
 

 ISSN PRINT 2345-0533, ISSN ONLINE 2538-8479, KAUNAS, LITHUANIA 1 

The simultaneous action of external excitations – 
features of the dynamical damping of vibrations 

Sergey Eliseev1, Alexey Orlenko2, Andrey Eliseev3 
1, 3Irkutsk State Transport University, Irkutsk, Russia 
2Krasnoyarsk Institute of Railway Transport – Branch of Irkutsk State Transport University,  
Krasnoyarsk, Russia 
1Corresponding author 
E-mail: 1eliseev_s@inbox.ru, 2orlenko_ai@krsk.irgups.ru, 3eavsh@ya.ru 
Received 7 April 2018; accepted 18 April 2018 
DOI https://doi.org/10.21595/vp.2018.19893 

Copyright © 2018 Sergey Eliseev, et al. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. The article considers new dynamic effects arising in problems of vibration protection 
of objects under external disturbances, on the side of support surfaces. A method for constructing 
mathematical models for a vibration protection system is developed, in which the protection object 
has two degrees of freedom. It is demonstrated that is possible to introduce additional constraints 
in the form of motion transformation devices. The article estimates the possibilities of using screw 
non-locking mechanisms with flywheel nuts, the given moment of inertia of which can be 
regulated. 
Keywords: frequency diagram, simultaneous vibration damping modes, transfer functions. 

1. Introduction 

In the problems of the dynamics of technological machines and vehicles, much attention is 
paid to the issues of vibrational interactions of elements of mechanical oscillation systems (MOS) 
[1-4]. Effects of dynamic damping of oscillations are widely used in various branches of 
technology [5-8], which is associated with the study of the features of the dynamic properties of 
objects [9-11], most often selected as a mass-and-inertia element, whose dynamic state is 
estimated by one coordinate. 

In works concerned with controllable systems as part of the MOS, servo drives, elements of 
pneumatic, hydro-, and electrical automation are used [12-14]. Although the problems of analysis 
and dynamic synthesis of the MOS have been in progress, the methods of structural mathematical 
modeling have been developed to a lesser extent, oriented toward using the analytical tools of the 
automatic control theory, which provides great possibilities for estimating the dynamic states of 
objects having several degrees of freedom [2, 3, 9, 15]. The main provisions of structural 
mathematical modeling are given in [8, 13, 16-18]. 

The proposed article develops a methodological basis for constructing mathematical models 
for vibration protection systems with an object of protection in the form of a solid body that 
performs a plane motion under the influence of a kinematic perturbation, taking into account that 
it’s possible to implement dynamic damping modes simultaneously in two coordinates. 

2. Some general provisions. Statement of the research task 

We consider a vibration protection platform for the installation of instrumentation, which is 
subject to vibrations on the side of the supporting surface (Fig. 1). The object in the form of a solid 
body with mass 𝑀 and moment of inertia 𝐽 is supported by elastic elements with stiffnesses 𝑘ଵ 
and 𝑘ଶ with parallel-mounted motion transformation devices (MTD) having reduced masses 𝐿ଵ 
and 𝐿ଶ, respectively [11, 17]. 

The system under consideration has linear properties and performs small oscillations with 
respect to the static equilibrium position. The position of the center of gravity (p. O) is determined 
by the lengths of the arms 𝑙ଵ and 𝑙ଶ. The 𝑦ଵ and 𝑦ଶ coordinate system associated with the fixed 
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base is used. The frictional forces in the system are not taken into account, the external action 𝑧(𝑡) 
is a harmonic function. 
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Fig. 1. Schematic diagram of the vibration protection platform in the form  

of a rigid body with elastic-inertial supports with kinematic perturbation 𝑧(𝑡) 

To obtain a mathematical model, using the Lagrange equations of the second kind, an 
expression is determined for the kinetic and potential energies: 𝑇 = 12 𝑀𝑦ሶ଴ଶ + 12 𝐽𝜑ሶ ଶ + 12 𝐿ଵ(𝑦ሶଵ − 𝑧ሶ)ଶ + 12 𝐿ଶ(𝑦ሶଶ − 𝑧ሶ)ଶ, (1)П = 12 𝑘ଵ(𝑦ଵ − 𝑧)ଶ + 12 𝑘ଶ(𝑦ଶ − 𝑧)ଶ. (2)

To carry out the appropriate calculations, we take into account the following relations: 𝑦଴ = 𝑎𝑙ଵ + 𝑏𝑙ଶ,    𝜑 = 𝑐(𝑦ଶ − 𝑦ଵ),    𝑦ଵ = 𝑦଴ − 𝑙ଵ𝜑,    𝑦ଶ = 𝑦଴ + 𝑙ଶ𝜑, 𝑎 = 𝑙ଶ𝑙ଵ + 𝑙ଶ ,    𝑏 = 𝑙ଵ𝑙ଵ + 𝑙ଶ ,    𝑐 = 1𝑙ଵ + 𝑙ଶ. (3)

Using the Eq. (1)-(3), on the basis of known methods we obtain a mathematical model in the 
form of a system of two linear inhomogeneous differential equations with constant coefficients. 
After the Laplace transform under zero initial conditions, these equations in the operator form 
become: 𝑦തଵ[(𝑀𝑎ଶ + 𝐽𝑐ଶ + 𝐿ଵ)𝑝ଶ + 𝑘ଵ] + 𝑦തଶ(𝑀𝑎𝑏 − 𝐽𝑐ଶ)𝑝ଶ = 𝑧̅(𝐿ଵ𝑝ଶ + 𝑘ଵ), (4)𝑦തଶ[(𝑀𝑏ଶ + 𝐽𝑐ଶ + 𝐿ଶ)𝑝ଶ + 𝑘ଶ] + 𝑦തଵ(𝑀𝑎𝑏 − 𝐽𝑐ଶ)𝑝ଶ = 𝑧̅(𝐿ଶ𝑝ଶ + 𝑘ଶ), (5)

where 𝑝 = 𝑗𝜔 is the complex variable (𝑗 = √−1); icon “–” corresponds to the Laplace transform 
of the variable. 

On the basis of Eqs. (4), (5) a structural mathematical model can be constructed, as shown in 
Fig. 2; the system has an external perturbation simultaneously at the inputs of two partial systems. 
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Fig. 2. Structural mathematical model of the system by Fig. 1 in the form  
of a block diagram of an equivalent (dynamically) automatic control system 
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Using the block diagram in Fig. 2, we write the transfer functions of the system: 

𝑊ଵ(𝑝) = 𝑦തଵ𝑧̅ = (𝐿ଵ𝑝ଶ + 𝑘ଵ)[(𝑀𝑏ଶ + 𝐽𝑐ଶ + 𝐿ଶ)𝑝ଶ + 𝑘ଶ] + (𝐿ଶ𝑝ଶ + 𝑘ଶ)(𝐽𝑐ଶ − 𝑀𝑎𝑏)𝑝ଶ𝐴଴(𝑝) , (6)𝑊ଶ(𝑝) = 𝑦തଶ𝑧̅ = (𝐿ଶ𝑝ଶ + 𝑘ଶ)[(𝑀𝑎ଶ + 𝐽𝑐ଶ + 𝐿ଵ)𝑝ଶ + 𝑘ଵ] + (𝐿ଵ𝑝ଶ + 𝑘ଵ)(𝐽𝑐ଶ − 𝑀𝑎𝑏)𝑝ଶ𝐴଴(𝑝) , (7)

where: 𝐴଴(𝑝) = [(𝑀𝑎ଶ + 𝐽𝑐ଶ + 𝐿ଵ)𝑝ଶ + 𝑘ଵ] ⋅ [(𝑀𝑏ଶ + 𝐽𝑐ଶ + 𝐿ଶ)𝑝ଶ + 𝑘ଶ] − [(𝐽𝑐ଶ − 𝑀𝑎𝑏)𝑝ଶ]ଶ, (8)

is the characteristic frequency equation. 
We note that 𝑦തଵ and 𝑦തଶ can take zero values if condition: 

𝜔ௗ௜௡ଵଶ = 𝑘ଵ𝐿ଵ = 𝜔ௗ௜௡ଶଶ = 𝑘ଶ𝐿ଶ. (9)

At a frequency determined by the relation 𝑘ଵ𝐿ଶ = 𝑘ଶ𝐿ଵ , it is possible to simultaneously 
“nullify” the coordinates 𝑦ଵ and 𝑦ଶ, which can be considered as a mode of dynamic damping of 
the oscillations of the protection object simultaneously in the two coordinates 𝑦ଵ and 𝑦ଶ under the 
kinematic perturbation from the support surface side.  

The task of the research is to study the possibilities of forming modes of dynamic damping of 
the object’s oscillations simultaneously in two coordinates, using data on the available forms of a 
purposeful change in the ratio of the parameters of the systems for configuring the parameters of 
the dynamic state of the object. 

3. Construction of mathematical models of interactions 

Using relations Eq. (9), assuming that 𝐿ଶ 𝐿ଵ⁄ = 𝛼, we write the transfer functions Eqs. (6), (7) 
in the form: 

𝑊ଵᇱ(𝑝) = 𝑦തଵ𝑧̅ = (𝐿ଵ𝑝ଶ + 𝑘ଵ)[(𝑀𝑏ଶ + 𝐽𝑐ଶ + 𝛼𝐿ଵ)𝑝ଶ + 𝑘ଶ] + (𝛼𝐿ଵ𝑝ଶ + 𝑘ଶ)(𝐽𝑐ଶ − 𝑀𝑎𝑏)𝑝ଶ𝐴଴(𝑝) , (10)𝑊ଶᇱ(𝑝) = 𝑦തଶ𝑧̅ = (𝛼𝐿ଵ𝑝ଶ + 𝑘ଶ)[(𝑀𝑎ଶ + 𝐽𝑐ଶ + 𝐿ଵ)𝑝ଶ + 𝑘ଵ] + (𝐿ଵ𝑝ଶ + 𝑘ଵ)(𝐽𝑐ଶ − 𝑀𝑎𝑏)𝑝ଶ𝐴଴(𝑝) , (11)

where: 𝐴଴ᇱ (𝑝) = [(𝑀𝑎ଶ + 𝐽𝑐ଶ + 𝐿ଵ)𝑝ଶ + 𝑘ଵ] ⋅ [(𝑀𝑏ଶ + 𝐽𝑐ଶ + 𝛼𝐿ଵ)𝑝ଶ + 𝑘ଶ] − [(𝐽𝑐ଶ − 𝑀𝑎𝑏)𝑝ଶ]ଶ. (12)

We note that in the construction of transfer functions of the system, simultaneous transmission 
of influences to both inputs of the system is taken into account, while 𝛼  is regarded as an 
adjustable connectivity coefficient of the parameters of the reduced masses of the MTD. 

The partial frequencies of the system are determined by the expressions, respectively: 

𝑛ଵଶ = 𝑘ଵ𝑀𝑎ଶ + 𝐽𝑐ଶ + 𝐿ଵ, (13)𝑛ଶଶ = 𝑘ଶ𝑀𝑏ଶ + 𝐽𝑐ଶ + 𝛼𝐿ଵ. (14)

Note that the partial frequency 𝑛ଵଶ does not depend on α. 
In the MOS under consideration (Fig. 1), it is possible to create dynamic oscillation damping 
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modes in two coordinates, which is determined by the possibility of “nullifying” the numerators 
of the transfer functions Eqs. (10), (11). 

For the coordinate 𝑦തଵ, we can write the following equation for finding the frequencies of the 
dynamic damping of oscillations under the kinematic perturbation 𝑧̅: 𝑝ସ𝐿ଵ[𝑀𝑏ଶ + 𝐽𝑐ଶ + 𝛼𝐿ଵ + 𝛼(𝐽𝑐ଶ − 𝑀𝑎𝑏)] + 𝑝ଶ[𝑘ଵ(𝑀𝑏ଶ + 𝐽𝑐ଶ + 𝛼𝐿ଵ)       +𝑘ଶ(𝐿ଵ + 𝐽𝑐ଶ − 𝑀𝑎𝑏) + 𝑘ଵ𝑘ଶ = 0.. (15)

Eq. (15) can be reduced to the form of a biquadratic equation, assuming that 𝑝ଶ = −𝜔ଶ = −𝛾, 
then Eq. (15) takes the form: 𝛾ଶ ∙ 𝑅ଵ– 𝛾 ∙ 𝑅ଶ + 𝑅ଷ = 0, (16)

where: 𝑅ଵ = 𝐿ଵ[𝑀𝑏ଶ + 𝐽𝑐ଶ + 𝛼𝐿ଵ + 𝛼(𝐽𝑐ଶ– 𝑀𝑎𝑏)], 𝑅ଶ = 𝑘ଵ(𝑀𝑏ଶ + 𝐽𝑐ଶ + 𝛼𝐿ଵ) + 𝑘ଶ(𝐿ଵ + 𝐽𝑐ଶ– 𝑀𝑎𝑏),     𝑅ଷ = 𝑘ଵ𝑘ଶ. 
The solution of Eq. (15) can have, with a certain set of parameters of the system, two real 

positive roots: 

𝛾ଵ,ଶ = 12 𝑅ଶ𝑅ଵ ± ඨ൬𝑅ଶ𝑅ଵ൰ଶ ⋅ 14 − 𝑅ଷ𝑅ଵ. (17)

In turn, from the coordinate we obtain that: 𝑝ସ𝐿ଵ[𝛼𝑀𝑎ଶ + 𝐽𝑐ଶ + 𝐿ଵ) + 𝐽𝑐ଶ − 𝑀𝑎𝑏] + 𝑝ଶ[𝑘ଶ(𝑀𝑎ଶ + 𝐽𝑐ଶ + 𝐿ଵ)       +𝑘ଵ(𝛼𝐿ଵ + 𝐽𝑐ଶ − 𝑀𝑎𝑏) + 𝑘ଵ𝑘ଶ = 0. (18)𝑅ଵᇱ 𝛾ଶ − 𝑅ଶᇱ 𝛾 + 𝑅ଷᇱ = 0, (19)

where: 𝑅ଵᇱ = 𝐿ଵ[𝛼(𝑀𝑎ଶ + 𝐽𝑐ଶ + 𝐿ଵ) + 𝐽𝑐ଶ– 𝑀𝑎𝑏], 𝑅ଶᇱ = 𝑘ଶ(𝑀𝑎ଶ + 𝐽𝑐ଶ + 𝐿ଵ) + 𝑘ଵ(𝛼𝐿ଵ + 𝐽𝑐ଶ– 𝑀𝑎𝑏),     𝑅ଷᇱ = 𝑘ଵ𝑘ଶ. 
The introduction of the connectivity coefficient α between the parameters 𝐿ଵ and 𝐿ଶ changes 

the transfer functions Eqs. (6), (7), and hence the values of the frequency of the dynamic damping 
of the oscillations determined by Eqs. (16) and (19). In this case, the characteristic frequency 
equation also changes, that is, the frequencies of proper oscillations also change accordingly. 

Taking into account the connectivity coefficient 𝛼, we shall use, using Eqs. (15) and (18), an 
equation for determining the frequencies of dynamic damping, 𝜔ଵௗ௜௡ଶ , 𝜔ଶௗ௜௡ଶ . 

The frequencies of the natural oscillations 𝜔ଵ௦௢௕, 𝜔ଶ௦௢௕ can be found from the solution of the 
characteristic Eq. (12), which can be represented in the form of: 𝑝ସ[(𝑀𝑎ଶ + 𝐽𝑐ଶ + 𝐿ଵ)(𝑀𝑏ଶ + 𝐽𝑐ଶ + 𝛼𝐿ଵ) − (𝐽𝑐ଶ − 𝑀𝑎𝑏)ଶ]       +𝑝ଶ[𝑘ଶ(𝑀𝑎ଶ + 𝐽𝑐ଶ + 𝐿ଵ) + 𝑘ଵ(𝑀𝑏ଶ + 𝐽𝑐ଶ + 𝛼𝐿ଵ)] + 𝑘ଵ𝑘ଶ = 0. (20)

We note that the frequencies of the natural oscillations in this case will depend on the 
connectivity coefficient 𝛼. 
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4. Discussion of the results  

Under the kinematic perturbation of the initial system (Fig. 1), as shown in the structural 
scheme shown in Fig. 2, an external disturbance is distributed simultaneously over two inputs. 
The use of the principle of superposition results in a change in the form of transfer functions in 
comparison with conventional approaches, when only one input is perturbed. 

Under the action of one external perturbation in a system with two degrees of freedom, the 
numerator of the transfer function along the coordinate of the application of force. It is formed on 
the basis of the parameters of the corresponding partial system. According to another coordinate, 
the numerator of the transfer function is created due to the parameters of the link that implements 
interpartial bonds, which, on the whole, depends on the choice of the coordinate system. In the 
standard situation, the MOS in Fig. 1 in the coordinates 𝑦ଵ, 𝑦ଶ for a force perturbation with respect 
to the coordinate 𝑦ଵ will have one mode of dynamic damping of the oscillations, at a frequency 
determined by the expression: 

𝑛ଵଶ = 𝑘ଵ𝑀𝑎ଶ + 𝐽𝑐ଶ + 𝐿ଵ. (21)

In the second coordinate 𝑦ଶ  with force perturbation, the dynamic damping mode is not 
assumed, but due to the specificity of the transfer function of the link of the interpartial bond with 
the transfer function: 𝑊଴଴(𝑝) = (𝐽𝑐ଶ − 𝑀𝑎𝑏)𝑝ଶ, (22)

the coordinate 𝑦ଶ can acquire zero values when the condition 𝐽𝑐ଶ = 𝑀𝑎𝑏 is fulfilled.  
Using formulas for determining the frequencies of partial and natural oscillations, as well as 

the frequencies of dynamic damping of oscillations, it is possible to construct a frequency diagram 
that reflects the features of the dynamic interactions of the initial MOS, as shown in Fig. 3. 

To specify the representations, a model problem with parameters 𝑀 = 10 kg was solved;  𝐽 =  5 kg.m2; 𝑎 =  0.4 m; 𝑏 =  0.6 m; 𝑐 =  1; 𝑘ଵ =  5000 N/m; 𝑘ଶ =  10,000 N/m; 𝐿ଵ =  10 kg;  𝐿ଶ = 𝛼𝐿ଵ. 

 
Fig. 3. Diagram of dynamic interaction modes ((𝐿ଵ, 𝐿ଶ = 𝛼𝐿ଵ): the notation of the dependencies 𝜔ଵௗ௜௡ଶ (𝛼), 𝜔ଶௗ௜௡ଶ (𝛼), 𝜔ଵ௦௢௕ଶ (𝛼), 𝜔ଶ௦௢௕ଶ (𝛼), 𝑛ଵଶ(𝛼) and 𝑛ଶଶ(𝛼) are given directly in the text 
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In the diagram (Fig. 3) the solid line (––) indicates the dependency 𝜔ଵௗ௜௡ଶ (𝛼) graphs, the 
numerator of the transfer function Eq. (10) is used to construct the 𝜔ଵௗ௜௡ଶ (𝛼) graph. The value of 
the frequencies 𝜔ଵௗ௜௡ଶ  depends on the connectivity coefficient 𝛼 . Since the frequency of the 
dynamic damping of the oscillations along the 𝑦ଵ coordinate is determined from the biquadratic 
frequency equation, the graph is represented in the diagram (Fig. 3) by two fragments (or 
branches): the lower branch of the graph 𝜔ଵௗ௜௡ଶ (𝛼) corresponds to low-frequency forms of motion. 
In turn, the plot of the frequency of the dynamic damping of the oscillations 𝜔ଶௗ௜௡ଶ (𝛼) along the 𝑦ଵ coordinate is determined from the frequency equation formed by the numerator of the transfer 
function Eq. (11). In the diagram (Fig. 3), both branches of the graph 𝜔ଶௗ௜௡ଶ (𝛼) are indicated by a 
dashed line (- - -). 

In the case under consideration, the partial frequencies of the system determined by Eqs. (13), 
(14) are also represented in Fig. 3 by graphs 𝑛ଵଶ(𝛼), 𝑛ଶଶ(𝛼) and are denoted by dash-dotted lines 
(∙-∙-). The graph of the dependence 𝑛ଵଶ(𝛼) is a straight line parallel to the abscissa axis, since 𝑛ଵ, 
as it follows from Eq. (13), and does not depend on 𝛼. The graphs of the dependences 𝜔ଵ௦௢௕ଶ (𝛼) 
and 𝜔ଶ௦௢௕ଶ (𝛼) can be constructed based on the use of the frequency characteristic Eq. (12). In Fig. 
3 graphs 𝜔ଵ௦௢௕ଶ (𝛼) and 𝜔ଶ௦௢௕ଶ (𝛼) are denoted by dotted lines (∙∙∙∙). 

5. Conclusions 

Technically, such capabilities can be implemented with the help of special mechanisms 
controlled on the basis of measuring the current parameters of the dynamic state of the object of 
vibration protection. The authors suggest a method for constructing mathematical models of the 
system, based on the use of transfer functions of the system. The proposed analytical tools rely on 
the method of structural modeling, in which the mechanical oscillatory system is compared with 
a dynamically equivalent structural diagram of the automatic control system. 
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