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Abstract. Accurate and efficient estimation of tension in hangers is very important since hangers 
are the vital component of suspension bridges. But for hangers with shock absorber, the existing 
tension estimation methods are not suitable because they are based on a single cable model and 
cannot consider the effect of shock absorbers. To this end, the effect of the shock absorber is taken 
into account by using the degree-of-freedom condensation method, and a finite element method 
for tension estimation of hangers with shock absorber is proposed in this paper. Finally, the 
proposed method is applied in the Aizhai Bridge and Huangpu Pearl River Bridge to estimate the 
tension of hangers with shock absorber, the tested results show that as compared with other 
methods, the proposed method is a more accurate and convenient method for engineering 
application. 
Keywords: hanger, shock absorber, tension estimation, finite element method, freedom 
condensation method. 

1. Introduction 

Cable supported bridges are widely used nowadays since their advantage consists in the ability 
to cross large spans. In the range from 400 m to 2000 m, nearly 90 % of the bridges adopt cable 
supported systems [1]. Suspension bridge is a kind of cable supported bridges, which consists of 
two main cables, several vertical hangers and a main girder. Hangers are the critical components 
in suspension bridges to transfer load from the main girder to the main cables and towers. The 
cable tension of hangers are very important both in the stage of construction and maintenance 
[2-4]. Any changes of hanger forces will lead to the condition changes of the structure. So, it is 
desirable to estimate the tensions in hangers accurately both in the construction stage and in the 
maintenance stage. 

In general, there are two categories of cable tension estimation method, one is the direct 
method; the other is the indirect method. The direct method consists in measuring the cable force 
directly by load transducer which should be installed at the cable anchorage during construction. 
This method can determine the cable tension directly and accurately, but the cost is very  
expensive. The indirect method consists in measuring other parameters rather than force and using 
mechanical models to calculate the cable tensions from the other tested parameters. Frequency 
and magnetic flux of cable are the commonly used two indirect parameters. The method using the 
magnetic flux to calculate the cable tension is called as the magnetoelastic method. It is a new 
recently developed approach, and its cost is very expensive [5, 6]. The method using the frequency 
to calculate the cable tension is called as the frequency-based method. Since the frequency test is 
a very mature technology with easy operation and low cost, the frequency-based method becomes 
the most commonly used method in practical applications [7-12]. 

Relationship between the frequency and cable tension is the key factor in the frequency-based 
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method which determines the accuracy of estimation result. There are many formulas to calculate 
the cable force using the natural frequencies of the cable. The first kind is the taut string theory 
formula [13], it assumes that cable is an ideal string without bending stiffness which may lead to 
errors because the bending stiffness of the cable is considerable [14]. The second kind is the beam 
theory formula which is derived from the vibration equation of an axially loaded beam with simple 
supports [15]. This formula has considered the bending stiffness of the cable and the results are 
more accurate than the taut string theory formula. But it cannot be used to calculate the tension in 
cables with complicated boundaries other than simple supports. The third kind is called as practical 
formulas, which are fitting equations by using numerical methods such as the finite element 
method. There have been many practical formulas proposed, such as Zui et al. [16], Mehrabi et al. 
[17], Ren et al. [18], Fang et al. [19], Huang et al. [20] and so on. 

However, most of the aforementioned formulas assume that the cable is restrained only at the 
ends, so they are not suitable to cables with intermediate supports [21]. In a suspension bridge, 
four hangers at the same lifting point are normally connected by a shock absorber at the middle of 
the cable in order to control the hanger vibration (see in Fig. 1). Therefore, due to the effect of the 
shock absorber, the conventional frequency-based formulae for cable force estimation are 
inapplicable [22]. In order to solve this problem, a tension estimation method of hangers with 
shock absorber in suspension bridge by using the finite element method is proposed in this paper. 

 
Fig. 1. Sketch of shock absorber 

2. Element introduction 

Fig. 2 presents a model for a spatial beam element with 2 nodes and 6 degrees of freedom 
(DOFs) at each node. The local coordinate is 𝑋𝑌𝑍 with 𝑋 denoting the axial direction of the cable 
and 𝑌, 𝑍 axes denoting the transverse directions of the cable. The length and density of element 
are 𝑙 and 𝜌, respectively. 

 
Fig. 2. Nodal displacements of the element 

As shown in Fig. 2, the nodal displacement vector of the element is: 𝐝 = ൛𝑢 𝑢 𝑣 𝑣′ 𝑣 𝑣′ 𝑤 𝑤′ 𝑤 𝑤′ 𝑢′ 𝑢′ൟ். (1) 

Depending on the vibrational properties, the nodal displacements are generalized to four 
sub-vectors as follows: 
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𝐮∗ = {𝑢 𝑢}்,   𝐯∗ = {𝑣 𝑣ᇱ 𝑣 𝑣ᇱ}், 𝐰∗ = {𝑤 𝑤′ 𝑤 𝑤′}்,   𝐮′∗ = {𝑢′ 𝑢′}். (2) 

In which 𝐮∗ is the axial vibration vector, 𝐯∗ and 𝐰∗ are the transverse vibration vectors along 𝑌 and 𝑍 axes, respectively, 𝐮′∗ is the torsional vibration vector. Correspondingly, the stiffness and 
mass matrices are also divided into different kinds of sub-matrices. 

2.1. Matrices of axial stiffness and mass 

The general solution of the axial vibration is [23]: 𝑢(𝑥, 𝑡) = 𝑢(𝑥)cos(𝜔𝑡 + 𝜑), (3) 

where 𝑢(𝑥) is the function of displacement, 𝜔 is the frequency of vibration, 𝜑 is the phase angle. 
Assume that the interpolation function of axial displacement is the linear function as follows: 𝑢(𝑥) = 𝐴𝑥 + 𝐵, (4) 

where 𝐴 and 𝐵 are undetermined coefficients. 
On the other hand, the element displacement can be calculated by multiplying the interpolation 

function and the nodal displacements vectors, the equations are as follows: 𝑢(𝑥) = 𝐍௨ ቄ𝑢𝑢ቅ = 𝐍௨𝐮∗, (5) 

where 𝐍௨ is called as the shape function of the axial displacement and expressed as: 𝐍௨ = ቂ1 − 𝑥𝑙 𝑥𝑙 ቃ. (6) 

By using the general derivation method proposed by literatures [24], the stiffness and mass 
matrices can be derived as follows: 𝐊௨ = ൬𝐸𝐴𝑙 ൰ ቀ 1 −1−1 1 ቁ, (7) 𝐌௨ = ൬𝜌𝐴𝑙6 ൰ ቀ2 11 2ቁ. (8) 

2.2. Matrices of bending stiffness and mass 

There are two transverse axes, 𝑌 and 𝑍. According to the assumptions given in Section 2.1, 
the displacements of 𝑌 direction are assumed to be independent of those in the 𝑍 direction. And 
the cross-section of the cable is a totally symmetrical section (circle shape) with isotropic material, 
so the stiffness and mass matrices along 𝑌 and 𝑍 axes will be the same. Only the derivation of the 
stiffness and mass matrices along the 𝑌 axis are presented. 

The equilibrium equation of a cable subjected to a tension can be written as: 

𝐸𝐼 𝑑ସ𝑣(𝑥)𝑑𝑥ସ − 𝑇 𝑑ଶ𝑣(𝑥)𝑑𝑥ଶ = 0, (9) 

where 𝐸 is the Young’s modulus of the material, 𝐼 is the second moment of area, 𝑣(𝑥) is the 
transverse displacement, and 𝑇 is the tension. The general solution of Eq. (9) is: 𝑣(𝑥) = 𝐴sinh(𝛼𝑥) + 𝐵cosh(𝛼𝑥) + 𝐶𝑥 + 𝐷, (10) 
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where, 𝐴, 𝐵, 𝐶, 𝐷 are undetermined coefficients, and 𝛼 = ඥ𝑇/𝐸𝐼 [16]. 
For the transverse vibrations, the element displacement can be calculated by multiplying the 

interpolation function and the nodal displacements vectors as follows: 𝑣(𝑥) = 𝐍௩{𝑣 𝑣′ 𝑣 𝑣′}் = 𝐍௩𝐯∗, (11) 

where 𝐍௩ is called shape function of the transverse displacement and expressed as: 

𝐍௩ = [sh(𝑎𝑥) ch(𝑎𝑥) 𝑥 1] ൦ 0 1 0 1𝛼 0 1 0sh(𝛼𝑙) ch(𝛼𝑙) 𝑙 1𝛼ch(𝛼𝑙) 𝛼sh(𝛼𝑙) 1 0൪ିଵ = [𝑁௩ଵ 𝑁௩ଶ 𝑁௩ଷ 𝑁௩ସ], (12) 

where: 

𝑁௩ଵ = −ch(𝛼𝑥 − 𝛼𝑙) − 𝛼𝑥 ⋅ sh(𝛼𝑙) + 𝛼𝑙 ⋅ sh(𝛼𝑙) − ch(𝛼𝑙) + ch(𝛼𝑥) + 12 − 2ch(𝛼𝑙) + 𝛼𝑙 ⋅ sh(𝛼𝑙) , (13) 

𝑁௩ଶ = ൬ −sh(𝛼𝑥 − 𝛼𝑙) − 𝛼𝑙ch(𝛼𝑥 − 𝛼𝑙) − sh(𝛼𝑙)+sh(𝛼𝑥) + 𝛼𝑙 ⋅ ch(𝛼𝑙) − 𝛼𝑥 ⋅ ch(𝛼𝑙) + 𝛼𝑥൰𝛼 ⋅ [2 − 2ch(𝛼𝑙) + 𝛼𝑙 ⋅ sh(𝛼𝑙)] , (14) 

𝑁௩ଷ = ch(𝛼𝑥 − 𝛼𝑙) + 𝛼𝑥 ⋅ sh(𝛼𝑙) − ch(𝛼𝑥) − ch(𝛼𝑙) + 12 − 2ch(𝛼𝑙) + 𝛼𝑙 ⋅ sh(𝛼𝑙) , (15) 𝑁௩ସ = −sh(𝛼𝑥 − 𝛼𝑙) − sh(𝛼𝑙) − sh(𝛼𝑥) − 𝛼𝑙 ⋅ ch(𝛼𝑥) + 𝛼𝑥 ⋅ ch(𝛼𝑙) + 𝛼𝑙 − 𝛼𝑥𝛼 ⋅ [2 − 2ch(𝛼𝑙) + 𝛼𝑙 ⋅ sh(𝛼𝑙)] . (16) 

In the above formulas, ‘𝑠ℎ’ is an abbreviation for the hyperbolic sine function ‘sinℎ’ and ‘𝑐ℎ’ 
is an abbreviation for the hyperbolic cosine function ‘cosℎ’. 

The bending strain energy caused by the bending deformation is [25]: 

Π௩ଵ = න 𝐸𝐼2
 [𝑣′′(𝑥)]ଶ𝑑𝑥. (17) 

The potential energy caused by the cable tension is: 

Π௩ଶ = T2 න [𝑣′(𝑥)
 ]ଶ𝑑𝑥. (18) 

Adding Eqs. (17) and (18), the total potential energy of the element caused by transverse 
bending is: 

Π௩ = Π௩ଵ + Π௩ଶ = 𝐸𝐼2 න [𝑣′′(𝑥)]ଶ
 𝑑𝑥 + 𝑇2 න [𝑣ᇱ(𝑥)]ଶ

 𝑑𝑥. (19) 

By using variational principle, the element stiffness matrix is obtained as: 

𝐊௩ = ⎣⎢⎢⎢
⎡ 𝐾௩ଵଵ 𝐾௩ଵଶ 𝐾௩ଵଷ 𝐾௩ଵସ𝐾௩ଶଶ 𝐾௩ଶଷ 𝐾௩ଶସ𝐾௩ଷଷ 𝐾௩ଷସ𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝐾௩ସସ⎦⎥⎥⎥

⎤, (20) 
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where: 

𝐾௩ = 𝐸𝐼 න 𝑁௩′′𝑁௩′′
 𝑑𝑥+𝑇 න 𝑁௩′𝑁௩′

 𝑑𝑥, (𝑖, 𝑗 = 1,2,3,4). (21) 

The potential energy caused by the inertia force is: 

ෑ = න −𝜌𝐴𝑣ሷ
௩ (𝑥, 𝑡)𝑣(𝑥)𝑑𝑥. (22) 

In which 𝑣ሷ(𝑥, 𝑡) = 𝑑ଶ( ) 𝑑ଶ⁄ 𝑡. 
By using variational principle, the element mass matrix is obtained as: 

𝐌௩ = ⎣⎢⎢⎢
⎡ 𝑀௩ଵଵ 𝑀௩ଵଶ 𝑀௩ଵଷ 𝑀௩ଵସ𝑀௩ଶଶ 𝑀௩ଶଷ 𝑀௩ଶସ𝑀௩ଷଷ 𝑀௩ଷସ𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑀௩ସସ⎦⎥⎥⎥

⎤, (23) 

where: 

𝑀௩ = 𝜌𝐴 න 𝑁௩𝑁௩
 𝑑𝑥,   (𝑖, 𝑗 = 1,2,3,4). (24) 

In a similar way, the element stiffness matrix and mass matrix along the 𝑍  axis can be  
obtained as: 

𝐊௪ = ⎣⎢⎢⎢
⎡ 𝐾௪ଵଵ 𝐾௪ଵଶ 𝐾௪ଵଷ 𝐾௪ଵସ𝐾௪ଶଶ 𝐾௪ଶଷ 𝐾௪ଶସ𝐾௪ଷଷ 𝐾௪ଷସ𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝐾௪ସସ⎦⎥⎥⎥

⎤, (25) 

𝐌௪ = ⎣⎢⎢⎢
⎡ 𝑀௪ଵଵ 𝑀௪ଵଶ 𝑀௪ଵଷ 𝑀௪ଵସ𝑀௪ଶଶ 𝑀௪ଶଷ 𝑀௪ଶସ𝑀௪ଷଷ 𝑀௪ଷସ𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑀௪ସସ⎦⎥⎥⎥

⎤, (26) 

where: 

𝐾௪ = 𝐸𝐼 න 𝑁௩ᇱᇱேೡೕᇱᇱ
 𝑑𝑥+𝑇 න 𝑁௩′𝑁௩′

 𝑑𝑥, (𝑖, 𝑗 = 1,2,3,4), 𝑀௪ = 𝜌𝐴 න 𝑁௩𝑁௩
 𝑑𝑥, (𝑖, 𝑗 = 1,2,3,4).  

2.3. Matrices of torsional stiffness and mass  

Assume that the interpolation function of torsional displacement is a linear function which is 
the same as the axial displacement, using the derivation method proposed in Section 2.1, the 
matrices of torsional stiffness and mass for the element can be obtained as: 𝐊௨ᇱ = ൬𝐺𝐽𝑙 ൰ ቀ 1 −1−1 1 ቁ, (27) 
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𝐌௨ᇱ = ൬𝜌𝐼𝑙6 ൰ ቀ2 11 2ቁ, (28) 

where 𝐺, 𝐽, 𝐼 are the shear modulus, torsional moment of inertia and polar moment of inertia, 
respectively. 

2.4. Assembling of element stiffness and mass matrices 

The vector of nodal displacement for the beam element with 12 DOFs is: 𝐝 = {𝑢∗ 𝑣∗ 𝑤∗ 𝑢′∗}் = ൛𝑢 𝑢 𝑣 𝑣′ 𝑣 𝑣′ 𝑤 𝑤′ 𝑤 𝑤′ 𝑢′ 𝑢′ൟ். (29)

So, the matrices of stiffness and mass for the element can be described as follows: 

𝐊 = ൦𝐊௨ 0 0 00 𝐊௩ 0 00 0 𝐊௪ 00 0 0 𝐊௨ᇱ൪, (30) 

𝐌 = ൦𝐌௨ 0 0 00 𝐌௩ 0 00 0 𝐌௪ 00 0 0 𝐌௨ᇱ൪, (31) 

where the detailed expressions of 𝐊௨, 𝐊௩, 𝐊௪, 𝐊௨ᇱ are given in Eqs. (7), (20), (25) and (27). And 
the detailed expressions of 𝐌௨, 𝐌௩, 𝐌௪, 𝐌௨ᇱ are given in Eqs. (8), (23), (26) and (28). 

3. Consideration method of shock absorber 

3.1. Simplified mechanical model 

A system consisted of 4 hangers, 4 anchor heads, 2 cable clamps and 1 shock absorber is shown 
in Fig. 3. These 4 hangers are connected by a shock absorber at the middle and suspended on the 
main cable through cable clamps at the upper ends and connected to the stiffening girder through 
anchor heads at the lower ends. Since the cable clamps and anchor heads have strong fixation 
capacity, the boundary conditions of the hangers can be considered as fixed boundaries at both 
ends. And since the stiffness of the shock absorber is much greater than that of the hangers, it can 
be modeled as a rigid plate which plays the role of restraint to ensure the vibration compatibility 
of the 4 hangers in the system. According to the above assumption, the mechanical model of the 
hanger system can be simplified as show in Fig. 4. 

3.2. Condensation method of dofs for shock absorber 

The shock absorber can be regarded as a rigid body since its in-plane stiffness is much larger 
than that of the hangers. According to the deformation compatibility conditions, the finite element 
model of the hanger system described in Fig. 4 can be simplified. The finite element model shown 
in Fig. 5 is taken as an example to describe the condensation method of DOFs for the shock 
absorber. Without loss of generality, we assume that the four nodes 𝑖, 𝑗, k, 𝑙 in Fig. 5 all have six 
DOFs and the displacement vector of arbitrary node 𝑛 (𝑛 = 𝑖, 𝑗, 𝑘, 𝑙) can be written as: 𝛅௫ = {𝑢௫, 𝑣௫, 𝑤௫, 𝑢′௫, 𝑣′௫, 𝑤′௫}். (32) 
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Fig. 3. Sketch of hanger system 

 
Fig. 4. Mechanical model of hanger system 

 
Fig. 5. Nodal displacements of shock absorber element 

The nodal displacements, geometric dimensions and local coordinates of the shock absorber 
element are shown in Fig. 5. The centroid of the shock absorber is denoted as “𝑜” and it also has 
six DOFs as follows: 𝛅 = {𝑢, 𝑣, 𝑤, 𝑢′, 𝑣′, 𝑤′}். (33) 

According to the rigid body kinematic theory and ignoring the small terms higher than the 
second order, the displacements of the four corner nodes (𝑖, 𝑗, 𝑘, 𝑙) and those of the centroid (𝑜) 
have the following relationship: ൜𝑢 = 𝑢 + 𝑏𝑤′,   𝑣 = 𝑣 − 𝑎𝑤ᇱ,   𝑤 = 𝑤 − 𝑏𝑢ᇱ + 𝑎𝑣ᇱ,𝑢′ = 𝑢′,   𝑣′ = 𝑣′,   𝑤′ = 𝑤′,  (34) ቊ𝑢 = 𝑢 + 𝑏𝑤′,   𝑣 = 𝑣 + 𝑎𝑤′,   𝑤 = 𝑤 − 𝑏𝑢ᇱ − 𝑎𝑣ᇱ,𝑢′ = 𝑢′,   𝑣′ = 𝑣′,   𝑤′ = 𝑤′,  (35) ൜𝑢 = 𝑢 − 𝑏𝑤ᇱ,   𝑣 = 𝑣 + 𝑎𝑤ᇱ,   𝑤 = 𝑤 + 𝑏𝑢ᇱ − 𝑎𝑣ᇱ,𝑢′ = 𝑢′,   𝑣′ = 𝑣′,   𝑤′ = 𝑤′,  (36) ൜𝑢 = 𝑢 − 𝑏𝑤ᇱ,   𝑣 = 𝑣 − 𝑎𝑤ᇱ,   𝑤 = 𝑤 + 𝑏𝑢ᇱ + 𝑎𝑣ᇱ,𝑢′ = 𝑢′,   𝑣′ = 𝑣′,   𝑤′ = 𝑤′.  (37) 

Can be rewritten as a matrix form as follows: 𝛅௫ = 𝐓௫𝛅 = ቂ𝐈 𝐀௫𝚶 𝐈 ቃ 𝛅,   (𝑥 = 𝑖, 𝑗, 𝑘, 𝑙),  (38) 
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where, 𝛅௫ and 𝛅 are displacement vectors of the corner nodes and the centroid respectively, 𝐓௫ 
is a 6×6 transformation matrix of the displacements between the corner nodes and the centroid, 𝐈 
is a 3×3 identity matrix, 𝐎 is a 3×3 null matrix and 𝐀௫ is a 3×3 matrix, where: 

𝐀 = ൭ 0 0 𝑏0 0 −𝑎−𝑏 𝑎 0 ൱,   𝐀 = ൭ 0 0 𝑏0 0 𝑎−𝑏 −𝑎 0൱, 
𝐀 = ൭0 0 −𝑏0 0 𝑎𝑏 −𝑎 0 ൱,   𝐀 = ൭0 0 −𝑏0 0 −𝑎𝑏 𝑎 0 ൱. (39) 

By using Eq. (38), the constraint relationship between the nodes of the shock absorber is 
established, and the contribution of the shock absorber to the stiffness of the whole hanger system 
is therefore considered. 

In the global hanger system, the mass of the shock absorber also can be considered as 
concentrated on the centroid 𝐨 by using the concentrated mass method, then the mass matrix of 
the centroid node 𝐨 can be written as: 

𝐌𝐨 =
⎝⎜⎜
⎛𝑚 𝑚 𝑚 0 0 0 ⎠⎟⎟

⎞. (40) 

According to Eqs. (39) and (40), the finite element program for tension estimation of the 
hanger system can be easily developed, and its specific process for this is consistent with the 
general finite element programming [24]. 

3.3. Frequency equation of hanger system 

The hanger system is discretized according to the actual demands. It must be noted that the 
element nodes must be assigned at the connection of the cable and the shock absorber in order to 
avoid additional DOFs conversion. The DOFs of the four nodes of the shock absorber are 
concentrated to the centroid of the shock absorber by using the static condensation method, also 
known as the Guyan reduction method [24]. The Guyan reduction method is a dimensionality 
reduction method, it can reduce the number of DOFs through ignoring the inertial terms of the 
equilibrium equations and expression of the unloaded DOFs which are also called as slave DOFs 
in terms of the loaded DOFs which are also called as master DOFs. 

In Eq. (38), 𝛅 is the master DOF, 𝛅௫ is the slave DOF. From Eq. (38), we know that the whole 
DOFs for the shock absorber are: 𝛅 = 𝛅𝛅௫൨ =  𝐈𝐓௫൨ 𝛅 = 𝐓∗𝛅. (41) 

The equation of free vibration for the shock absorber is: 𝐊𝛅 + 𝐌𝛅ሷ = 0. (42) 

The DOFs can be reduced by using the relationship given by Eq. (37) and therefore the 
influence of the shock absorber is taken into account. Specifically, by substituting Eq. (41) into 
Eq. (42) and multiplying by 𝐓∗் at the both side of the equation, it can be obtained: 
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𝐊∗𝛅 + 𝐌∗𝛅ሷ = 𝟎, (43) 

where: 𝐊∗ = 𝐓∗்𝐊𝐓∗,   𝐌∗ = 𝐓∗்𝐌𝐓∗. (44) 

By partitioning the above system of linear equations with master DOFs and slave DOFs, the 
static equilibrium equation may be expressed as: 𝐊𝛅 = 𝐊 𝐊௦𝐊௦ 𝐊௦௦ ൨ ൜𝛅𝛅௫ൠ = ቄ𝐟𝟎 ቅ, (45) 

where 𝐟 is the force vector and 0 is the zero vector. Focusing on the lower partition of the above 
system of linear equations, the slave DOFs are expressed by the following equation: 𝐊௦𝛅 + 𝐊௦௦𝛅௫ = 𝟎. (46) 

Solving the above equation in terms of the master DOFs leads to the following dependency 
relations: 𝛅௫ = −𝐊௦௦ିଵ𝐊ୱ୫𝛅. (47) 

Substituting the dependency relations on the upper partition of the static equilibrium problem 
condenses away the slave DOFs, leading to the following reduced system of linear equations: 𝛅௫ = 𝐓௫𝛅 = ቂ𝐈 𝐀௫𝚶 𝐈 ቃ 𝛅,   (𝑥 = 𝑖, 𝑗, 𝑘, 𝑙).  (48) 

Comparing Eq. (47) with Eq. (48), it can be obtained: 𝐓௫ = −𝐊௦௦ିଵ𝐊௦. (49) 

After substituting Eq. (49) into Eq. (44), the reduced stiffness and mass matrices 𝐊∗ and 𝐌∗ 
can be obtained as: 

൜𝐊∗ = 𝐊 − 𝐊் 𝐊௦௦ିଵ𝐊௦் ,                                                               𝐌∗ = 𝐌 − 𝐊௦் 𝐊௦௦ିଵ𝐌௦ − 𝐌௦𝐊௦௦ିଵ𝐊௦ + 𝐊௦் 𝐊௦௦ିଵ𝐌௦௦𝐊௦௦ିଵ𝐊௦. (50) 

Obviously, the reduced matrices 𝐊∗  and 𝐌∗  are still symmetric matrices. However, their 
orders are reduced compared with those of 𝐊 and 𝐌. They only contain DOFs of the master node 
(centroid node). 

Accordingly, the frequency equation with reduced DOFs for the hanger system can be obtained 
as follows: |𝐊∗ − 𝜔ଶ𝐌∗| = 0. (51) 

The relation between the frequency and the cable tension can be obtained by solving the above 
frequency equation. 

3.4. Cable tension estimation program 

With Eq. (51), the tension force can be calculated by an iterative program developed in 
MATLAB as follows. 

(a) In ambient conditions, acceleration sensors are installed at the cables to measure the 
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frequencies, and a number of natural frequencies of the hanger are extracted. Using the taut-string 
formula, an initial value of the cable tension 𝑇 = 𝑚𝑙ଶ𝜔ଶ 𝜋ଶ⁄  is used to start the iteration. Where 𝜔 is the measure first-order circular frequency. 

(b) Substituting 𝑇 = 𝑚𝑙ଶ𝜔ଶ 𝜋ଶ⁄  into Eq. (51), and solving the eigenvalue problem yield a 
new value of circular frequency ω of the hanger system. If |𝜔 − 𝜔| ≤ 0.001, then the tension is 𝑇 = 𝑇, and the iteration is stopped. Otherwise, the convergence condition is not satisfied, let  𝑇 = 𝑇 × 𝜔 𝜔⁄  and repeat iteration until it is satisfied. At the end of iteration the tension 𝑇 is 
equal to the final value of 𝑇. 

4. Approach for shock absorber modeled as elastic support 

For the above hanger system, the shock absorber can also be considered as a constraint of one 
cable to another, and thus the hanger system can be modeled as a single cable with an intermediate 
elastic support. And then its tension can be estimated by using the finite element method for cable 
with intermediate supports proposed by Wang et al. [26]. For the hanger system shown in Fig. 6(a), 
it can be modeled as a single cable with intermediate elastic supports shown in Fig. 6(b). 

 

 
Fig. 6. Hanger system simplified to single cable:  

a) hanger system with shock absorber, b) single cable with intermediate supports 

In Fig. 6(b), 𝐾௬, 𝐾௭ are equivalent stiffness which can be calculated by the following equation: 

𝐾௬ = 𝐾௭ = 8𝑇𝐿 , (52) 

where 𝑇  and 𝐿  are the tension and the total length of the cable, respectively. After such 
simplification, the finite element model can be established using the method proposed by Wang 
et al. [26], and then the internal forces of the hangers can be identified. 

5. Case study 

5.1. Huangpu pearl river bridge 

The Huangpu Pearl River Bridge is a key project on the second ring highway of Guangzhou, 
which is the largest bridge in the Southern China. The main bridge is a single span steel box girder 
suspension bridge with the main span of 1108 m (Fig. 7). The main cable arrangement is 
290+1108+330 m with the sag-to-span ratio of 1/10. All hangers which are longer than 20 m have 
absorbers installed (these hangers are No. 1-26 and No. 60-85). 

When the bridge was constructed completely but before it was opened to traffic, the natural 
frequency of all hangers was measured by using the Dynamic Testing System (DASP) and the 
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INV9828 type acceleration sensor (China Orient Institute of Noise & Vibration), and some of the 
results for hangers W1 to W8 on the upstream side are listed in Table 1. There are four hangers 
for each location, here only the test results for one of them are listed. 

 
Fig. 7. Elevation of Huangpu pearl river bridge 

Table 1. Frequency test results for W1-W8 hangers of Huangpu pearl river bridge (unit: Hz) 
Hanger No. W1 W2 W3 W4 W5 W6 W7 W8 𝑓ଵ 1.416 1.563 1.652 1.661 1.758 1.953 2.018 2.149 𝑓ଶ 2.832 3.125 3.296 3.321 3.711 3.907 4.102 4.297 𝑓ଷ 4.249 4.688 4.956 5.079 5.469 5.86 6.055 6.446 𝑓ସ 5.665 6.055 6.616 6.641 7.032 7.813 8.009 8.595 

The cross-sectional area of the hanger is 0.00149 m2, the mass per unit length is 13.6 kg/m and 
the moment of inertia used is 3.067e-8 m4. Based on these parameters, the cable force of the hanger 
is calculated by the proposed method as shown in Table 2. It can be seen that the calculation results 
by the proposed method are in good agreement with the design values with a difference lesser than 
3.5 %, which verifies the accuracy of the proposed method. 

Table 2. Comparison of estimated tension for hangers W1-W8 of Huangpu pearl river bridge 
Hanger No. W1 W2 W3 W4 W5 W6 W7 W8 

Calculated cable tension (kN) 359.9 357.8 354.8 355 354 371 356.2 362.8 
Designed cable tension (kN) 365.5 365.5 365.5 365.5 365.5 365.5 365.5 365.5 

Differences (%) 1.52 2.12 2.94 2.87 3.15 1.50 2.55 0.75 

5.2. Aizhai bridge 

The proposed method is also used for a case study for the Aizhai Bridge in the 
Changsha-Chongqing expressway across the Dehang Grand Canyon in the west of Hunan 
Province near the city of Jishou, which is an iconic suspension bridge in China. The layout of the 
main cables of the bridge is 242+1176+116 m, with a rise/span ratio of 1/9.6. A steel-truss 
structure was used as the stiffening girder with a total length of 1000.5 m. The layout of the bridge 
is shown in Fig. 8 [27]. 

 
Fig. 8. Elevation of Aizhai bridge 

All hangers which are longer than 20 m have absorbers installed (these hangers are numbered 
as C02-C20 and J01-J20). In this paper, the frequencies of the C02-C20 hangers before and after 
installation of the shock absorber were measured by using acceleration sensors. The measured 
frequency and estimated cable tension of the hangers are shown in the Table.3. It should be noted 
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that the cable tension estimation before absorber installation is using the taut string method and 
the cable tension estimation after absorber installation is using the proposed method.  
Theoretically, because the bridge deck is not subjected to any additional load before and after 
installation of absorbers, the internal forces of the hangers should be the same before and after 
installation of absorbers. Moreover, before the absorber installation, the cables have very small 
relative bending stiffness, so the taut string method has high accuracy, and the estimated results 
can be seen as the actual one [28]. From Table 3, it can be seen that the errors of estimated tensions 
from these two kinds of method are no more than 2 %, which verifies the accuracy of the proposed 
method. 

Table 3. Comparison of estimated tension for C02-C10 hangers of Aizhai bridge 

Hanger 
No. 𝐿 (m) 

Fundamental frequency (Hz) Cable tension (kN) 
Differences of 

tension (%) 
Before 

absorber 
installation 

After 
absorber 

installation 

Before 
absorber 

installation 

After 
absorber 

installation 
C02 84.593 0.738 1.480 527 530 0.56 % 
C03 80.218 1.109 2.218 503 503 0.10 % 
C04 75.476 1.177 2.358 497 498 0.33 % 
C05 70.884 1.251 2.504 510 511 0.16 % 
C06 66.444 1.347 2.698 505 506 0.29 % 
C07 62.154 1.421 2.848 495 497 0.45 % 
C08 58.019 1.520 3.049 510 513 0.61 % 
C09 54.034 1.641 3.293 512 515 0.63 % 
C10 50.200 1.767 3.537 510 510 0.14 % 

5.3. Comparison and discussion 

For hangers with shock absorber, there are four kinds of method can be used to identify the 
cable tension. Method 1 is the taut string theory method. When using this method the shock 
absorber should be removed first before measuring the frequencies. Method 2 is the finite element 
method of tension identification for cables with intermediate supports described in Section 4. 
Method 3 is the “form finding” method proposed by Huang et al. [28]. And Method 4 is the 
proposed method in this paper. The comparison between these four methods is shown in Table 4. 
The data in parentheses represent the relative error between the estimated cable tension and the 
design value.  

Table 4. Comparison of estimated cable tensions by different methods for Aizhai bridge (unit: kN) 
Hanger 
number 

Designed 
value Taut string method Intermediate support FEM Form finding method Proposed method 

C02 526 527 (–0.2 %) 540 (–2.7 %) 509 (–3.2 %) 530 (–0.8 %) 
C03 507 503 (0.8 %) 515 (–1.6 %) 498 (1.8 %) 503 (0.8 %) 
C04 501 497 (0.8 %) 513 (–2.4 %) 485 (3.2 %) 498 (0.6 %) 
C05 501 510 (–1.8 %) 513 (–2.4 %) 486 (3.0 %) 511 (–2.0 %) 
C06 501 505 (–0.8 %) 522 (–4.2 %) 486 (3.0 %) 506 (–1.0 %) 
C07 501 495 (1.2 %) 510 (–1.8 %) 487 (2.8 %) 497 (0.8 %) 
C08 501 510 (–1.8 %) 509 (–1.6 %) 487 (2.8 %) 513 (–2.4 %) 
C09 500 512 (–2.4 %) 516 (–3.2 %) 487 (2.6 %) 515 (–3.0 %) 
C10 500 510 (–2.0 %) 513 (–2.6 %) 488 (2.4 %) 510 (–2.0 %) 

From Table 4, it can be seen that all the methods can identify the cable tension approximately 
with a relative error of no more than 5 %. And as compared with Method 2 and Method 3, the 
results of method 1 and the proposed method are much closer to the design value. Method 1 is the 
most common used one and can be considered to be the most accurate one as the reasons described 
previously, but it needs to remove the shock absorber before the frequency test which limits its 
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application. Except Method 1, the proposed method has the highest accuracy. So, the proposed 
method gives a better choice for cable tension estimation of such a hanger system and can easily 
be used to practical engineering because only the frequencies of the cable are needed to measure. 

6. Conclusions 

In this paper, a finite element model-based method was proposed to estimate the tension of 
hangers with shock absorbers, and its reliability and applicability are investigated through two 
engineering examples. The main conclusions are as follows: 

1) The displacement vectors of the centroid are used to represent the displacement vectors of 
the 4 corner nodes of the shock absorber by using the deformation compatibility conditions 
through the idea of master-slave degrees of freedom, and then the contribution of the shock 
absorber to the stiffness and mass of the hanger system is taken into account. Furthermore, based 
on the condensation method of shock absorber, the frequency equation of hanger system is  
derived, and a program developed in MATLAB for cable tension estimation is established. 

2) There are two main advantages of the method proposed in this paper. One is that this inverse 
analysis and system identification method based on a finite element model can avoid complex 
formula derivation work. The other is that as compared with the existing methods based on a single 
cable model, this method which simulated the entire hanger system including 4 cables can 
truthfully reflect the interaction between various components in the system, and thus a loss of 
precision resulted from the simplification of the system is avoided. 

3) Finally, this method is applied to the cable tension identification for the hangers of the 
Aizhai Bridge and the Huangpu Pearl River Bridge. From the identification results, it can be seen 
that the proposed method can achieve better accuracy with the strong applicability in engineering 
application. It is an effective method to estimate the cable tension of hangers with a relative error 
less than 3 %. 
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