

 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479, KAUNAS, LITHUANIA 215

A loop unrolling method based on machine learning

Hui Liu1, Zhanjie Guo2
1State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, 450001, China
1College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China
2Department of Electrical and Electronic Engineering, Zhengzhou Technical College,
Zhengzhou, 450121, China
1Corresponding author
E-mail: 1liuhui806@126.com, 2guojie0616@163.com
Received 15 April 2018; accepted 28 April 2018
DOI https://doi.org/10.21595/vp.2018.19928

Copyright © 2018 Hui Liu, et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract. In order to improve the accuracy of loop unrolling factor in the compiler, we propose a
loop unrolling method based on improved random decision forest. First, we improve the traditional
random decision forest through adding weight value. Second, BSC algorithm based on SMOTE
algorithm is proposed to solve the problem of unbalanced data sets. Nearly 1000 loops are selected
from several benchmarks, and features extracted from these loops constitute the training set of the
loop unrolling factor prediction model. The model has a prediction accuracy of 81 % for the
unrolling factor, and the existing Open64 compiler gives 36 % only.
Keywords: compilation optimization, loop unrolling, program performance, machine learning.

1. Introduction

The compiler involves numerous optimization stages, known as “optimization pass”. The
compiler will execute various optimization passes according to the original order of input program,
so as to improve the program performance. Cost model commonly exits in various stages of the
compiler to guide execution of optimization passes. For instance, at loop interchange stage, a cost
model is needed to calculate whether loop interchange can obtain positive gains and what negative
effects it will cause to the program, in order to make a decision on whether to conduct loop inter-
change [1]. The performance of cost model directly influences the optimization ability of compiler,
but even the cost model carefully designed by the compiler designer for a specific optimization
stage after mature deliberation cannot necessarily reach the ideal optimization effect. For example,
when the two loops in Fig. 1 are fused at the stage of loop fusion [2], the cost of loop iteration can
be reduced, and the program performance is improved. Based on such consideration, most
optimization compilers will choose the operation of loop fusion at this stage. But when
compilation enters the stage of automatic vectorization [3], the previous optimization of loop
fusion will hinder the process of vectorization, as the first loop can carry out vectorization, but the
second loop cannot conduct vectorization due to the existence of true dependence. After the two
loops are fused, the entire loop will be unable to conduct vectorization. But the gains of
vectorization are obviously higher than the gains of loop fusion. Therefore, considered from the
global view, loop jamming should not be conducted. Hence, it is hard for compiler designers to
give an overall consideration, and provide an appropriate cost model for every optimization stage.

a)

b)

Fig. 1. Influence of loop fusion on follow-up vectorization. The first loop shown in (a) can be vectorized
and the second loop cannot be vectorized. The fused loop shown in (b) cannot be vectorized

https://crossmark.crossref.org/dialog/?doi=10.21595/vp.2018.19928&domain=pdf&date_stamp=2018-05-22

A LOOP UNROLLING METHOD BASED ON MACHINE LEARNING.
HUI LIU, ZHANJIE GUO

216 VIBROENGINEERING PROCEDIA. MAY 2018, VOLUME 18

This paper displays how to predict loop unrolling factors by utilizing and improving random
decision forest technology. According to the experiment, it is demonstrated that the prediction
accuracy of this model for optimal or sub-optimal loop unrolling factors reaches 81 %. The random
forest model gained is tested via SPEC2006 test set, and the performance of some programs is
improved by 12 % on average when compared with that of prediction model of the original
compiler. Therefore, our method can effectively help the compiler improve the compiler
optimization ability.

2. Overview of loop unrolling

As a frequently-used compiler optimization technique, the initiative motivation of loop
unrolling is to reduce loop overheads. As shown in Fig. 2, loop unrolling aims to copy statements
in the basic block of loop for multiple times, reduce loop iterations and loop branches, and conduct
data prefetching better [4]. When loop un-rolling is combined with module scheduling, the
initiation interval of fractional value can be realized [5]. For the current processor, major gains of
loop unrolling include improvement of instruction-level parallelism, register locality, and
hierarchical storage locality [6, 7]. Meanwhile, loop unrolling is also a necessary means to
efficiently explore some hardware characteristics, such as exploring the opportunity of generating
double instructions or offsetting the cost of a single prefetching instruction through several
load/store instructions [8, 9]. But loop unrolling also has some defects. Inappropriate unrolling
might bring about some negative gains to the program performance. For instance, loop unrolling
might lower the hit rate of instruction cache, and trigger overflow of instruction buffer. Meanwhile,
loop un-rolling might need extra intermediate variables, result in register spilling, increase
memory access, and reduce the performance of the program.

a)

b)

Fig. 2. Example of loop unrolling

a) Decision forest training stage

b) Decision forest prediction stage

Fig. 3. Training and prediction process of random forest model

A LOOP UNROLLING METHOD BASED ON MACHINE LEARNING.
HUI LIU, ZHANJIE GUO

 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479, KAUNAS, LITHUANIA 217

3. Random decision forest model

3.1. Forest

Random decision forest is a classifier to train and predict samples by utilizing several decision
trees [10]. At the training stage, the node of every decision tree is randomly selected from feature
vectors of training samples, so the decision trees have a great difference, which can avoid
over-fitting phenomenon. At the prediction stage, every decision tree can give a prediction result,
and the random forest will comprehensively vote on these results, so as to give a final prediction
result. Fig. 3. Training and prediction process of random forest model. Fig. 3(a) is the schematic
diagram for the training stage of random forest. 𝑛 training sets are selected from the original
training set, and 𝑛 decision tree is established for each training set. Fig. 3(b) is the schematic
diagram for the prediction stage of random forest. The test sample is predicted with 𝑛 decision
trees, to obtain 𝑛 prediction results. Then the final classification result is produced through voting
on the 𝑛 results.

3.2. Algorithm improvement

Weighted random forest. Different features have different influences on the prediction results.
Some features will produce a comparatively great influence on the result, while some features
have a small effect on the result. For instance, according to the experience of compiler
optimization, the number of statements in basic block of loop body is obviously a key factor that
influences loop unrolling factors, while the number of reduction variables in basic block of loop
body has a small influence on loop unrolling factors. Therefore, we propose decision tree
empowerment and weighted voting for the traditional random forest. When weighted voting is
adopted, a big influence will be produced on the classification effect of random forest. If the
weighting is appropriate, the classification effect of random forest will be improved naturally. But
if the weighting is inappropriate (for example, the weight of some decision trees is too high), the
ultimate classifier will excessively rely on some decision trees, leading to over-fitting of data.
Hence, the ultimate classification result is reduced. In this paper, the following calculation formula
of decision tree weight is adopted:

𝑤𝑒𝑖𝑔ℎ𝑡(𝑖) = 1 − 𝑇 − 2𝑇 − 1𝑐𝑜𝑛(𝑖)∑ 1𝑐𝑜𝑛(𝑗)்ୀଵ . (1)

In the above formula, 𝑤𝑒𝑖𝑔ℎ𝑡(𝑖) means the weight of classifier 𝐼, 𝑇 indicates the number of
classifiers, 𝑐𝑜𝑛(𝑖) represents the posterior probability of the classification result of classifier i.
The greater the value of 𝑐𝑜𝑛(𝑖) is, the greater the value of 𝑤𝑒𝑖𝑔ℎ𝑡(𝑖) will be.

Fig. 4 presents the prediction algorithm for loop unrolling times via the improved random
forest algorithm.

SMOTE algorithm improvement. Under the influence of computer hardware architecture
design, the optimal loop unrolling factor is often the integer power of 2, such as 1, 2, 4, and 8, and
the possibility for the optimal unrolling factor not to be the integer power of 2, such as 3, 5, 6, and
7, is quite small. As a result, the classification problem in this paper belongs to unbalanced dataset
classification problem. SMOTE algorithm core idea is to establish reasonable negative samples,
making the number of negative samples equivalent to the number of positive samples. Thus,
unbalanced dataset is avoided to some extent. However, the SMOTE algorithm has certain
blindness in constructing negative samples, and the constructed negative samples tend to get closer
and closer to the positive samples. An improved SMOTE algorithm, known as BCS algorithm is
proposed in this paper. The core idea of BCS algorithm is: when “artificial sample” is established

A LOOP UNROLLING METHOD BASED ON MACHINE LEARNING.
HUI LIU, ZHANJIE GUO

218 VIBROENGINEERING PROCEDIA. MAY 2018, VOLUME 18

for the negative type, it should be made to approach the center of the negative to the greatest extent,
and keep away from the edges of positive and negative types. The specific implementation steps
are as follows:

Step 1: Calculate the average value of negative samples as the center of negative samples.
Record the negative sample set as: 𝑋: 𝑋 = ሼ𝑋ଵ, 𝑋ଶ, , 𝑋ሽ, 𝑋 = (𝑥ଵ, 𝑥ଶ, , 𝑥),

and the center of negative samples is 𝑋௧ = (ଵ ∑ 𝑥ଵୀଵ , ଵ ∑ 𝑥ଶୀଵ , , ଵ ∑ 𝑥ୀଵ).
Step 2: Generate the artificial sample set: 𝑋ᇱ: 𝑋 = ሼ𝑋′ଵ, 𝑋′ଶ, , 𝑋′ሽ, 𝑋′ = (𝑥′ଵ, 𝑥′ଶ, , 𝑥′).

Via SMOTE algorithm, to make the sum of number of elements in negative sample set and
number of elements in artificial sample set greater than the number of elements in positive sample
set.

Step 3: Transform the artificial sample generated via SMOTE algorithm in Step 2. The formula
is: 𝑝 = 𝑋 + (𝑋௧ − 𝑥) × 𝑟𝑎𝑛𝑑(0,1). Hence, a new artificial sample set is produced.

Step 4: Add the new artificial sample set into the original negative sample set, re-calculate the
average value, and delete some samples comparatively far from the center in the set via
under-sampling method, to make the number of elements in negative sample set equivalent to the
number of elements in positive sample set. Ultimately, the overall training set is formed.

Fig. 4. Improved random forest voting algorithm

4. Loop unrolling method based on random forest

The establishment and features selection of training set include three steps:
Step 1: Extract nearly 1000 loops to form machine learning training examples from 16 test sets

including SPEC CPU 2006, NPB benchmarks and so on.
Step 2: Conduct loop unrolling for every training example for 1 to 8 times, test the

corresponding execution time respectively, and determine the optimal unrolling factor of every
example. The optimal unrolling factors of all examples are shown in Fig. 5. Among them, the
examples with the optimal unrolling factor of 1, 2, 4 and 8 occupy 84 % of all examples, consistent
with the traditional compiler optimization experience. The probability for the optimal unrolling
factor to be 8 is 11 times higher than the probability for the optimal unrolling factor to be 3.

A LOOP UNROLLING METHOD BASED ON MACHINE LEARNING.
HUI LIU, ZHANJIE GUO

 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479, KAUNAS, LITHUANIA 219

Fig. 5. Statistics about optimal unrolling factors of test examples

Table 1. Loop features
Loop characteristics Loop characteristics

Language (C/Fortran) Number of jump statements
Iterations Number of variables in the loop

Maximum iterative dependency length of loop Number of variables outside the loop
Average iterative dependency length of loop Number of variables used in the loop

Indirect array access and storage times Number of variables defined in the loop
Number of protocol variables Memory operation times

Function call times Number of variables defined in and used outside the loop
Number of floating-point variables Number of variables defined outside and used in the loop

Step 3: Establish sample features for each loop, expressed with vector < 𝑋𝑖, 𝑌𝑖 >. 𝑋𝑖 indicates
the features vector, which includes loop features such as loop iterations and number of statements
in the loop body. It is collected by the compiler in the process of compiler optimization, and the
specific features are presented in Table 1. 𝑌𝑖 represents the optimal unrolling factor, limited to
1-8. 1 means that no loop un-rolling is conducted.

5. Experiment and analysis

5.1. Experimental platform

The Sunway platform is adopted as the test platform, Redhat Enterprise 5 is used as the
operating system. The main frequency of CPU is 2.0 GHz, the memory size is 2 GB. Open source
modern structure optimization compiler Open64 is used as the compiler.

5.2. Result analysis

Table 2 shows the prediction probability of several loop unrolling cost models for unrolling
factors. Among them, “Open64” indicates the built-in loop unrolling cost model of Open64
compiler, “traditional random forest” means to conduct prediction for unrolling factors via random
forest model not improved. “weighted random forest” means to improve the traditional random
forest through weighting, as proposed in this paper. “weight-balanced random forest A” means to
improve the “weighted random forest” by utilizing SMOTE algorithm to solve the unbalanced
dataset problem. “weight-balanced random forest B” means to improve the “weighted random
forest” by utilizing BCS algorithm to solve the unbalanced dataset problem, i.e. the ultimate
scheme proposed in this paper. For instance, as for the prediction result of traditional random
forest algorithm, the probability for sub-optimal unrolling factors is 0.14. The ratio of program
execution efficiency and cost of theoretical optimal unrolling factor is 1.06x.

It can be seen from Table 2 that the traditional random forest and improved random forest
methods are much better than the built-in cost model of Open64 in pre-diction for loop unrolling
factors. Open64 can give the optimal or sub-optimal un-rolling factor under 36 % only. The
traditional random forest can predict the optimal or sub-optimal unrolling factor under 72 %. After
weighting improvement is con-ducted, the prediction accuracy reaches 75 %. If the SMOTE

A LOOP UNROLLING METHOD BASED ON MACHINE LEARNING.
HUI LIU, ZHANJIE GUO

220 VIBROENGINEERING PROCEDIA. MAY 2018, VOLUME 18

algorithm is used to solve the unbalanced dataset problem on such basis, the accuracy can reach
79 %. If BCS algorithm proposed in this paper is used to solve the unbalanced dataset problem,
the accuracy can reach 81 %. The above experimental data demonstrate that the weight-balanced
random forest model proposed in this paper can accurately predict loop unrolling factors.

Table 2. Prediction results of five models for unrolling factors

Prediction
result Open64

Traditional
random
forest

Weighted
random
forest

Weight-balanced
random forest A

Weight-balanced
random forest B

Average
cost

Optimal
unrolling

factor
0.16 0.58 0.60 0.64 0.65 1x

Sub-optimal
unrolling

factor
0.20 0.14 0.15 0.15 0.16 1.06x

When the built-in loop unrolling cost model of Open64 and weighted random forest model of
our paper are used to compile some programs of SPEC2006. The speed-up of program execution
is displayed in Fig. 6. When the built-in loop unrolling model of Open64 is utilized, the program
performance is improved by 5 % on aver-age. When the loop unrolling method of this paper is
used, the program performance is improved by 12 % on average.

Fig. 6. Comparison about the execution effects of some SPEC CPU 2006 programs

6. Conclusions

In this paper, a method to improve the loop unrolling optimization ability of compiler via
machine learning model is proposed. Firstly, the traditional random forest model is improved
through weighting and unbalanced dataset processing. Secondly, the training set is established to
train the model. According to the experiment, the model after training can give the optimal or sub-
optimal unrolling factor under 81%. Besides, it is tested via some SPEC2006 test sets. The built-
in loop un-rolling model of Open64 can improve the program performance by 5% only, while the
method of predicting loop unrolling factors via weight-balanced decision forest proposed in this
paper can improve the program performance by 12% on average. The programs will be compiled
through hundreds of optimization passes to get efficient object code, and the existing compiler
performs fixed optimization passes over all target programs. However, different programs need
different optimization passes. For future work, we expect to apply machine learning algorithms to
construct program optimization passes selection model.

References

[1] Pouchet L. N., Bondhugula, Bastoul, et al. C. Loop transformations: convexity, pruning and
optimization. Proceedings of POPL, 2011, p. 549-562.

A LOOP UNROLLING METHOD BASED ON MACHINE LEARNING.
HUI LIU, ZHANJIE GUO

 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479, KAUNAS, LITHUANIA 221

[2] Mehta S., Lin P. H., Yew P. C. Revisiting loop fusion in the polyhedral framework. Proceedings of
PPOPP, 2014, p. 233-246.

[3] Gao W., Zhao R. C., Han L., et al. Research on SIMD auto-vectorization compiling optimization.
Journal of Software, Vol. 26, Issue 6, 2015, p. 1265-1284.

[4] Jha S., He B., Lu M., et al. Improving main memory hash joins on Intel Xeon Phi processors: an
experimental approach. Proceedings of the VLDB Endowment, Vol. 8, Issue 6, 2015, p. 642-653.

[5] Arslan M. A., Gruian F., Kuchcinski K. A. Comparative study of scheduling techniques for
multimedia applications on SIMD pipelines. Proceedings of HIS, 2015, p. 3-9.

[6] Sengupta A., Mishra V. K. Swarm intelligence driven simultaneous adaptive exploration of datapath
and loop unrolling factor during area-performance tradeoff. Proceedings of ISVLSI, 2014, p. 106-111.

[7] So W., Dean A. G. Software thread integration for instruction-level parallelism. ACM Transactions
on Embedded Computing Systems, Vol. 13, Issue 1, 2013, p. 1-23.

[8] Cortes K. E., Goodman J., Nomi T. Intensive math instruction and educational attainment long-run
impacts of double-dose algebra. Journal of Human Resources, Vol. 50, Issue 1, 2014, p. 108-158.

[9] Domagała Ł., Amstel D. V., Amstel F., Sadayappan P. Register allocation and promotion through
combined instruction scheduling and loop unrolling. Proceedings of CC, 2016, p. 143-151.

[10] Tantithamthavorn C., Mcintosh S., et al. Automated parameter optimization of classification
techniques for defect prediction models. Proceedings of ICSE, 2016, p. 321-332.

