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Abstract. To obtain the optimal probability distribution models of geotechnical parameters, the 
goodness of fit of the normal information diffusion (NID) distribution and Weibull distribution 
were investigated and compared for actual engineering samples and Monte Carlo (MC) simulated 
samples. Two datasets from actual engineering parameters (the strength of a rock mass and the 
average wind speed) were used to test the fitting abilities of these two distributions. The results 
show that the parameters of the NID distribution are easily estimated, the Kolmogorov-Smirnov 
(K-S) test results of the NID distribution are smaller than those of the Weibull distribution, and 
the NID distribution curves can perfectly reflect the stochastic volatility of geotechnical 
parameters with small sample sizes. The sample size effects on the fitting accuracy of the NID 
distribution and Weibull distribution were also investigated in this paper. Eight simulated samples 
with different sample sizes, namely, 15, 20, 30, 50, 100, 200, 500, and 1000, were produced by 
using the MC method based on two known Weibull distributions. The results show that with an 
increase in the sample size, the K-S test results of the NID distribution gradually decrease and 
tend to converge, while the chi-square test results of the NID distribution remain low and are 
always lower than those of the Weibull distribution. The cumulative probability values of the NID 
distribution are larger than those of the Weibull distribution and are always equal to 1.0000. 
Finally, the comparison of the fitting accuracy between the NID distribution and normalized 
Weibull distribution was also analyzed. 
Keywords: reliability analysis, geotechnical parameters, the optimal probability distribution, 
probability density function (PDF), normal information diffusion, Weibull distribution. 

1. Introduction 

Due to the natural attributes of rock materials, the complexity of the geological environment 
and the randomness of external loading (such as impact loads, seismic response, vibratory action, 
etc.), uncertainty is inevitable in geotechnical engineering [1-3]. To quantitatively evaluate the 
influence of this uncertainty, reliability analysis has been widely used in many fields of 
geotechnical engineering [4, 5], such as slope reliability [6-12], tunnel and underground cavity 
reliability [13, 14], etc. In the reliability analysis of geotechnical engineering under quasi-static 
loads or vibrations loads, the inference of optimal probability density function (PDF) or 
cumulative distribution function (CDF) of a geotechnical parameter is one of the most essential 
tasks; this is the first step in a reliability analysis and plays a central role in ensuring the precision 
and accuracy of the geotechnical reliability analysis [15, 16]. Through the comparison and 
selection of the classical distributions (normal distribution, log-normal distribution, Weibull 
distribution, gamma distribution, etc.), some previous studies have shown that many geotechnical 
parameters will accept a Weibull distribution as the optimal PDFs [17-20]. However, there are 
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some unsolved issues in the application process of the Weibull distribution. The specific PDF 
forms of the Weibull distribution are not uniform (including the two-parameter, three-parameter 
and mixed Weibull distributions), and the parameters of the Weibull distribution, such as the shape 
parameter 𝑚 , the scale parameter 𝜎  or the position parameter 𝜇 , are sometimes difficult to 
estimate. In addition, the total cumulative probability value of the Weibull distribution is generally 
less than 1.0000 because its defined interval does not match the actual finite interval of 
geotechnical parameters. It is necessary to study the inference method, which more accurately 
represents the actual distribution.  

In recent years, the normal information diffusion (NID) theory has been the focus of the 
attention of many scholars and has been further developed by C. F. Huang et al. [21, 22]. NID 
theory provides a new way to study function approximation based on the information assignment 
method of a fuzzy set. In NID theory, the original information is directly transferred to the fuzzy 
relation in a way that avoids calculation of the membership function and preserves the original 
information contained in the original data as much as possible. Due to the advantages of the 
information diffusion principle, NID theory has been successfully applied to some fields of study, 
especially to natural disaster and risk assessment [23-25].  

In this paper, NID theory was introduced to fit the optimal PDFs or CDFs of geotechnical 
parameters. Two geotechnical parameters, the strength of a rock mass affected by acid [26] and 
the average wind speed [27], were used as examples to investigate the goodness of fit in a 
comparative analysis of the NID distribution and Weibull distribution. In addition, the effect of 
the sample size on the fitting accuracy of these two distributions was also illustrated with MC 
simulation samples. The results show that NID distribution can make full use of the sample 
information to deduce the PDFs of the geotechnical parameters and that its fit is more accurate 
than that of the Weibull distribution. 

2. Weibull distribution 

In mathematical statistics, the Weibull distribution has a range of function forms, including 
the two-parameter, three-parameter and mixed Weibull distributions, which are widely used in 
various fields of research. The specific Weibull distribution function is determined by the shape 
parameter 𝑚, the scale parameter 𝜎 and the position parameter 𝜇. Among these parameters, the 
most important parameter is the shape parameter, which determines the basic shape of the PDF 
curve. In addition, the scale parameter effects the scaling of the PDF curve. In the geotechnical 
engineering reliability, the two-parameter Weibull distribution is one of the most commonly used 
models [18, 19]. The PDF of the two-parameter Weibull distribution can be written as Eq. (1): 𝐹(𝑥; 𝑚, 𝜎) = 1 − exp − ቀ𝑥𝜎ቁ൨ ,    0 ≤ 𝑥,    0 < 𝑚,    0 < 𝜎, (1) 

where 𝐹(⋅) denotes the cumulative distribution function. 𝑚 and 𝜎 is the shape parameter and the 
scale parameter, respectively. 

3. NID distribution 

The basic principle of the NID distribution was developed by C. F. Huang [21], and a brief 
introduction is as follows. 

Suppose that the PDF of a random variable 𝑥  is 𝑓(𝑥) ; then, 𝜇(𝑥)  is defined as a Borel 
measurable function in (−∞, +∞). The diffusion estimation of 𝑓(𝑥) can be expressed as Eq. (2): 

𝑓(𝑥) = 1𝑛Δ  𝜇 ൬𝑥 − 𝑥Δ ൰ୀଵ , (2) 
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where Δ > 0 is defined as the window width and 𝜇(𝑥) is defined as a diffusion function 𝑓(𝑥). 
According to the information diffusion process, 𝜇(𝑥) can be written as Eq. (3): 

𝜇(𝑥) = 1√2𝜋𝜎 exp ቆ− 𝑥ଶ2𝜎ଶቇ. (3) 

Substituting Eq. (3) into Eq. (2), the normal information diffusion function can be written as 
follows Eq. (4): 

𝑓(𝑥) = 1√2𝜋𝑛ℎ  ቊexp ቈ− (𝑥 − 𝑥)ଶ2ℎଶ ቋ ,ୀଵ  (4) 

where ℎ denotes the window width of the standard normal diffusion function 𝜇(𝑥), 𝑛 denotes the 
sample size of a random variable, 𝑥 (𝑖 = 1, 2, 3, …) is the observed values of the random variable, 
and 𝑥௫ and 𝑥 are the maximum value and minimum value of 𝑥, respectively. According to 
the principle of choosing the nearest normal information diffusion, ℎ = 𝛾(𝑥௫ − 𝑥)/(𝑛 − 1), 
in which 𝛾 is related to the sample size (Table 4). When the sample size is greater than or equal to 
17, 𝛾  is always equal to 1.420693101. The details of the information diffusion process are 
discussed in Huang’s study [22]. 

4. Fitting comparison of the NID distribution and Weibull distribution 

4.1. Data of actual samples 

In this paper, two datasets from actual engineering parameters (the strength of a rock mass and 
the average wind speed) were used as the examples, which accepted the Weibull distribution as 
the optimal PDF in previous studies [26, 27]. The specific data are given in Tables 1 and 2. 

Table 1. Sample 1# data 
92 107 113 114 119 120 122 127 128 130 

134 141 142 146 147 148 153 156 167  
Note: The data of the strength of a rock mass affected by acid (unit: MPa) [26] 

Table 2. Sample 2# data 
4.6 5.0 5.3 5.5 5.6 5.6 5.7 5.7 6.0 6.0 
6.3 6.4 6.5 6.5 6.6 7.0 7.1 7.6 7.8 7.8 
7.9 8.1 8.2 8.9 8.9 9.0 9.0 9.7 9.9 10.2 
Note: The data of the average wind speed (unit: mph) [27] 

4.2. Distribution interval determination for the actual samples 

Normally, the actual distribution interval of geotechnical parameters is limited. The sample 
values of the geotechnical parameters are no less than zero and cannot approach positive infinity; 
truncated processing is necessary to determine the distribution interval of geotechnical parameters. 
Here, we provide a new integral interval standard combining a 3𝜎 statistical principle and the 
effect of skewness 𝑐: the value of the left end of the interval should not be less than zero. When 𝑐 > 0, [𝜇 − 3𝜎, 𝜇 + (3 + 𝑐)𝜎], and when 𝑐 < 0, [𝜇 − (3 − 𝑐)𝜎, 𝜇 + 3𝜎], where 𝜇 and 𝜎 are the 
mean and standard deviation of the sample parameter, respectively. The truncated intervals for the 
two actual samples are given in Table 3. 

4.3. Distribution parameters of the actual samples 

The parameters of the NID distribution and Weibull distribution are given in Tables 4 and 5. 
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The window width ℎ𝑠 of the NID distribution for the samples 1# and 2# are 5.9196 and 0.2743, 
respectively. The distribution parameters of sample 1# are obtained from [26] and 1# belongs to 
the two-parameter Weibull distribution because its position parameter 𝜇 is equal to zero. For 
determining the distribution parameters of sample 2#, compared with the fitting goodness of the 
three-parameter Weibull distribution obtained from [27] and two-parameter Weibull distribution 
obtained from the maximum likelihood estimation (MLE) method, as shown in Fig. 1(b), it was 
found that the two-parameter Weibull distribution can be accepted as the probability distribution 
more accurately than the three-parameter Weibull distribution. 

Table 3. The interval values of the actual samples 

Sample Size Mean Standard deviation Skewness Truncated interval 
Left Right 

1# 19 131.8947 18.9616 –0.1464 72.2338 188.7797 
2# 30 7.1467 1.5684 0.3385 2.4415 12.3827 

Table 4. The parameters of the NID distributions 
Sample 𝑛 𝑥௫ 𝑥 𝛾 ℎ 

1# 19 167 92 1.420693101 5.9196 
2# 30 10.2 4.6 1.420693101 0.2743 

Table 5. The results of the K-S test values and CDF values 

Sample distribution parameters Comparison of the K-S test results CDF values 𝑚 𝜎 𝜇 Weibull NID 𝐷,.ହ Weibull NID 
1# 7.2500 140.3000 0.0000 0.0969 0.0683 0.3100 0.9917 1.0000 

2# (2P) 5.0339 7.7777 0.0000 0.1495 0.0576 0.2420 0.9966 1.0000 
2# (3P) 2.1754 3.4344 3.4395 0.2141 0.0576 0.2420 0.9996 1.0000 
Note: 2P and 3P denote the two-parameter and three-parameter Weibull distributions, respectively 

 

 
a) Sample 1# 

 
b) Sample 2# 

Fig. 1. Comparative K-S test results of the actual sample data 

4.4. Comparison of goodness of fit 

The K-S test is one of the most widely used goodness-of-fit tests [28]. In this paper, the K-S 
test was used to discriminate the relative superiority of the NID distribution and Weibull 
distribution, and the differences between the empirical cumulative frequencies versus theoretical 
CDF values at every sample point are shown in Fig. 1. The maximum discrepancy of the K-S test 
results 𝐷𝑠, critical values and cumulative probability values of the NID distribution and Weibull 
distribution are given in Table 5. The critical values of samples 1# and 2# are 0.3100 and 0.2420 
under 95 % confidence level, respectively. The 𝐷𝑠 results of the NID distribution are 0.0683 and 
0.0576, and those of the Weibull distribution are 0.0969 and 0.1495, respectively. Clearly, both 
of the Weibull-type distributions pass the K-S testing, while the 𝐷𝑠 of the NID distribution are 
much less than those of the Weibull distribution. In particular, the 𝐷 of the Weibull distribution 
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is 2.6 times that of the NID distribution for sample 2#. In addition, both the cumulative probability 
values of the NID distribution are 1.0000. However, the cumulative probability values of the 
Weibull distribution are 0.9917 and 0.9966, respectively. It can be concluded that the fitting 
accuracy of the NID distribution is higher than that of the Weibull distribution. 

4.5. Comparison of the fitting probability distribution curves 

The empirical cumulative frequency curves and theoretical CDF curves for the two actual 
sample datasets are given Fig. 2. Within the truncated interval, the goodness of fit of the NID 
distribution is much more accurate than that of the Weibull distribution. 

 
a) Sample 1# b) Sample 2# 

Fig. 2. Comparative CDF curves of the actual sample datasets 

 
a) Sample 1# 

 
b) Sample 2# 

Fig. 3. Comparative PDF curves of the actual sample datasets 

The PDF curves and histograms for the two actual samples are also given in Fig. 3. Due to the 
uncertainty in and complexity of the geotechnical parameters, the distributions of the actual 
samples often present a certain fluctuation. As one of the single-peak distributions, the Weibull 
distribution cannot be used to describe the characteristics of the fluctuation in the actual 
distribution. However, the NID distribution is very flexible and can be used to describe this 
fluctuation (Fig. 3). 

To summarize, whether for CDF curves or PDF curves, the NID distribution will approximate 
the actual distribution more accurately than the Weibull distribution will. The superiority of the 
NID distribution can be further confirmed by describing the actual distributions of the 
geotechnical parameters. 

5. Effect of sample size on fitting accuracy 

Considering that the sample sizes obtained in actual geotechnical engineering are generally 
small, to study the effect of the sample size on the fitting accuracy with the NID distribution and 
Weibull distribution, eight simulated samples of different sizes were produced by using the MC 
method in this paper. Two known Weibull distributions estimated by samples 1# and 2#, WBL1# 
(7.2500, 140.3000) and WBL2# (5.0339, 7.7777), were used as the generating functions in the 
MC method, and the simulated sample sizes are 15, 20, 30, 50, 100, 200, 500, and 1000 (partial 
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sample datasets are shown in Table 6). 
The K-S test was first used to test the validity of the NID distribution and Weibull distribution. 

The K-S test results and critical values under different sizes are given in Table 7 and Table 8. The 
effect of the sample size on the K-S test results is shown in Fig. 4. With an increase in the sample 
size, the K-S test results of the two fitting methods gradually decrease and tend to converge to the 
horizontal axis. However, compared with the K-S test results of the Weibull distribution, those of 
the NID distribution are much lower. The convergence speed and stability and the K-S test results 
of the NID distribution are all superior to those of the Weibull distribution. 

In addition, the chi-square test was used to investigate the fitting ability for all the samples 
with a sample size larger than 50. The chi-square test results for a 95 % confidence level are shown 
in Table 9. 

Table 6. Partial simulated samples with the MC method 
Size Simulated data 

15 
1# 122.1827, 111.8577, 111.4772, 144.3043, 143.4258, 132.1535, 142.5631, 111.0938, 

113.1547, 130.3050, 146.0154, 122.9854, 147.7328, 135.6769, 139.4246 

2# 5.6766, 4.9123, 8.9816, 4.8271, 6.6610, 9.1989, 8.1665, 7.0353, 4.1709, 4.0127, 8.7865, 
3.8716, 4.1776, 7.2920, 5.7718 

20 
1# 

131.3119, 72.4864, 117.7505, 81.6449, 147.6651, 131.8557, 163.0097, 117.6235, 
127.7709, 108.4023, 76.0449, 97.8086, 138.1223, 186.8482, 131.1880, 149.3262, 

148.6061, 142.5358, 157.7919, 118.3333 

2# 9.1276, 4.0796, 10.8625, 5.9287, 5.6591, 5.2686, 9.3094, 7.6447, 8.2525, 5.7731, 7.5141, 
4.8584, 8.6470, 8.2342, 8.8605, 8.9211, 5.2635, 6.8948, 7.0227, 8.8642 

30 

1# 

118.2600, 131.0561, 141.8753, 111.0446, 130.5486, 91.0131, 103.9049, 140.8998, 
130.8867, 141.4201, 126.5545, 114.3751, 118.4575, 155.1633, 112.0200, 167.9393, 
137.8663, 119.5188, 115.6696, 140.3312, 118.5326, 103.9849, 147.2000, 154.8328, 

148.2517, 141.2433, 144.6531, 98.2004, 163.0277, 128.3052 

2# 
5.3974, 6.7077, 7.8491, 7.1765, 7.6363, 9.3872, 8.3475, 9.0068, 8.6356, 8.3473, 7.5724, 
9.6763, 4.9454, 4.3994, 7.2694, 7.2760, 7.9056, 4.9734, 7.7720, 9.0935, 5.8966, 7.6864, 

8.3389, 7.6276, 9.2076, 8.9481, 4.4431, 4.1979, 6.9143, 9.5544 ⋮ ⋮ ⋮ 
Table 7. The K-S test results and CDF values of sample 1# 

Size Truncated interval 𝐷,.ହ K-S test results CDF values 
Left Right Weibull NID Weibull NID 

15 85.4387 171.6572 0.3380 0.2607 0.1113 0.9596 1.0000 
20 31.5233 216.2854 0.2940 0.1476 0.0799 1.0000 1.0000 
30 71.3670 187.9536 0.2420 0.1388 0.0334 0.9923 1.0000 
50 38.9533 196.7983 0.1923 0.1127 0.0200 0.9999 1.0000 

100 46.1519 195.3722 0.1360 0.0894 0.0100 0.9997 1.0000 
200 64.3473 193.7082 0.0962 0.0417 0.0050 0.9965 1.0000 
500 59.6480 196.2190 0.0608 0.0487 0.0020 0.9980 1.0000 
1000 56.5405 196.9676 0.0430 0.0301 0.0010 0.9986 1.0000 

Table 8. The K-S test results and CDF values of sample 2# 

Size Truncated interval 𝐷,.ହ K-S test results CDF values 
Left Right Weibull NID Weibull NID 

15 0.4664 12.5077 0.3380 0.3336 0.0730 1.0000 1.0000 
20 1.7339 12.8139 0.2940 0.1857 0.0500 0.9995 1.0000 
30 1.5277 12.2911 0.2420 0.1865 0.0344 0.9997 1.0000 
50 3.3735 11.1177 0.1923 0.1238 0.0200 0.9828 1.0000 

100 1.9711 11.8769 0.1360 0.0552 0.0137 0.9988 1.0000 
200 2.2851 11.8036 0.0962 0.0310 0.0050 0.9976 1.0000 
500 1.9713 11.8592 0.0608 0.0475 0.0020 0.9988 1.0000 
1000 2.2985 11.9048 0.0430 0.0209 0.0010 0.9976 1.0000 
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a) Sample 1# 

 
b) Sample 2# 

Fig. 4. K-S test results of the simulated data with the sample size 

Table 9. The results of the chi-square tests of samples 1# and 2# 

The sizes of MC 
data 

The number of 
intervals 

The chi-square test results 
Critical value for 

Weibull Weibull Critical value for 
NID NID 

1# 

50 7 9.4877 7.5426 12.5916 0.5208 
100 10 14.0671 8.8863 16.9190 1.2689 
200 14 19.6751 11.1422 22.3621 0.1825 
500 22 30.1435 15.0571 32.6705 0.5096 
1000 31 41.3372 30.2494 43.7729 0.6558 

2# 

50 7 9.4877 4.7083 12.5916 1.0037 
100 10 14.0671 4.0272 16.9190 0.6340 
200 14 19.6751 5.1070 22.3621 0.4919 
500 22 30.1435 9.6412 32.6705 0.3132 
1000 31 41.3372 28.9021 43.7729 0.5684 

The change in the chi-square test results with an increase in the sample size are shown in Fig. 5 
for the simulated samples. It can be seen that both the NID distribution and Weibull distribution 
have passed the chi-square test. However, the test results of the NID distribution are considerably 
lower than those of the Weibull distribution; the test results of the Weibull distribution are one to 
two orders of magnitude greater than those of the NID distribution. Thus, the goodness of fit of 
the NID distribution is superior to that of the Weibull distribution. Moreover, the test results of 
the NID distribution are much more stable than those of the Weibull distribution. 

 
a) Sample 1# 

 
b) Sample 2# 

Fig. 5. The chi-square test results of the simulated data with the sample size 

The CDF curves of the NID distribution and Weibull distribution for the simulated data of 
sample 1# are shown in Fig. 6. It is easy to see that, with an increase in the sample size, the CDF 
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curves of the NID distribution are always closer to the empirical cumulative distribution function 
(EDF) curves than those of the Weibull distribution. Clearly, when the sample size is equal to 
1000, the curves of the NID, Weibull and empirical distributions are nearly coincident. 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 
g) 

 
h) 

Fig. 6. Comparative CDF curves of the simulated data of sample 1# (sample size 𝑛) 

The CDF values for simulated samples 1# and 2# with different sizes are shown in Tables 7 
and 8, and the trends of the CDF values with sample size are shown in Fig. 7. Clearly, with an 
increase in the sample size, the cumulative probability values of the NID distribution are always 
equal to 1.0000 and are completely unaffected by the sample size. However, the cumulative 
probability values of the Weibull distribution are generally less than 1.0000, and there is a 
considerable amount of volatility when the sample size increases. It is evident from the above 
analysis that the NID distribution has a higher fitting precision and wider applicability. 
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a) Sample 1# 

 
b) Sample 2# 

Fig. 7. Cumulative probability values of the simulated data with the sample size 

6. Discussion 

In the truncated interval, the cumulative probability values of classical distributions are usually 
less than 1.0000. To solve this problem, the normalization of the truncated classical distribution 
was introduced. The basic principle of normalized distribution is introduced as follows: 𝑓ሚ(𝑥) = 𝑘𝑓(𝑥),    𝐿 < 𝑥 < 𝑅, (5) 𝑘 = 1𝐹(𝑅) − 𝐹(𝐿), (6) 

where 𝑓ሚ(𝑥) is the normalized PDF, 𝐹(𝑥) is the cumulative PDF, 𝑓(𝑥) is the classical PDF, 𝑥 is 
the value of the sample, and 𝑅  and 𝐿  are the maximum and minimum values of the sample, 
respectively.  

Table 10. The results of K-S test values of the normalized Weibull distributions 
Sample 𝐷,.ହ 𝑘 Normalized Weibull NID Weibull 

Actual 1# 0.3100 1.0047 0.1046 0.0683 0.0969 
2# 0.2420 1.0030 0.1475 0.0576 0.1495 

MC 1# 

15 0.3380 1.0038 0.1670 0.1113 0.2607 
20 0.2940 1.0006 0.1031 0.0799 0.1476 
30 0.2420 1.0065 0.1225 0.0334 0.1388 
50 0.1923 1.0002 0.0736 0.0200 0.1127 

100 0.1360 1.0005 0.0769 0.0100 0.0894 
200 0.0962 1.0031 0.0428 0.0050 0.0417 
500 0.0608 1.0027 0.0334 0.0020 0.0487 
1000 0.0430 1.0018 0.0287 0.0010 0.0301 

MC 2# 

15 0.3380 1.0002 0.1579 0.0730 0.3336 
20 0.2940 1.0008 0.1409 0.0500 0.1857 
30 0.2420 1.0001 0.1091 0.0344 0.1865 
50 0.1923 1.0051 0.0722 0.0200 0.1238 

100 0.1360 1.0008 0.0494 0.0137 0.0552 
200 0.0962 1.0014 0.0432 0.0050 0.0310 
500 0.0608 1.0011 0.0292 0.0020 0.0475 
1000 0.0430 1.0020 0.0207 0.0010 0.0209 

The K-S test values of the normalized Weibull distribution for a 95 % confidence level are 
shown in Table 10. The sequence of the K-S test value of actual sample 1# is 0.0683 (NID) 
< 0.0969 (Weibull) < 0.1046 (normalized Weibull) < 0.3100 (Critical value). The sequence of the 
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K-S test value of actual sample 2# is 0.0576 (NID) < 0.1475 (normalized Weibull) < 0.1495 
(Weibull) < 0.2420 (Critical value). It can be found that all of the K-S test values pass the testing. 
However, all of the K-S test values of the normalized Weibull distribution are much more than 
those of the NID distribution, which indicates that the fitting ability of NID distribution is better 
than that of normalized Weibull distribution.  

7. Conclusions 

To accurately approximate the PDFs for geotechnical parameters, the NID method was 
introduced; several conclusions of this study are given below. 

1) The PDFs of two sets of geotechnical samples were fitted with the NID distribution and 
Weibull distribution. The results show that, for the K-S test results, the chi-square test results and 
the cumulative probability values, the NID distribution is more accurate than the Weibull 
distribution. In addition, compared with the PDF curves of the Weibull distribution, those of the 
NID distribution can overcome the single-peak feature of the classical distributions and agree 
more closely with those of the actual distribution. 

2) The effect of the sample size on the fitting accuracy for the NID distribution and Weibull 
distribution was investigated with the MC method, and eight simulated samples were produced. It 
can be found that with an increase in the sample size, the K-S test results of the NID distribution 
are all lower than those of the Weibull distribution. In addition, its convergence speed and stability 
are superior to those of the Weibull distribution. The cumulative probability values of the NID 
distribution are always equal to 1.0000 in the truncated interval and are unaffected by the sample 
size. However, the cumulative probability values of the Weibull distribution are generally less 
than 1.0000 and are unstable. 

3) The comparison of the fitting accuracy between the NID distribution and the normalized 
Weibull distribution was also discussed, and the results show that, even if the cumulative 
probability values are equal to 1 for those two distributions, the fitting accuracy of the NID 
distribution is still higher than that of normalized Weibull distribution. 
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