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Abstract. This study investigates adaptive sliding neural network (NN) control for quarter active 
suspension system with dynamic uncertainties and road disturbances. A Multilayer Perceptron 
(MLP) neural network is adopted to estimate the unknown dynamics of the system. In addition, 
sliding mode controller is introduced to compensate the function of estimation error for improving 
the performance of the system. Furthermore, the uniformly and bounded of closed-loop signals is 
guaranteed by Lyapunov analysis; the adaptation laws for training of MLP are derived from 
stability analysis. The simulation results demonstrate that the proposed controller can effectively 
provide a good ride and makes great trade-off between passenger comfort and handling despite 
the dynamic uncertainties. 
Keywords: active suspension system, sliding mode control, neural network, multilayer 
perceptron. 

1. Introduction 

By the advances in the electronic industry and control, vehicle designers tend to engage active 
suspension system to enhance safety and stability in their products. Among all types of suspension 
systems, Active suspension which is used for increasing passenger comfort and handling has 
satisfied the car producers in recent years [1-3]. There are three different types of suspension 
systems, namely, passive suspension systems, semi-active suspension systems, and active 
suspension systems. So far, many models for different kind of suspension systems and controllers 
have been proposed, Hung [4] considered the parametric uncertainties. In [5], Adaptive Neural 
network observer was used for nonlinear Active suspension system with parametric uncertainty 
and support the high performance with considering actuator saturation. In [6], Zapaterio proposed 
a Neural network controller based on back stepping approach for class of vehicle suspension with 
Magnetohelogical (MR) actuator. Sun [7] by considering the parametric uncertainties used an 
adaptive back stepping controller to stabilize the motion of the car body. Ghahremani and 
Khaloozadeh [8] proposed optimal robust adaptive controller with parametric uncertainty. In [9] 
an adaptive tracking control was proposed to defeat parametric uncertainties, external disturbances 
and unknown non-ideal actuators. This [10], deals with adaptive sliding mode control in order to 
make trade-off between ride comfort and handling for semi-active magneto-rheological damper. 
This [11], proposes an adaptive sliding mode control for nonlinear active suspension systems via 
(T-S) fuzzy approach. In this paper we consider adaptive sliding neural network (NN) control for 
quarter active suspension system with dynamic uncertainties and road disturbances. Results shows 
it is a great choice for utilizing compensator to deal with the functional approximation error based 
on sliding mode controller. Our proof for utilizing new Adaptive neural networked based vibration 
control of a nonlinear quarter car model is inspired by [12]. 
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2. Problem formulation 

The proposed nonlinear quarter car suspension system with two degree of freedom dynamic 
model is shown in Fig. 1, despite the fact that quarter car suspension model is simple, but it is 
comprehensive to simulate and adopt different characteristics of real suspension system. 

 
Fig. 1. A nonlinear quarter car suspension model 

The suspension system is like a bridge between the sprung ݉ and unsprung ݉௪ masses, ݔ 
and ݔ௪ are vertical displacements of sprung and unsprung masses; and ݔ is the road profile. The 
state space equation of motion for this suspension system can be expressed as: ݉ݔሷ + ܿ௦ሺݔሶ − ሶ௪ሻݔ + ݇௦ሺݔ − ௪ሻݔ + ݂ = ሷ௪ݔ௧, (1)݉௪ܨ − ܿ௦ሺݔሶ − ሶ௪ሻݔ − ݇௦ሺݔ − ௪ሻݔ + ݇௧ሺݔ௪ − ሻݔ − ݂ = ௧. (2)ܨ−

In this research, we consider the dynamic of the system unknown and our proposed controller 
cannot be affected by uncertainties. The linear stiffness of suspension spring is defined as ݇௦ and 
stiffness of tire denoted as ݇௧ , damping constant of suspension is named ܿ௦ . The nonlinear 
characteristic of suspension is ݂  which can model the cubic stiffness and ݇௦  is the nonlinear 
spring coefficient, the new controller is not sensitive by changing constants and masses and so on; 
and our new controller can estimate the unknown dynamics of the system: 

݂ = ݇௦ሺݔ − ௪ሻଷ. (3)ݔ

The states of the quarter suspension are defined as: ܺ = ሾݔ ௪ሿ. (4)ݔ

The nonlinear quarter car model dynamics is defined as follows: ݔܯሷ = ܨ + (5) ,ݑܩ

where: ܨ = ܨଵܨଶ൨, (6)ܨଵ = −ܿ௦ሺݔሶ − ሶ௪ሻݔ − ݇௦ሺݔ − ௪ሻݔ − ݇௦ሺݔ − ଶܨ௪ሻଷ, (7)ݔ = ܿ௦ሺݔሶ − ሶ௪ሻݔ + ݇௦ሺݔ − ௪ሻݔ − ݇௧ሺݔ௪ − ሻݔ + ݇௦ሺݔ − ܯ௪ሻଷ, (8)ݔ = ݉ 00 ݉௪൨. (9)

Term ݑ is used for estimation of actuator force which is represented as follows: ݑ = ௧. (10)ܨ
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3. Neural network controller 

In the control engineering, a Neural Network (NN) is usually utilized to approximate structure 
or parametric uncertainties [13], The structure of Multilayer Perception (MLP) has been proposed 
in the design of this combinational controller, consists of three layers input, hidden and output. 
Three-layer neural network is employed to approximate the uncertain dynamic in the model of 
system. The output of this NN can be obtained: ݊݁ݐ = ்ݓ , (11)ݑ = ݂ሺݓ் ሻ, (12)ݑ = ்ݓ , (13)

݂ሺݔሻ = 1 − expሺ−ݔሻ1 + expሺ−ݔሻ. (14)

Let Taylor series expansion of the function  be:  = (15) ,ߦ்ߠ

where ߠ is weight vector of hidden and output layer, ߦ is the derivative of output with respect to ߠ parameters. 

4. Design of sliding mode controller 

To evaluate the performance of suspension system with help of NN for estimating the unknown 
dynamics has been studied. As the first step, a stable sliding surface is defined as: ݏ = ሶݔ + (16) .ݔߣ

In which ߣ is a positive constant, multiplying both sides of Eq. (16) in matrix ݏܯ :ܯ = ሶݔܯ + (17) .ݔߣܯ

By differentiating Eq. (17) and replacing that in Eq. (5) results in: ݏܯሶ = ܨ + ݑܩ + (18) .ݔߣܯ

Eq. (9) can be rewritten as follows: ݏܯሶ = ܪ + ܪ(19) ,ݑܩ = ܨ + ሶݔߣܯ . (20)

In Eq. (18) has been assumed been assumed ܪ  is uncertain and unknown, which can be 
estimated by NN; on the other hand, ܪ  = ሾܪଵ  .ଶ are Neural Networks of MLPܪ ,ଵܪ ଶሿ் andܪ

According to Eq. (10) and considering estimation of ܪ  by NN, control signal can be 
represented as follows: ݑܩ = ݏ݇− − ܪ − ሻ. (21)ݏsignሺߟ

In which ݇ and ߟ are positive parametric vectors. By replacing Eq. (21) in Eq. (19) which 
yields: ݏܯሶ = ܪ − ܪ − ݏ݇ − ሻ. (22)ݏsignሺߟ
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Adding and subtracting ܪ∗ from Eq. (22) can be expressed as: ݏܯሶ = ൫ܪ∗ − ൯ܪ − ݏ݇ − ሻݏsignሺߟ + ൫ܪ − ∗൯, (23)ܪ

where ܪ∗ = ሾܪଵ∗ ଶ∗ሿܪ  in which ܪଵ∗  and ܪଶ∗  are optimal parameters of NN; Moreover, if NN 
parameters ܪଵ and ܪଶ converge to optimal values, the error estimation signal ൫ܪ −  ∗൯ will reachܪ
minimum value or zero. According to Eq. (2) the outputs ܪ∗ and ܪ can be rewritten as follows: ܪ = ∗ܪ(24) ,ߦߠ = ሶݏܯ(25) ,ߦ்∗ߠ = ߦ෨்ߠ − ݏ݇ − ሻݏsignሺߟ + (26) .ܧ

In which ܧ is the error estimation: ܧ = ܪ − ∗. (27)ܪ

In the Eq. (26), ߠ෨  is the NN parameters error estimation vector which can be defined as 
following: ߠ෨ = ∗ߠ − (28) .ߠ

5. Stability analysis 

In this section, we will analyze the closed-loop stability in details. Considering the Lyapunov 
function as follows: ܸ = 12 ݏܯ்ݏ + ߛ12 ෨, (29)ߠ෨்ߠ

where ߛ is adaptive rate and ݏ is the sliding surface which has been defined in Eq. (16). ሶܸ = ߦ෨்ߠ൫ ்ݏ − ݏ݇ − ሻݏsignሺߟ + ൯ܧ − ߛ1 ሶ ߠ෨்ߠ . (30)

From Eq. (30), if the gain ߟ is chosen as ߟ > ത it is obviously obtained that ሶܸܧ < ݏ்ݏ݇− < 0 
and the asymptotically stability performance is derived: ሶܸ ≤ ݏ்ݏ݇− + ෨்ߠ ൬்ݏߦ − ߛ1 ሶ൰ߠ + തܧ൫்ݏ − ሶߠሻ൯, (31)ݏsignሺߟ = (32) .்ݏߦߛ

From the above proven equations, it is obvious that derivative Lyapunov function ሶܸ  is a 
non-positive function. From the fact that the outputs of the system are bounded, it is derived that 
the second-order derivative of ܸ  is also bounded and then based on Barbalat’s lemma the 
asymptotically stability is proved. 

6. Simulation 

In this section, some results are shown to support the performance of the proposed new 
controller. It is clear that the vibration of the vehicle system comes from uneven road surfaces; in 
this research sinusoidal profile road is considered, Fig. 2. Variation of displacements related to 
suspension system should not exceed the desirable range (±8 cm) for it. It is generally approved 
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that three main suspension performances should be taken into account when proposing new 
suspension controller: 1) mitigating the sprung mass acceleration ݔሷ  which can guarantee the 
passenger comfort. 2) decreasing the tire deflection ݔ௪ −   which is associated with the contactݔ
of force of tire and different road profiles. 3) suspension travel ݔ −  ௪, it is clear that the aim ofݔ
the new controller is reached, on the other word, making trade-off between ride control and 
handling by directly controlling the suspension-force with unknown dynamic. Fig. 3 show the 
simulation results. This controller is more successful in decreasing vertical acceleration, 
increasing ride comfort, decreasing tire displacements and increasing handling. Also, it is capable 
to stay stable in extreme roads’ disturbance and dynamic uncertainty. 

 
Fig. 2. Different road profiles 

 
a) 

 
b) 

Fig. 3. Rejection performance of sinusoidal disturbance 

7. Conclusions 

In this study adaptive sliding neural network controller has been designed to overcome 
dynamic uncertainties in the model of quarter suspension system and road disturbances. The 
proposed controller can estimate the unknown dynamics with respect to Lyapunov stability 
analysis which all closed loop signals are bounded and uniformly. Furthermore, new controller 
makes good compensation between handling and passenger comfort. 
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