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Abstract. An interval support vector deterministic optimization model (ISVD) is proposed for the 
fault classification problem of uncertainty samples in this paper. Firstly, based on the order relation 
theory, support vector machines using interval samples is transformed into ISVD, which is a 
two-objective optimization problem, with the midpoint and the radius optimized at the same time. 
Then, ISVD is converted into a single objective optimization model by the linear combination. 
The single objective optimization model includes Lagrange multiplier vector and interval sample 
vectors, both of which are nested. Thus, the nested particle swarm optimization (PSO) based on 
dynamic decreasing inertia weight is applied to select the optimal Lagrange multiplier vector of 
this model. Lastly, the effectiveness of the proposed method is proved by the data set of University 
of California Irvine (UCI) and the roller bearing fault experiments. The experimental results show: 
ISVD owns outstanding generalization ability with the help of the structured risk minimization 
and global optimization. The accuracy of the proposed ISVD is better than that of the native Bayes 
uncertain classification method 1 (NBU1), native Bayes uncertain classification method 2 (NBU2) 
and the formula-based Bayes classifier (FBC).  
Keywords: roller bearing, ISVD, nested PSO, interval. 

1. Introduction 

As a key component of the mechanical system, roller bearing often causes disorder for the race 
fault, ball fault etc. These faults bring great security risks to the mechanical system. Therefore, the 
fault diagnosis of roller bearing is of tremendous practical significance in engineer [1-4]. 
Traditional fault diagnosis methods only aim at deterministic fault samples, ignoring the 
uncertainty of the samples. However, the uncertainty of the samples should never be ignored. For 
these years, many scholars have harvested some representative research achievements in 
uncertainty interval data classification. Based on probability density, Sutar puts forward an 
interval data classification which extends classical decision tree algorithms to handle data with 
interval values [5]. Li et al. propose an interval data decision tree classification algorithm which 
combined with evidence theory [6]. Naive Bayes, as a widely used classification method for 
deterministic samples, has aroused a lot of interest among relevant researchers. Qin et al. create 
NBU1 and NBU2 [7]. NBU1 and NBU2 both use the parameter estimation method based on Gauss 
distribution assumption to calculate the class conditional probability density function of interval 
data. There is a slight difference between the above two methods in processing of the interval data 
model. However, NBU1 and NBU2 need the accuracy type of the class conditional probability 
density function of uncertain data. FBC algorithm, proposed by Ren etc., assumes uncertain 
interval data to meet the Gauss distribution [8]. The non parametric estimation in the Parzen 
window method is applied to calculate the types of the class conditional probability density 
function of interval samples. However, as a lazy learning method, FBC needs all training samples 
to predict each rolling bearing fault repeatedly. Therefore, both the computational complexity and 
the memory requirements of this method are too enormous to be offered in fault diagnosis fields.  
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Support vector machines (SVM) is proposed by Vapnik [9]. Since structured risk minimization 
is applied in this method, it enables SVM to generalize better in the unseen interval testing samples 
than neural networks etc. which apply empirical risk minimization [10]. SVM can solve various 
problems in most of learning methods, such as small samples, nonlinearity, over fitting, high 
dimension. To make full use of these advantages, an ISVD model is proposed for the fault 
classification problem of uncertainty roller bearing samples. Meanwhile, the midpoint and the 
radius are optimized in this deterministic model. These two deterministic objective functions can 
be converted into a single objective optimization model by the linear combination. ISVD has 
Lagrange multiplier vector and interval sample vectors. These two groups of vectors are nested. 
The nested PSO algorithm is constructed based on the dynamic decreasing inertia weight PSO 
[11]. The advantages of nested PSO include excellent global optimization ability, fast convergence 
speed and easy implementation etc. Therefore, in this paper, the nested PSO is used to select the 
optimal decision variable and uncertain variable of ISVD.  

The following parts of this paper is organized as the following. Section 2 reviews the order 
relation of interval number briefly. Support vector machines are introduced in Section 3, while an 
ISVD model is proposed in Section 4. Section 5 claims an optimization solver method based on 
the nested PSO for ISVD. Section 6 analyzes the classification results of UCI data and roller 
bearing faults, as well as the comparison results with other methods. Finally, the conclusions are 
presented in Section 7. 

2. The theory of order relation 

The order relation of interval number is proposed by Ishibuchi et al. [12]. For the minimization 
optimization problem, order relation ≤௠௪ of interval number is defined as following: 𝐴 ≤௠௪ 𝐵,   𝑚(𝐴) ≥ 𝑚(𝐵),   𝑤(𝐴) ≥ 𝑤(𝐵), 𝐴 <௠௪ 𝐵,   𝐴 ≤௠௪ 𝐵,   𝐴 ≠ 𝐵, 𝑚(𝐴) = 𝐴௅ + 𝐴ோ2 ,   𝑤(𝐴) = 𝐴ோ − 𝐴௅2 , 𝑚(𝐵) = 𝐵௅ + 𝐵ோ2 ,   𝑤(𝐵) = 𝐵ோ − 𝐵௅2 . (1) 

From Eq. (1), when an interval number 𝐴 is worse (≤௠௪) than another interval number 𝐵, the 
midpoint 𝑚(𝐴) and the radius 𝑤(𝐴) are bigger than or equal to 𝑚(𝐵) and 𝑤(𝐵); 

For maximum optimization problems, Eq. (1) is converted as follows: 𝐴 ≤௠௪ 𝐵,    𝑚(𝐴) ≤ 𝑚(𝐵),   𝑤(𝐴) ≤ 𝑤(𝐵), 𝐴 <௠௪ 𝐵,   𝐴 ≤௠௪ 𝐵,   𝐴 ≠ 𝐵. (2) 

Through using ≤௠௪ to compare the objective function, one can know that the interval of the 
objective function caused by the uncertainty has not only a small midpoint but also a small radius. 
Thus, the uncertain objective function can be transformed into a two-objective optimization 
problem. One objective optimization problem is applied to get the smallest midpoint. The other 
optimization problem is utilized to obtain the smallest radius [13]. 

3. The theory of SVM 

SVM is a machine learning method which is based on the structured risk minimization. In 
SVM, the classification can not only separate the two types of samples correctly, but also make 
the maximum classification distance. The former ensures the minimum of the empirical risk, and 
the latter is actually to minimize the confidence range. Let {(𝐱ଵ, 𝑦ଵ), … , (𝐱௡, 𝑦௡)} ⊂ 𝜒 × 𝑅  be 
training data. The objective function of SVM can be described as following: 
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minఠ,௕,క೔𝐽 = 12 𝑤்𝑤 + 12 𝑐 ෍ 𝜉௝ଶ௡
௝ୀଵ , 𝑠. 𝑡. 𝑦௝(𝑤்𝐱௝) + 𝑏) ≥ 1 − 𝜉௝,𝜉௝ > 0, 𝑗 = 1, … , 𝑛,  

(3) 

where 𝜉௝ is the slack variable, 𝑐 is the penalty parameter. This optimization problem, including 
the constraints, can be solved by the Lagrange function as follows: 

𝐿(𝐶, 𝛽, 𝜇, 𝜉, 𝛼) = 12 𝑤்𝑤 + 12 𝑐 ෍ 𝜉௝ଶ௡
௝ୀଵ − ෍ 𝛼௜௡

௜ୀଵ ൣ𝑦௝൫𝑤்𝐱௝ + 𝑏൯ − 1 − 𝜉௝൧. (4) 

Computing the partial derivatives, the solution of primal (4) can be calculated by working out 
the following Wolfe dual problem: 

max ෍ 𝑎௜௡
௜ୀଵ − 12 ෍ ෍ 𝛼௜௡

௝ୀଵ
௡

௜ୀଵ 𝛼௝𝑦௜𝑦௝൫𝐱௝𝐱௜൯,s. t.   0 ≤ 𝑎௜ ≤ 𝐶,෍ 𝑎௜௡
௜ୀଵ 𝑦௜ = 0,   𝑖 = 1, … , 𝑛,  (5) 

where 𝑎௜ is Lagrange multiplier. Only those points with 0 ≤ 𝑎௜ ≤ 𝐶 are named support vectors. 

4. The proposed ISVD optimization model  

Through the above treatments, the SVM optimization problem is a quadric program. But when 
the training sample is an uncertain interval number 𝐱௜ = [𝑥௜௅, 𝑥௜ோ], SVM is converted to ISVD 
model as follows:  

min𝑓(𝐚, 𝐱) = 12 ෍ ෍ 𝛼௜௡
௝ୀଵ

௡
௜ୀଵ 𝛼௝𝑦௜𝑦௝൫[𝑥௜௅, 𝑥௜ோ], ൣ𝑥௝௅, 𝑥௝ோ൧൯ − ෍ 𝑎௜௡

௜ୀଵ ,s. t.   0 ≤ 𝑎௜ ≤ 𝐶,෍ 𝑎௜௡
௜ୀଵ 𝑦௜ = 0,   𝑖 = 1, … , 𝑛,  (6) 

where 𝐚 is the Lagrange multiplier vector, 𝐱 is the uncertain interval samples vector. Through the 
above order relation ≤௠௪ in Eq. (1), the optimal interval of the Eq. (6) has a small midpoint and 
a small radius simultaneously. For this reason, interval support vector optimization model in Eq. (6) 
can be converted ISVD optimization model. A deterministic two-objective programming problem 
is presented as: min [𝑚൫𝑓(𝐚, 𝐱), 𝑤൫𝑓(𝐚, 𝐱)൯൧, s. t.  𝑔(𝐚) = ෍ 𝑎௜௡

௜ୀଵ 𝑦௜ = 0, 0 ≤ 𝑎௜ ≤ 𝐶, (7) 
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𝑚൫𝑓(𝐚, 𝐱)൯ = min𝐱∈୻ 𝑓(𝐚, 𝐱) + max𝐱∈୻ 𝑓(𝐚, 𝐱)2 , 𝑤൫𝑓(𝐚, 𝐱)൯ = max𝐱∈୻ 𝑓(𝐚, 𝐱) − min𝐱∈୻ 𝑓(𝐚, 𝐱)2 , 𝐚 ∈ Ω௡,   𝐱 ∈ Γ = ൛𝐱|𝐱௅ ≤ 𝐱 ≤ 𝐱ோൟ,   𝑖 = 1, … , 𝑛.  

This two objective programming problem includes the objective function and the constraints.  
A linear combination method is often used to dispose of the objective function [14]. The penalty 
function method is used to deal with the constraints [15]. Thus Eq. (7) can be converted into a 
single objective optimization model with a penalty function:  

minℎ(𝐚, 𝐱) = 𝛾𝑤൫𝑓(𝐚, 𝐱)൯𝜓 + (1 − 𝛾)𝑚൫𝑓(𝐚, 𝐱)൯𝜑 + 𝜎𝑔(𝐚), 𝜑 = min𝐚∈ஐ೙𝑚൫𝑓(𝐚, 𝐱)൯, 𝜓 = min𝐚∈ஐ೙𝑤൫𝑓(𝐚, 𝐱)൯, (8) 

where 0 ≤ 𝛾 ≤ 1 is a weighting factor of 𝑚(𝑓(𝐚, 𝐱)) and 𝑤(𝑓(𝐚, 𝐱)). 𝜑 and 𝜓 are normalization 
factors, 𝜎 is the penalty factor which is often set as a large value. Eq. (8) is a nested nonlinear 
optimization problem. For a Lagrange multiplier vector 𝐚, the inner optimization processes are 
involved to obtain the smallest midpoint and radius for all the uncertain interval samples vector 𝐱. 

5. Nested PSO based on dynamic decreasing inertia weight for ISVD model 

PSO algorithm, different from the genetic algorithm etc., is evolved by the cooperation and 
competition among individuals but not genetic operators. In the stage of evolution, PSO has many 
advantages, especially its excellent global optimization ability, simple operation and easy 
implementation, no selection, crossover, mutation and so on. In order to further improve the global 
optimization ability of PSO. This paper introduces a modified PSO using dynamically decreasing 
inertia weight [11]. As mentioned by Shi and Eberhart, when the inertia weight is low (𝜔 ≤ 0.8), 
the search time is very short, that is, all the particles tend to gather together quickly. This confirms 
that the PSO is more like a local search algorithm when 𝜔 is small. If there is an acceptable 
solution within the initial search space, then the PSO will find the global optimum quickly, 
otherwise it will not find the global optimum. On the contrary, when the inertia weight is large 
(𝜔 ≥ 1.2), the PSO algorithm always explores new regions. Of course, the PSO algorithm needs 
more iteration to reach the global optimal, and it is more likely not to find the global optimal. 
When the inertia weight is moderate (0.8 < 𝜔 < 1.2), the PSO will have the best chance to find 
the global optimum but also takes a moderate number of iterations. According to these analyses, 
Shi and Eberhart do not set the inertia weight as the fixed value, but set it to a function that 
decreases linearly with time, and the function of the inertia weight is: 𝜔 = 𝜔୫ୟ୶ − 𝜔୫ୟ୶ − 𝜔୫୧୬𝑖𝑡𝑒𝑟୫ୟ୶ ∙ 𝑘.  

The detailed algorithm of PSO based on dynamic decreasing inertia weight can be summarized 
as follows: 

Step 1: Particles are set as the random initial position 𝑥௜௞, 𝑖 = 1, … , 𝑛௦௪ and the random initial 
velocity 𝑣௜௞, 𝑖 = 1, … , 𝑛௦௪ in the search space. 

Step 2: The fitness value is calculated for each particle. 
Step 3: Compares each particle with its fitness 𝑓௜ௗ௞  and individual extreme 𝑝𝑏𝑒𝑠𝑡௜ௗ௞  . If  𝑓௜ௗ௞ > 𝑝𝑏𝑒𝑠𝑡௜ௗ௞ , 𝑝𝑏𝑒𝑠𝑡௜ௗ௞  is replaced by 𝑓௜ௗ௞ . 
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Step 4: updates the velocity and position of each particle according to the following equations: 𝑣௜ௗ௞ାଵ = 𝜔 ⋅ 𝑣௜ௗ௞ + 𝑐1 ⋅ 𝑟𝑎𝑛𝑑( ) ⋅ ൫𝑝𝑏𝑒𝑠𝑡௜ௗ௞ − 𝑥௜ௗ௞ ൯ + 𝑐2 ⋅ 𝑟𝑎𝑛𝑑( ) ⋅ ൫𝑔𝑏𝑒𝑠𝑡௜ௗ௞ − 𝑥௜ௗ௞ ൯, 𝑥௜ௗ௞ାଵ = 𝑥௜ௗ௞ + 𝑣௜ௗ௞ାଵ, 𝜔 = 𝜔୫ୟ୶ − 𝜔୫ୟ୶ − 𝜔୫୧୬𝑖𝑡𝑒𝑟୫ୟ୶ ∙ 𝑘. (9) 

Step 5: If the end condition is satisfied, the algorithm is exit. Otherwise, 𝑘 = 𝑘 + 1 and go 
back to Step 2. 

For these advantages of dynamic decreasing inertia weight PSO, a nested PSO is proposed to 
select the optimal Lagrange multiplier vector 𝐚 of Eq. (8). There are two level dynamic decreasing 
inertia weight PSO in the nested PSO. The outer dynamic decreasing inertia weight PSO (outer 
PSO) is used to obtain the optimal value of the objective function minℎ(𝐚, 𝐱). The deterministic 
Lagrange multiplier vector 𝐚 is used as the particle in this PSO. The inner dynamic decreasing 
inertia weight PSO (inner PSO) is applied to get the min𝐱∈୻ (𝑓(𝐚, 𝐱))  and max𝐱∈୻ (𝑓(𝐚, 𝐱)) . The 
uncertain training sample vector 𝐱 is used as the particle in inner PSO. For computing each interval 
of the objective function 𝑓(𝐚, 𝐱), the outer PSO will call for two cycles of the inner PSO. Then 
the midpoint value 𝑚(𝑓(𝐚, 𝐱)) and radius of the interval function 𝑤(𝑓(𝐚, 𝐱)) are calculated. The 
maximum generations are employed as stopping criterion for nested PSO. This paper draws the 
flow chart of the nested PSO for interval support vector deterministic optimization model in Fig. 1. 

 
Fig. 1. Flow chart of nested PSO for ISVD model 
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6. The experiment 

To check the validity of the proposed ISVD, an UCI data set and the roller bearing fault 
experiments are carried out in this section.  

6.1. The classification of UCI data 

In this experiment, UCI iris data [16] set are used to test the effectiveness of ISVD based on 
nested PSO. Since there is not a set of standard uncertain data set in UCI, this experiment 
introduces uncertain information on the UCI data sets. The detailed method for adding uncertain 
information is as follows [17]: 

For any UCI samples 𝐱௜ = (𝑥௜ଵ, 𝑥௜ଶ, … , 𝑥௜௠), 𝑖 = 1, … , 𝑛, one can add the interval uncertain 
information to each feature vector. The interval feature vector is listed as follows: ൣ𝑥௜௝, 𝑥௜௝൧ = ൣ𝑥௜௝ − 𝑟௝, 𝑥௜௝ + 𝑟௝൧, 𝑖 = 1, … , 𝑛, 𝑗 = 1,2, … , 𝑚, (10) 

where 𝑟௝ is the interval radius. It can be obtained is as follows: 

𝑟௝ = 𝜆 max(𝑥௜௝) − min(𝑥௜௝)20 , 𝑗 = 1,2, … , 𝑚. (11) 

The difference between max(𝑥௜௝) and min(𝑥௜௝) indicates the range of the sample set on the 
dimension 𝑗. 𝜆 is a parameter that controls the size of the interval noise. For example: if 𝜆 = 1, 
the distribution range of each attribute is added 10 % noise. The interval samples of Iris are shown 
in Table 1. 

Table 1. interval samples of iris 
Iris type Sepal length Sepal width Petal length Petal width 

Setosa [5.05, 5.15] [3.45, 3.55] [1.38, 1.42] [0.185, 0.215] 
[4.85, 4.95] [2.95, 3.05] [1.38, 1.42] [0.185, 0.215] 

Versicolour [6.395, 6.605] [2.75, 2.85] [4.52, 4.68] [1.47, 1.53] 
[5.595, 5.805] [2.75, 2.85] [4.42, 4.58] [1.27, 1.33] 

Virginica [6.565, 6.835] [2.445, 2.555] [5.695, 5.905] [1.76, 1.84] 
[7.065, 7.335] [3.545, 3.655] [5.995, 6.205] [2.46, 2.54] 

In order to ensure the stability, this paper uses 90 % of cross validation (10-fold Cross 
validation) estimation. The data sets are randomly divided into 10 groups. One group is taken 
turns to be chosen as the test set and the other 9 groups as the training set. Averaging 10 times is 
the result of the final classification accuracy. By using the training set, an interval support vector 
deterministic optimization is constructed in Eq. (8). In this equation, 𝐱 is the interval training 
samples. 𝛾 is a weighting factor. The larger 𝛾 means that the preference of the radius of objection 
function is increased, while the preference of the midpoint is reduced. In this experiment, 𝛾 is set 
0.5 which means that the radius and midpoint are given a same preference. The proposed interval 
support vector deterministic optimization based on nested PSO has been implemented in MatLab 
2012. The computer owns 3.2G GHz Core (TM)2 i3 CPU and 2.0 G memory. The operation 
system is Microsoft Windows 7. The detailed information of nested PSO is as follows: 

In outer PSO:  
(1) Lagrange multiplier vector 𝐚 as particle of outer PSO. Number of particles: 𝑛 = 25; 
(2) The largest iteration number: 𝑖𝑡𝑒𝑟୫ୟ୶ = 100;  
(3) Inertia weight of PSO: 𝜔୫ୟ୶ = 1.2, 𝜔୫୧୬ = 0.7298; 
(4) Positive acceleration constants: 𝑐ଵ = 1.4962, 𝑐ଶ = 1.4962; 
In inner PSO, uncertain interval training sample vector 𝐱 is used as the particle of inner PSO. 

The other parameters are the same as the outer PSO. Iris data has three types, but ISVD only aims 
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to tackle two classification problems. For this reason, classification problems of iris data are 
divided into three groups classification problems. The detailed classification types are: Setosa vs 
Versicolour, Setosa vs Virginica, Versicolour vs Virginica. The nested PSO runs three times to 
solve these two classification problems. The convergence result of nested PSO is shown in Fig. 2 
and Table 2.  

 
Fig. 2. Convergence performance of nested PSO in ISVD 

Table 2. Optimization results for each two classification problem 

– The interval object 
function 

The midpoint of 
object function 

The radius of 
object function 

The value of 
penalty function 

Setosa vs 
Versicolour [5.3715×104, 7.4131×104] 6.3923×104 1.0208×104 2.0125 

Setosa vs 
Virginica [6.2817×104, 9.8769×104] 8.0793×104 1.7976×104 1.0314 

Versicolour vs 
Virginica [2.8714×104, 4.9730×104] 3.9222×104 1.0508×104 0.9857 

From Fig. 2 and Table 2, it can be found that the iterative solutions of nested PSO can approach 
the optimum in the 87 iterations. Especially for Setosa vs Virginica, only in 61 iterations, the value 
of the single objective optimization model combined with midpoint and radius is reduced from 
1.265×105 to 4.13×104. Hence, the nested PSO has a higher convergence velocity. Through nested 
PSO, the optimal Lagrange multiplier vector 𝐚  can be obtained and the optimal classification 
accuracy of ISVD can be calculated finally. The classification accuracy to analyze the 
performance of the proposed ISVD, NBU1, NBU2 and FBC is demonstrated in Table 3. 

Table 3. Classification accuracy comparison for Iris 
Iris types NBU1 NBU1 FBC The proposed ISVD 

Setosa 100 % 100 % 100 % 100 % 
Versicolour 95 % 95 % 95 % 95 % 
Virginica 92.5 % 92.5 % 95 % 97.5 % 

According to Table 3, the accuracy of the proposed method is 100 %, 95 %, 97.5 % for Iris 
Setosa, Iris Versicolour and Iris Virginica respectively. The classification accuracy of the 
proposed method is 5 % higher than that of NBU1and NBU2 in the Iris Virginica type. For all the 
three Iris types, the accuracy of the proposed method is 97.5 %. The accuracy of NBU1 and NBU2 
is only 95.83 %. Classification accuracy of NBU1 and NBU2 algorithm is the same, which is 
reasonable since the NBU1 and NBU2 are similar and these two methods are only different in the 

0 10 20 30 40 50 60 70 80 90 100

104

2

4

6

8

10

12

14

Setosa vs Versicolour

Setosa  vs Virginica

Virginica vs Versicolour



2966. A ROLLER BEARING FAULT DIAGNOSIS METHOD USING INTERVAL SUPPORT VECTOR DETERMINISTIC OPTIMIZATION BASED ON NESTED 
PSO. QINGE DAI, YONGQI CHEN, YANG CHEN 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 2873 

equation of average value and standard deviation. The accuracy of FBC is 96.67 %. However, as 
a lazy learning method, FBC needs all training samples to predict each rolling bearing fault 
repeatedly. Therefore, the memory requirements of this method are too enormous to be offered in 
fault diagnosis fields. The accuracy of the ISVD is higher than that of NBU1, NBU2 and FBC 
because the proposed method is constructed based on structured risk minimization theory. This 
theory pays attention to the empirical risk minimization and the model complexity minimization 
simultaneously. For this reason, the over fitting problem can be avoided and the proposed method 
has higher generalization ability for testing samples. Furthermore, based on dynamic decreasing 
inertia weight, nested PSO can obtain the optimal Lagrange multiplier vector 𝐚 and improves the 
accuracy of ISVD because of its excellent global optimization ability 

6.2. Fault diagnosis for the roller bearing 

To verify the effectiveness of the proposed method, experiments are carried out on a roller 
bearing fault test platform in Fig. 3. In this test platform of Case Western Reserve University, an 
AC motor (2 hp) drives a shaft as the moving output. The corresponding speed of this motor can 
reach 1730 rpm. The test roller bearing supports the motor shaft at the drive end. The deep groove 
ball bearing 6205-2RS JEM SKF is selected in the tests platform. Bearing state consists of four 
categories: normal, inner race fault, outer race fault and ball fault.  

 
a) 

 
b) 

Fig. 3. a) Motor drive fault test platform, b) schematic diagram of the tests platform 

Status of fault damage bearings is a single damage. Damage diameter is divided into 7 mils, 
14 mils, 21 mils and 28 mils. The accelerometers are used to collect vibration data. These data can 
be stored by a recorder at a sampling frequency of 12 kHz for different bearing conditions. 

Various defect roller bearing is produced by the electro-discharge machining in this test 
platform. Different roller bearings, such as inner race fault, outer race fault and ball fault are used 
to examine the proposed approach. Some defect roller bearing is shown in Fig. 4. 

 
a) 

 
b) 

 
c) 

Fig. 4. a) outer race fault, b) inner race fault, c) ball fault 

Twelve fault types, such as normal bearing, inner race faults whose fault severity are 7 mils, 
14 mils, 21 mils and 28 mils, outer race faults whose fault severity are 7 mils, 14 mils, 21 mils, 
ball faults whose fault severity are 7 mils, 14 mils, 21 mils and 28 mils, are used in this experiment.  
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6.2.1. Uncertain interval feature vectors acquisition 

In this section, each group of bearing fault vibration signal composed of 2048 points, is 
decomposed by intrinsic time scale decomposition (ITD) method in order to obtain a set of proper 
rotation components and the base component [18, 19]. The first three groups of rotation 
component instantaneous amplitude and instantaneous frequency are applied, since they contain 
the main information. Then, the sample entropy of instantaneous amplitudes and instantaneous 
frequencies is calculated. Fault data of specific features extraction steps are shown as: 

(1) Obtain the fault vibration data from the accelerometers of the fault test platform.  
(2) Through ITD decomposition, the fault vibration data is decomposed of a set of rotation 

components and the baseline component. The decomposition results are given as Fig. 5. 
(3) Obtain the first 3 group rotation components instantaneous amplitude, instantaneous 

frequency and instantaneous frequency. 
(4) Calculate the sample entropy of the instantaneous amplitude and instantaneous frequency.  

 
Fig. 5. Decomposition results gained by ITD for inner race fault (28 mils) 

Each feature vector component is six-dimensional because it includes the sample entropy of 
the instantaneous phase and instantaneous frequency of the first 3 group rotation components. By 
this means, 100 samples for each kind of fault signal can be obtained. Since there is no open 
standard uncertainty rolling bearing fault number set, this experiment also introduces uncertainty 
information on the rolling bearing fault samples [13]. The detailed method for adding uncertainty 
information is the same as UCI iris mentioned above. 

Then, a part of the training samples and testing samples are shown in Table 4. The amplitude 
entropy 1 in Table 3 represents the first rotation component instantaneous amplitude sample 
entropy, other characteristics and so on. 

6.2.2. Comparative analysis of classification accuracy 

This section uses rolling bearing uncertain interval faults to compare the classification 
accuracy of NBU1, NBU2, FBC and the proposed method. 

In order to ensure the stability of the test results, it is true that 10-fold cross-validation method 
is also applied to verify the algorithm classification accuracy. Weighting factor of the proposed 
method 𝛾 is set 0.5. The experimental results are shown in Table 5. From Table 5, experimental 
results show that the classification accuracy of the proposed ISVD is better than NBU1, NBU2 
and FBC. According to Inner race fault (14mils), accuracy of the proposed ISVD is 6.25 % higher 
than FBC, NBU1 and NBU2. Moreover, the total accuracy can be calculated. The proposed ISVD: 
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97.08 %. The reason of such a high accuracy is structural risk minimization principle and the 
outstanding global optimization ability of nested PSO in the learning process of the proposed 
method. The accuracy of NBU1is 94.79 %, while the accuracy of NBU2 is 94.58 %. Classification 
accuracy of NBU1 and NBU2 algorithm based on Naive Bias is very close, which is reasonable 
since these two methods are constructed based on Naive Bias and only different in the equation of 
average value and standard deviation. The accuracy of FBC: 95.31 %. However, the FBC 
algorithm is a kind of lazy learning method. It needs all training samples to predict each rolling 
bearing fault repeatedly. Both the computational complexity and memory requirements of this 
method are too large to be offered in roller bearing fault diagnosis. 

Table 4. Fault samples for twelve kinds of bearing vibration signals 
Fault 

condition 
Fault 

severity 
Amplitude 
entropy 1 

Amplitude 
entropy 2 

Amplitude 
entropy 3 

Frequency 
entropy 1 

Frequency 
entropy 2 

Frequency 
entropy 3 

Normal 0 [0.337, 0.381] [0.169, 0.179] [0.053, 0.057] [0.772, 0.797] [0.323, 0.365] [0.177, 0.185] 

Inner race 
fault 

7 [0.745, 0.756] [0.423, 0.429] [0.171, 0.175] [0.960, 0.967] [1.058, 1.070] [0.589, 0.599] 
14 [0.330, 0.340] [0.392, 0.398] [0.137, 0.141] [0.826, 0.837] [0.921, 0.941] [0.527, 0.538] 
21 [0.340, 0.347] [0.302, 0.309] [0.093, 0.099] [0.527, 0.534] [0.676, 0.687] [0.463, 0.472] 
28 [0.912, 0.925] [0.309, 0.316] [0.132, 0.136] [0.909, 0.917] [0.730, 0.739] [0.471, 0.482] 

Outer race 
fault 

7 [0.174, 0.179] [0.385, 0.396] [0.136, 0.139] [0.764, 0.776] [0.833, 0.854] [0.532, 0.541] 
14 [0.993, 1.010] [0.359, 0.372] [0.113, 0.118] [0.841, 0.852] [0.823, 0.847] [0.438, 0.449] 
21 [0.138, 0.143] [0.225, 0.234] [0.073, 0.077] [0.909, 0.918] [0.674, 0.683] [0.416, 0.428] 

Ball fault 

7 [0.908, 0.923] [0.404, 0.412] [0.137, 0.141] [0.652, 0.657] [0.856, 0.881] [0.483, 0.491] 
14 [0.722 ,0.778] [0.390, 0.405] [0.118, 0.124] [0.809, 0.829] [0.878, 0.921] [0.489, 0.504] 
21 [0.834, 0.889] [0.441, 0.450] [0.158, 0.162] [0.797, 0.810] [0.944, 0.963] [0.536, 0.551] 
28 [0.407, 0.434] [0.463, 0.476] [0.176, 0.181] [0.593, 0.600] [1.137, 1.150] [0.579, 0.590] 

Table 5. Classification accuracy comparison of four algorithms 
Fault condition Target output The proposed method FBC NBU1 NBU2 

Normal 1 100 % 100 % 100 % 100 % 
Ball (7mils) 2 100 % 100 % 93.75 % 93.75 % 

Inner race fault (7mils) 3 100 % 100 % 100 % 100 % 
Outer race fault (7mils) 4 100 % 100 % 98.75 % 98.75 % 

Ball (14mils) 5 71.25 % 62.5 % 67.5 % 65 % 
Inner race fault (14mils) 6 100 % 93.75 % 93.75 % 93.75 % 
Outer race fault (14mils) 7 98.75 % 97.5 % 97.5 % 97.5 % 

Ball (21mils) 8 95 % 91.25 % 90 % 90 % 
Inner race fault (21mils) 9 100 % 100 % 100 % 100 % 
Outer race fault (21mils) 10 100 % 100 % 100 % 100 % 

Ball (28mils) 11 100 % 100 % 100 % 100 % 
Inner race fault (28mils) 12 100 % 98.75 % 96.25 % 96.25 % 

7. Conclusions 

In this paper, ISVD is proposed by incorporating the interval number order relation theory into 
SVM, so that the advantages of SVM can be preserved. The main advantage is that the structural 
risk minimization principle enables the proposed method to generalize well in the unseen interval 
testing samples. Moreover, outstanding global optimization ability of nested PSO further improves 
the classification effect of the proposed method. Experiment results show that the proposed 
method has higher classification accuracy in roller bearing interval fault than NBU1, NBU2 and 
FBC. Nowadays, ISVD is still in the experimental verification stage based on the motor drive fault 
test platform. The proposed method will be used in the actual working environment. Its ability to 
resist noise needs further improvement in the near future, which will be the following important 
task of this research team 
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