟨𝐻ସ(𝑡, 𝑓)⟩⟨𝐻ଶ(𝑡, 𝑓)⟩ଶ − 2, (22) 

I [
 d

B]
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where <. >  stands for the time averaging operator, and 𝐻(𝑡, 𝑓)  represent the time/frequency 
envelope of signal 𝑥(𝑡). 𝐻(𝑡, 𝑓) can be estimated by the short-time Fourier transform (STFT): 

𝐻(𝑡, 𝑓) = ෍ 𝑊(𝑛 − 𝑡). 𝑥(𝑛)𝑒ି௝ଶగ௙௡௧ାேೈିଵ௡ୀ௧ , (23) 

where 𝑊(𝑡) is the analysis window with length Nw. SK is expected to be very sensitive to 
non-stationary transients in a signal and to indicate exactly at which frequencies those transients 
occur. This technique was investigated in detail by Antoni and led to the concept of the 
“Kurtogram”, which is a diagram indicating the optimum center frequency and bandwidth 
combination of a band pass filter to maximize the kurtosis of the filter output. A more detail 
explanation of Kurtogram. 

Fig. 8 show the Kurtogram of the induction stator current for the healthy gear. We show a 
maximum value of the spectral kurtosis (𝐾௠௔௫ = 0.1) at dyad (819.1875 Hz / 4505.5313 Hz). 

 
Fig. 8. Fast Kurtogram of the electrical motor stator current in the healthy mode 

Kurtogram’s of the stator current in the presence of crack and faults pitting are shown in Fig. 9 
and table 2, Kurtogram’s have an abnormally high value of the Spectral Kurtosis: (𝐾௠௔௫ = 1.3) at 
dyad (𝐵𝑤 = 136.5313 Hz / 𝑓௖ = 4437.2656 Hz) for tooth crack fault and (𝐾௠௔௫ = 0.6) at dyad 
(𝐵𝑤 = 136.5313Hz / 𝑓௖ = 6075.6406 Hz) for tooth pitting fault. It clearly reveals the occurrence 
of abnormal shocks in the signal. Note also that in the case of pitting fault the maximum value of 
spectral kurtosis is located at dyad (𝐵𝑤 = 136.5313 Hz / 𝑓௖ = 6075.6406 Hz), by against in the 
case of a crack fault the maximum value of spectral kurtosis is located at dyad  
(𝐵𝑤 = 136.5313 Hz / 𝑓௖ = 4437.2656 Hz). 

 
a) 

 
b) 

Fig. 9. Fast Kurtogram of the stator current of the gear tooth faults: a) pitting fault, b) crack fault 
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To study the relation between tooth gear degradation and the maximum value of Spectral 
Kurtosis and its location in the kurtogram. Simulate the amplitude reduction from 0 % to 10 %. 

 
a) 

 
b) 

 
c) 

Fig. 10. Fast Kurtogram of stator current for different crack fault evolution: a) 3 %, b) 3.5 %, c) 4 % 

 
a) 

 
b) 

 
c) 

Fig. 11. Fast kurtogram of stator current for different pitting fault evolution: a) 3 %, b) 3.5 %, c) 4 % 

Clearly, from Figs. 10, 11 and table 2, that in the case of pitting fault, the maximum value of 
spectral kurtosis is located at dyad (𝐵𝑤 = 136.5313 Hz / 𝑓𝑐 = 6075.6406 Hz), in the other hand, 
in the case of a crack fault the maximum value of spectral kurtosis is located at dyad 
(𝐵𝑤 = 136.5313 Hz / 𝑓𝑐 = 4437.2656 Hz) and this whatever the level of the defect is. It can also 
be observed that the maximum value of spectral Kurtosis (𝐾௠௔௫) increases with increasing fault 
severity.  

Table 2. Comparison results for pitting tooth and crack tooth evaluation 
Fig. 9. Gear tooth faults Fig. 10. Crack fault evolution Fig. 11. Pitting fault evolution 

a) Pitting fault b) Crack fault 3 % 
𝐾௠௔௫ =1.4 

3 % 
𝐾௠௔௫ = 0.8 𝐵𝑤 = 136.5313 Hz 𝐵𝑤 = 136.5313 Hz 𝑓௖ = 4437.2656 Hz 𝑓௖ = 6075.6406 Hz 𝐾௠௔௫ = 0.6 𝐾௠௔௫ = 1.3 3.5 % 

𝐾௠௔௫ = 1.5 
3.5 % 

𝐾௠௔௫ = 0.9 𝐵𝑤 = 136.5313 Hz 𝐵𝑤 = 136.5313 Hz 𝐵𝑤 = 136.5313 Hz 𝐵𝑤 = 136.5313 Hz 𝑓௖ = 4437.2656 Hz 𝑓௖ = 6075.6406 Hz 

4 % 
𝐾௠௔௫ = 1.6 

4 % 
𝐾௠௔௫ = 1.1 𝑓௖ = 6075.6406 Hz 𝑓௖ = 4437.2656 Hz 𝐵𝑤 = 136.5313 Hz 𝐵𝑤 = 136.5313 Hz 𝑓௖ = 4437.2656 Hz 𝑓௖ = 6075.6406 Hz 

We observed that the amplitude of 𝐾௠௔௫  increases with the increase of the defect. This 
observation can be used to determine a threshold that can decide when to stop the process before 
the severity of failure causes serious or dramatic problems, which are very different from those 
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created by a crack fault in nature because the effects in the mesh gears are different. That’s why 
we have noticed that these faults are associated with different dyad in the Kurtogram and therefore 
they are characterized by 𝐾௠௔௫ and 𝑓௖. In our study, these parameters are used as a feature vectors 
to the classifier in order to identify the gear status. Table 3 gives the 𝐾௠௔௫ and 𝑓௖ values for normal 
condition, tooth crack and tooth pitting faults. 

 
Fig. 12. Evolution of 𝐾௠௔௫ as function of the defect 

Table 3. Fault feature vectors 𝐾௠௔௫ 𝑓௖ Operating stat 
[0.1-0.4] 4505.5313 Hz Healthy gear 
[0.8-2.1] 6075.6406 Hz Faulty gear: tooth crack 
[0.6-1.8] 4437.2656Hz Faulty gear: tooth pitting 

5. Automatic gearbox diagnosis based on SOM neural network 

The use of a spectral kurtosis (SK) is very popular for gearbox condition monitoring. The 
popularity is due to the advantageous properties of this method and availability of computer 
software. However, we identified and classified the faults after extracting the feature information 
using the Kurtogram. Thus, the intelligent classification methods based on artificial intelligence 
such as genetic algorithms, fuzzy logic, Self-organizing map neural networks (SOM), were widely 
used.  

The SOM neural network was introduced by Teuvo Kohonen. This neural network learning 
with no instructors which had self-adaptive and self-learning features, has special property of 
effectively creating spatially organized internal representation of various input data features and 
providing a topology preserving mapping from high dimensional space into usually 
two-dimensional space. Neurons with large similarity on the map are so close that neurons with 
small similarity can be separated. Consequently, SOM network is used in this research. Two layers 
exist in the SOM Network, input layer and output layer. (As shown in Fig. 13). 

 
Fig. 13. SOM neural network structural 
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In the SOM network, the input layer has two neurons. 6×6 matrix is the output of the 
competitive layer. The network training parameters were set as follows: The initial learning rate 
was 0.3. A Gaussian function was selected as the neighborhood function and the initial 
neighborhood width was 2. The total number of learning iterations is set to 200. The topology 
structure of SOM neural network is shown in Fig. 14. 

 
Fig. 14. Classification map for parameters extracted using Kurtogram analysis 

From the Fig. 14; we can see that tooth crack samples are segmented into the crack class, while 
the pitting fault are segmented into the pitting class. 

In order to demonstrate the effectiveness of the accuracy of the classification effect, so we 
need to take the challenge with other classification techniques such as Back Propagation Neural 
Network, Elman Neural Network, Principal Componant Analysis, Singular Value Decomposition, 
Lineaire Discriminant Analysis, Local Preserving Projection and Local Normalization are applied 
in classification [24, 25]. Comparison results are shown in the Table below, which represent seven 
cases of classification accuracy. 

As shown in the Table 4, the LDA, LPP, LN and ENN have classification accuracies higher 
than 0.99 over than BP neural network, PCA and SVD. In general, the obtained feature vectors 
have good separability, but the SOM neural network has an advantage over other techniques in 
classification accuracy; because the SOM facilitates the visual comprehension of the fault. The 
graph can be designed in different colors and the existence of a clear boundary between each fault. 
This gives confirmatory evidence about the effectiveness of the proposed feature extraction 
method. 

Table 4. Comparison of classification accuracy 
Methods Test samples Classification accuracy % 
Kurt-BP 160 0.9892 

Kurt-ENN 160 0.9907 
kurt-PCA 160 0.9753 
Kurt-SVD 160 0.9824 
kurt-LDA 160 0.9989 
Kurt-LPP 160 0.9967 
Kurt-LN 160 0.9921 

6. Conclusions 

In this study, a dynamic model of an electromechanical system was developed to examine the 
stator current of the electric motor in the presence of gear faults as pitting tooth and tooth cracks. 
We modeled these two faults by an amplitude reduction and phase change in gear stiffness. 
Frequency response was calculated in case of healthy gear and displayed the dominance of the 
fundamental frequency and frequency of gear mesh. The simulations including the two types of 
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tooth defects showed the appearance of new components at different frequencies in the electrical 
motor stator current spectrum.  

The comparison of the obtained spectrums failed to differentiate these two defects. However, 
the use of the Fast-Kurtogram method and SOM neural network allowed differential diagnosis of 
gear tooth cracks from tooth pitting such that each defect is the specific dyad, which maximizes 
the value of spectral kurtosis. Such information is very useful in automatic condition-monitoring 
system and can differentiate defects during an early stage of failure in the spur gear set.  

This result suggests that Fast-Kurtogram analysis and SOM neural network could be a useful 
tool for automatically diagnosing gear tooth cracks from tooth pitting by stator current 
measurements from the actual spur gear systems. 
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