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Abstract. In this paper, authors studied the natural vibration of tapered non homogeneous 
rectangular plate on clamped edges. For tapering in plate, authors considered circular variation in 
thickness and for non-homogeneity (in plate’s material) Poisson’s ratio varies exponentially. 
Bilinear temperature (linear along both the axes) variation on the plate is being viewed. Rayleigh 
Ritz method is used to solve differential equation of motion. All the results are presented with the 
help of tables and graphs. A comparison of results is also given to support the present study. 
Keywords: rectangular plate, exponential variation, natural vibration, non homogeneity. 

1. Introduction 

The non uniform and non homogeneous rectangular plate are used in various engineering 
structures such as aerospace engineering, marine engineering, ocean engineering, optical 
instruments and mechanical engineering. Non uniform and non homogeneous plates have greater 
efficiency when compared to uniform and homogeneous plates because of reduction in weight, 
high tensile strength, durability, elastic behavior and size. The study of plate vibration without 
consideration of temperature is nothing because almost all engineering structure worked under 
great influence of temperature. Thus, to design an accurate structure, determination of natural 
frequencies and mode shape are essential. A significant work has been provided in these  
directions. 

Timoshenko and Woinowsky-Krieger [1] discussed comprehensive background on plate and 
shells theory in their book and explained bending (pure and symmetrical) of long, circular, 
anisotropic and plates having lateral loads, forces in the middle. They also studied rectangular 
plates (on simply supported and on various edge conditions), plates on elastic foundation and 
plates of various shapes. Bhat [2] provided natural frequencies of rectangular plates on clamped, 
simply supported and combination of simply supported and free edges by applying beam 
characteristic orthogonal polynomials in the Rayleigh Ritz method and showed that when some 
edges of plate are free, the present method acquires superior result for lower modes. Chakraverty 
and Petyt [3] discussed transverse vibration of elliptic and circular plates on clamped, simply 
supported and free boundary using two-dimensional boundary characteristic orthogonal 
polynomials in Rayleigh Ritz method and evaluated first five natural frequencies for various 
combinations of non homogeneity and aspect ratios of the ellipse. Li [4] applied Rayleigh Ritz 
method to analyze the modal characteristics of a rectangular plate with general elastic supports 
alone its edges and provided numerical examples to demonstrate the accuracy and convergence of 
the current solution. Ranji and Shahbaztab [5] analyzed free vibration of non homogeneous and 
orthotropic plate resting on a Pasternak type of elastic foundation by using Rayleigh Ritz method 
and provided the effect of foundation, density and non homogeneity parameters on natural 
frequency. Singh and Sexena [6] applied Rayleigh Ritz method to study the transverse vibrations 
of tapered skew plates with different combinations of boundary conditions and obtained first three 
modes of frequency and mode shapes. Sharma et al. [7, 8] studied the natural vibration of tapered 
(exponential and circular variation in thickness) square plate with non homogeneity (variation in 
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density and Poisson’s ratio) under temperature variation (bi linear and bi parabolic). An effect of 
circular variation in thickness on vibrational frequencies of parallelogram plate has been studied 
by Sharma [9] and obtained first two modes of vibrations for different combinations of plate 
parameters on clamped edges. Sharma et al. [10] also studied the vibration of tapered rectangular 
plate with linear variation in density and evaluated first two modes of vibration on clamped edges. 
Khanna and Kaur [11, 12] analyzed the free vibration of non uniform (linear and exponential 
variation in thickness) and non homogeneous (exponential variation in Poisson’s  
ratio) of rectangular plate with temperature (linear and exponential) variation by using Rayleigh 
Ritz method on clamped boundary condition. Hwu [13] presented closed-form solution for the 
free vibration problems, to study the effects of rotary inertia and shear deformation on frequency 
and provided numerical examples which shows the importance of considering the effects of rotary 
inertia and shear deformation. Avalos and Laura [14] studied the transverse vibrations of isotropic, 
orthotropic and anisotropic rectangular plates with two rectangular cutouts on simply supported 
edge using Classical plate theory. Shufrin and Eisenberger [15] presented a new semi-analytical 
method for modeling rectangular plates (with one dimensional variable thickness and cutouts) to 
analyze the free vibration of rectangular plates with various rectangular cutouts and variable 
thickness. In order to show the accuracy and convergence of the solution, they compared their 
results with other semi-analytical methods. Sakiyama and Huang [16] presented an approximate 
method to analyze the free vibration of thin and moderately thick rectangular plates with arbitrary 
variable thickness using Green function and showed that the numerical solution for the Green 
function has good convergence and accuracy. Wang and Zu [17] studied the vibrations of 
functionally graded material (FGM) rectangular plates with porosities and moving in thermal 
environment by using von Kármán nonlinear plate theory and obtained vibration characteristics 
such as natural frequency and nonlinear frequency response. Huang et al. [18] developed a discrete 
method to analyze the free vibration problem of orthotropic rectangular plates with variable 
thickness using Green function and obtained the effects of the aspect ratios, boundary conditions 
and the variation of the thickness on the frequencies. Huang et al. [19] proposed new method 
(FBGM) to analyze the free vibration of cantilever plates with variable thickness and obtained the 
solution of characteristic equation of free vibration. Taher et al. [20] evaluated first nine frequency 
parameters of circular and annular plates with variable thickness and combined boundary 
conditions, for different thickness to radius ratios by using three-dimensional elasticity theory. Zur 
[21] discussed the free vibration of homogeneous and isotropic annular thin plates with variable 
distributions of parameters by using Green's function and Neumann series, and obtained numerical 
solutions of the characteristic equations for constant and hyperbolic varying thickness on different 
boundary conditions. Zur [22] discussed the free vibration analysis of homogeneous and isotropic 
circular thin plates with variable distribution of parameters by using Green's functions and 
evaluated six lower natural dimensionless frequencies of axisymmetric vibration of circular plates 
of constant and variable thickness. 

In this study, authors show the effect of circular variation in thickness on free vibration of non 
homogeneous rectangular plate with linear (along both the axes) variation in temperature and 
compute the vibrational frequency modes (first two modes). The results are presented with the 
help of tables and figures. 

2. Differential equation of motion 

The differential equation for transverse motion of the plate is: ∂ଶ𝑀఍∂𝜁ଶ + 2 ∂ଶ𝑀఍ట∂𝜁 ∂𝜓 + ∂ଶ𝑀ట∂𝜓ଶ = 𝜌𝑙 ∂ଶ𝜙∂𝑡ଶ , (1) 

where: 
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𝑀఍ = −𝐷ଵ ቈ∂ଶ𝜙∂𝜁ଶ + 𝜈 ∂ଶ𝜙∂𝜓ଶ቉,   𝑀ట = −𝐷ଵ ቈ∂ଶ𝜙∂𝜓ଶ + 𝜈 ∂ଶ𝜙∂𝜁ଶ ቉,   𝑀఍ట = −𝐷ଵ(1 −  𝜈) ∂ଶ𝜙∂𝜁 ∂𝜓. (2) 

Using Eq. (2), Eq. (1) becomes: 

ቈ𝐷ଵ ቆ∂ସ𝜙∂𝜁ସ + 2 ∂ସ𝜙∂𝜁ଶ ∂𝜓ଶ + ∂ସ𝜙∂𝜓ସ + ∂ଶ𝜈∂𝜁ଶ ∂ଶ𝜙∂𝜓ଶቇ + 2 ∂𝐷ଵ∂𝜁 ቆ∂ଷ𝜙∂𝜁ଷ + ∂ଷ𝜙∂𝜁 ∂𝜓ଶ + ∂𝜈∂𝜁 ∂ଶ𝜙∂𝜓ଶቇ       +2 ∂𝐷ଵ∂𝜓 ቆ∂ଷ𝜙∂𝜓ଷ + ∂ଷ𝜙∂𝜓 ∂𝜁ଶ − ∂𝜈∂𝜁 ∂ଶ𝜙∂𝜁 ∂𝜓ቇ + ∂ଶ𝐷ଵ∂𝜁ଶ ቆ∂ଶ𝜙∂𝜁ଶ + 𝜈 ∂ଶ𝜙∂𝜓ଶቇ       + ∂ଶ𝐷ଵ∂𝜓ଶ ቆ∂ଶ𝜙∂𝜓ଶ + 𝜈 ∂ଶ𝜙∂𝜁ଶ ቇ + 2(1 − 𝜈) ∂ଶ𝐷ଵ∂𝜁 ∂𝜓 ∂ଶ𝜙∂𝜁 ∂𝜓቉ + 𝜌𝑙 ∂ଶ𝜙∂𝑡ଶ = 0. (3)

For solution of Eq. (3), we can take deflection function as: 𝜙(𝜁, 𝜓, 𝑡) = Φ(𝜁, 𝜓)𝑇(𝑡). (4) 

Using Eq. (4) in Eq. (3), we have: 

𝑇 ቈ𝐷ଵ ቆ∂ସΦ∂𝜁ସ + 2 ∂ସΦ∂𝜁ଶ ∂𝜓ଶ + ∂ସΦ∂𝜓ସ + ∂ଶ𝜈∂𝜁ଶ ∂ଶΦ∂𝜓ଶቇ + 2 ∂𝐷ଵ∂𝜁 ቆ∂ଷΦ∂𝜁ଷ + ∂ଷΦ∂𝜁 ∂𝜓ଶ + ∂𝜈∂𝜁 ∂ଶΦ∂𝜓ଶቇ       +2 ∂𝐷ଵ∂𝜓 ቆ∂ଷΦ∂𝜓ଷ + ∂ଷΦ∂𝜓 ∂𝜁ଶ − ∂𝜈∂𝜁 ∂ଶΦ∂𝜁 ∂𝜓ቇ + ∂ଶ𝐷ଵ∂𝜁ଶ ቆ∂ଶΦ∂𝜁ଶ + 𝜈 ∂ଶΦ∂𝜓ଶቇ       + ∂ଶ𝐷ଵ∂𝜓ଶ ቆ∂ଶΦ∂𝜓ଶ + 𝜈 ∂ଶΦ∂𝜁ଶ ቇ + 2(1 − 𝜈) ∂ଶ𝐷ଵ∂𝜁 ∂𝜓 ∂ଶΦ∂𝜁 ∂𝜓቉ + 𝜌𝑙Φ ∂ଶ𝑇∂𝑡ଶ = 0. (5)

Now by using variable separable technique Eq. (5) becomes: 

⎣⎢⎢
⎢⎢⎡𝐷ଵ ൬∂ସΦ∂𝜁ସ + 2 ∂ସΦ∂𝜁ଶ ∂𝜓ଶ + ∂ସΦ∂𝜓ସ + ∂ଶ𝜈∂𝜁ଶ ∂ଶΦ∂𝜓ଶ൰ + 2 ∂𝐷ଵ∂𝜁 ൬∂ଷΦ∂𝜁ଷ + ∂ଷΦ∂𝜁 ∂𝜓ଶ + ∂𝜈∂𝜁 ∂ଶΦ∂𝜓ଶ൰+2 ∂𝐷ଵ∂𝜓 ൬∂ଷΦ∂𝜓ଷ + ∂ଷΦ∂𝜓 ∂𝜁ଶ − ∂𝜈∂𝜁 ∂ଶΦ∂𝜁 ∂𝜓൰ + ∂ଶ𝐷ଵ∂𝜁ଶ ൬∂ଶΦ∂𝜁ଶ + 𝜈 ∂ଶΦ∂𝜓ଶ൰+ ∂ଶ𝐷ଵ∂𝜓ଶ ൬∂ଶΦ∂𝜓ଶ + 𝜈 ∂ଶΦ∂𝜁ଶ ൰ + 2(1 − 𝜈) ∂ଶ𝐷ଵ∂𝜁 ∂𝜓 ∂ଶΦ∂𝜁 ∂𝜓 ⎦⎥⎥

⎥⎥⎤
𝜌𝑙Φ= − 1𝑇 ∂ଶ𝑇∂𝑡ଶ = 𝜔ଶ. 

(6) 

Taking first and last expression of Eq. (6), we have: 

ቈ𝐷ଵ ቆ∂ସΦ∂𝜁ସ + 2 ∂ସΦ∂𝜁ଶ ∂𝜓ଶ + ∂ସΦ∂𝜓ସ + ∂ଶ𝜈∂𝜁ଶ ∂ଶΦ∂𝜓ଶቇ + 2 ∂𝐷ଵ∂𝜁 ቆ∂ଷΦ∂𝜁ଷ + ∂ଷΦ∂𝜁 ∂𝜓ଶ + ∂𝜈∂𝜁 ∂ଶΦ∂𝜓ଶቇ       +2 ∂𝐷ଵ∂𝜓 ቆ∂ଷΦ∂𝜓ଷ + ∂ଷΦ∂𝜓 ∂𝜁ଶ − ∂𝜈∂𝜁 ∂ଶΦ∂𝜁 ∂𝜓ቇ + ∂ଶ𝐷ଵ∂𝜁ଶ ቆ∂ଶΦ∂𝜁ଶ + 𝜈 ∂ଶΦ∂𝜓ଶቇ       + ∂ଶ𝐷ଵ∂𝜓ଶ ቆ∂ଶΦ∂𝜓ଶ + 𝜈 ∂ଶΦ∂𝜁ଶ ቇ + 2(1 − 𝜈) ∂ଶ𝐷ଵ∂𝜁 ∂𝜓 ∂ଶΦ∂𝜁 ∂𝜓቉ − 𝜌𝑙Φ𝜔ଶ = 0. (7)

Eq. (7) is differential equation for transverse motion of plate with variable 𝐷ଵ  and 𝜈  i.e., 
flexural rigidity and Poisson’s ratio. The expression for flexural rigidity is given by 𝐷ଵ = 𝐸𝑙ଷ 12(1 − 𝜈ଶ)⁄ . 



NATURAL VIBRATION OF TAPERED RECTANGULAR PLATE WITH EXPONENTIAL VARIATION IN NON HOMOGENEITY.  
AMIT SHARMA, NAVEEN MANI, REETA BHARDWAJ 

190 JOURNAL OF VIBROENGINEERING. FEBRUARY 2019, VOLUME 21, ISSUE 1  

3. Construction of problem 

Consider a non homogeneous rectangular plate of length 𝑎  and breadth 𝑏  with one 
dimensional circular variation in thickness 𝑙 as shown in Fig. 1 as: 

𝑙 = 𝑙଴ ቎1 + 𝛽 ቌ1 − ඨ1 − 𝜁ଶ𝑎ଶቍ቏, (8) 

where 𝛽, (0 ≤ 𝛽 ≤ 1) is known as tapering parameter. Thickness of plate become constant at 𝜁 = 0. The plate is subjected to steady two dimensional linear temperature distributions as: 

𝜏 = 𝜏଴ ൬1 − 𝜁𝑎൰ ൬1 − 𝜓𝑏൰, (9) 

where 𝜏 and 𝜏଴ denotes the temperature excess above the reference temperature on the plate at any 
point and at the origin respectively. The temperature dependence modulus of elasticity for 
engineering structures is given by: 𝐸 = 𝐸଴(1 − 𝛾𝜏), (10) 

where 𝐸଴ is the Young’s modulus at mentioned temperature (i.e., 𝜏 = 0) and 𝛾 is called slope of 
variation. 

 
Fig. 1. Rectangular plate with one dimensional circular variation 

Using Eq. (9), Eq. (10) becomes: 

𝐸 = 𝐸଴ ൤1 − 𝛼 ൜1 − 𝜁𝑎ൠ ൜1 − 𝜓𝑏ൠ൨, (11) 

where 𝛼, (0 ≤ 𝛼 < 1) is called temperature gradient, which is the product of temperature at origin 
and slope of variation i.e., 𝛼 = 𝛾𝜏଴ . For non homogeneous consideration in plate’s material, 
Poisson’s ratio of the plate varies exponentially in one direction as: 𝜈 = 𝜈଴ ൤𝑒௠఍௔൨, (12) 

where 𝑚, (0 ≤ 𝑚 ≤ 1) are known as non homogeneity constant. 
Using Eqs. (8), (11) and (12), flexural rigidity of the plate becomes: 

𝐷ଵ = 𝐸଴𝑙଴ଷ ൤1 − 𝛼 ൜1 − 𝜁𝑎ൠ ൜1 − 𝜓𝑏ൠ൨ ቎1 + 𝛽 ቌ1 − ඨ1 − 𝜁ଶ𝑎ଶቍ቏ଷ 12 ൬1 − 𝜈଴ଶ𝑒ଶ௠఍௔൰ .൙  (13) 
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4. Solution of the problem 

We are using Rayleigh Ritz technique (i.e., maximum strain energy 𝑉௦ must equal to maximum 
kinetic energy 𝑇௦ ) in order to obtain frequency equation and frequencies for both modes of 
vibrations. Therefore, we must have: 𝛿(𝑉௦ − 𝑇௦) = 0. (14) 

Here the expression for 𝑉௦ and 𝑇௦ are given by: 

𝑉௦ = 12 න௔
଴   න௕

଴ 𝐷ଵ × ൥ቆ∂ଶΦ∂𝜁ଶ ቇଶ + ቆ∂ଶΦ∂𝜓ଶቇଶ + 2𝜈 ∂ଶΦ∂𝜁ଶ ∂ଶΦ∂𝜓ଶ + 2(1 − 𝜈) ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇଶ൩ 𝑑𝜓𝑑𝜁, (15) 

𝑇௦ = 12 𝜔ଶ𝜌 න  න 𝑙Φଶ𝑑𝜓௕
଴ 𝑑𝜁௔

଴ . (16) 

Here, we are computing frequency on C-C-C-C condition (i.e., all the four edges are clamped), 
therefore the boundary conditions are: 

Φ(𝜁, 𝜓) = ∂Φ(𝜁, 𝜓)∂𝜁 = 0,     𝜁 = 0, 𝑎, Φ(𝜁, 𝜓) = ∂Φ(𝜁, 𝜓)∂𝜓 = 0,    𝜓 = 0, 𝑏. (17) 

Therefore, deflection function (i.e, maximum displacement) which satisfy boundary condition 
given in Eq. (17) is taken as [11]: 

Φ(𝜁, 𝜓) = ൬𝜁𝑎൰ଶ ൬𝜓𝑏൰ଶ ൬1 − 𝜁𝑎൰ଶ ൬1 − 𝜓𝑏൰ଶ ൤Ωଵ + Ωଶ ൬𝜁𝑎൰ ൬𝜓𝑏൰ ൬1 − 𝜁𝑎൰ ൬1 − 𝜓𝑏൰൨, (18) 

where Ωଵ and Ωଶ are arbitrary constants. On substituting Eqs. (8), (12) and (13) in Eqs. (15) and 
(16) we have: 

𝑉௦ = 𝐸଴𝑙଴ଷ24 න න௕
଴

௔
଴ ⎣⎢⎢

⎢⎢⎢
⎡൞ቂ1 − 𝛼 ቄ1 − 𝜁𝑎ቅ ቄ1 − 𝜓𝑏ቅቃ ቈ1 + 𝛽 ቆ1 − ට1 − 𝜁ଶ𝑎ଶቇ቉ଷ

1 − 𝜈଴ଶ𝑒ଶ௠఍௔ ൢ
∙ ൥ቆ∂ଶΦ∂𝜁ଶ ቇଶ + ቆ∂ଶΦ∂𝜓ଶቇଶ + 2𝜈଴𝑒௠఍௔ ∂ଶΦ∂𝜁ଶ ∂ଶΦ∂𝜓ଶ + 2 ൬1 − 𝜈଴𝑒௠఍௔൰ ቆ ∂ଶΦ∂𝜁 ∂𝜓ቇଶ൩⎦⎥⎥

⎥⎥⎥
⎤

𝑑𝜓𝑑𝜁, (19) 

𝑇௦ = 12 𝜔ଶ𝜌𝑙଴ න න ቎1 + 𝛽 ቌ1 − ඨ1 − 𝜁ଶ𝑎ଶቍ቏ Φଶ𝑑𝜓௕
଴ 𝑑𝜁.௔

଴  (20) 

Now converting 𝜁 and 𝜓 into non dimensional variable as: 

𝜁ଵ = 𝜁𝑎,    𝜓ଵ = 𝜓𝑎. (21) 

Using Eq. (21), Eqs. (19) and (20) converted into: 
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𝑉௦∗ = 𝐸଴𝑙଴ଷ24𝑎ଶ නଵ
଴  න௕௔

଴
⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡
⎩⎪⎨
⎪⎧ቂ1 − 𝛼ሼ1 − 𝜁ଵሽ ቄ1 − 𝑎𝜓ଵ𝑏 ቅቃ ቈ1 + 𝛽 ቆ1 − ට1 − 𝜁ଵଶቇ቉ଷ

1 − 𝜈଴ଶ𝑒ଶ௠ ఍భ ⎭⎪⎬
⎪⎫

∙ ⎣⎢⎢
⎢⎡ቆ∂ଶΦ∂𝜁ଵଶቇଶ + ቆ ∂ଶΦ∂𝜓ଵଶቇଶ + 2𝜈଴𝑒௠఍భ ∂ଶΦ∂𝜁ଵଶ ∂ଶΦ∂𝜓ଵଶ+2൫1 − 𝜈଴𝑒௠఍భ൯ ቆ ∂ଶΦ∂𝜁ଵ ∂𝜓ଵቇଶ ⎦⎥⎥

⎥⎤
⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎤

𝑑𝜓ଵ𝑑𝜁ଵ, (22) 

𝑇௦∗ = 12 𝜔ଶ𝜌𝑎ଶ𝑙଴ න  න ቈ1 + 𝛽 ቆ1 − ට1 − 𝜁ଵଶቇ቉ Φଶ𝑑𝜓ଵ௕௔଴ 𝑑𝜁ଵଵ
଴ . (23) 

Using Eqs. (22) and (23), Eq. (14) becomes: 𝛿(𝑉௦∗ − 𝜆ଶ𝑇௦∗) = 0, (24) 

where 𝜆ଶ = 12𝜌𝜔ଶ𝑎ସ 𝐸଴𝑙଴ଶ⁄  is known as frequency parameter. Eq. (24) consists of two unknown 
constants Ωଵ  and Ωଶ  (because of substitution of deflection function Φ(𝜁, 𝜓) ). These two 
unknowns could be calculated as follows: ∂∂Ω௡ (𝑉௦∗ − 𝜆ଶ𝑇௦∗) = 0,   𝑛 = 1,2. (25) 

After simplifying Eq. (25), we get system of homogeneous equations as: 𝑐ଵଵΩଵ + 𝑐ଵଶΩଶ = 0,𝑐ଶଵΩଶ + 𝑐ଶଶΩଶ = 0. (26) 

To obtain non zero solution (frequency equation), the determinant of coffiecient matrix 
(symmetric matrix) of Eq. (26) must zero i.e.: ቚ𝑐ଵଵ 𝑐ଵଶ𝑐ଶଵ 𝑐ଶଶቚ = 0. (27) 

Eq. (27) is quadratic equation from which we get two modes as 𝜆ଵ (first mode) and 𝜆ଶ (second 
mode). 

5. Results and discussion 

The first two modes of vibrations are calculated and presented tabularly as well as graphically 
for different values of thermal gradient 𝛼, non homogeneity constant 𝑚 and tapering parameters 𝛽 . The parameters used in numerical calculation are 𝐸଴ =  7.08×1010 nm-2, 𝜈଴ =  0.345,  𝑙଴ = 0.01 m, 𝜌 = 2.80×103 kgm-3. 

Table 1 provides the natural vibration (first two modes) of plate corresponding to thermal 
gradient 𝛼  for three different combination of non homogeneity 𝑚  and taper constant 𝛽  i.e.,  𝑚 = 𝛽 = 0.2, 𝑚 = 𝛽 = 0.4 and 𝑚 = 𝛽 = 0.8. From Table 1, we can see that frequency of both 
modes decreases with the increasing value of thermal gradient 𝛼 for all the combination of non 
homogeneity 𝑚 and taper constant 𝛽. While the frequency modes of vibration increases with the 
increasing value of thermal gradient 𝛼 when the combined value of non homogeneity 𝑚 and taper 
constant 𝛽 varies from 0.2 to 0.8. 
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Table 2 shows the frequency modes of vibration corresponding to non homogeneity constant 𝑚 for the following values of taper constant 𝛽 and thermal gradient 𝛼. 𝛼 = 𝛽 = 0.2, 𝛼 = 𝛽 = 0.4 
and 𝛼 = 𝛽 = 0.8. 

Table 2 provides the fact that vibrational frequency increases rapidly (not in linear fashion) 
when non homogeneity 𝑚 in plate’s material increases 0 to 1 for all the above mentioned values 
of thermal gradient 𝛼 and tapering parameter 𝛽. The vibrational frequency also increases when 
the combined value of thermal gradient 𝛼 and tapering parameter 𝛽 varies from 0.2 to 0.8 with the 
increasing value of non homogeneity constant 𝑚. 

Table 1. Thermal gradient 𝛼 vs vibrational frequency 𝜆 for 𝑎/𝑏 = 1.5 𝛼 𝛽 = 𝑚 = 0.2 𝛽 = 𝑚 = 0.4 𝛽 = 𝑚 = 0.8 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 
0.0 68.16 268.66 72.15 283.85 82.92 327.10 
0.2 66.50 262.09 70.45 277.19 81.14 320.21 
0.4 64.79 255.36 68.72 270.37 79.31 313.16 
0.6 63.04 248.45 66.94 263.37 77.44 305.96 
0.8 61.24 241.45 65.11 256.18 75.52 298.58 

Table 2. Non homogeneity 𝑚 vs vibrational frequency 𝜆 for 𝑎/𝑏 = 1.5 𝑚 𝛼 = 𝛽 = 0.2 𝛼 = 𝛽 = 0.4 𝛼 = 𝛽 = 0.8 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 
0.0 65.51 258.12 66.35 260.63 68.24 266.63 
0.2 66.50 262.09 67.36 264.79 69.30 271.18 
0.4 67.81 267.38 68.72 270.37 70.75 277.43 
0.6 69.55 274.51 70.55 278.00 72.75 286.16 
0.8 71.91 284.31 73.04 288.60 75.52 298.58 
1.0 75.10 297.96 76.45 303.56 79.34 316.50 

Table 3 gives the frequency modes corresponding to thickness variation (tapering parameter 𝛽) in plate for the following values of non homogeneity constant 𝑚 and thermal gradient 𝛼 .  𝑚 = 𝛼 = 0.2, 𝑚 = 𝛼 = 0.4 and 𝑚 = 𝛼 = 0.8. 
Form Table 3, one can easily concludes that when tapering parameter 𝛽 increases from 0 to 1, 

frequency modes increases for all the above mentioned values of non homogeneity 𝑚 and thermal 
gradient 𝛼. The frequency modes decrease when the combined value of non homogeneity 𝑚 and 
thermal gradient 𝛼 varies from 0.2 to 0.4. But when the combined value of non homogeneity 𝑚 
and thermal gradient 𝛼 varies from 0.4 to 0.8, the frequency modes again increases. 

In order to get good understanding of results and discussion (variation of plate parameter), 
graphical representation of Tables 1-3 are presented in the form of Figs. 2-4. 

Table 3. Taper constant 𝛽 vs vibrational frequency 𝜆 for 𝑎/𝑏 = 1.5 𝛽 𝑚 = 𝛼 = 0.2 𝑚 = 𝛼 = 0.4 𝑚 = 𝛼 = 0.8 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 𝜆ଵ 𝜆ଶ 
0.0 64.07 253.24 63.58 251.36 63.61 252.08 
0.2 66.50 262.09 66.07 260.57 66.38 262.69 
0.4 69.08 271.53 68.72 270.37 69.30 274.01 
0.6 71.78 281.50 71.49 280.73 72.35 285.99 
0.8 74.61 291.98 74.39 291.63 75.52 298.58 
1.0 77.55 302.94 77.39 303.01 78.79 311.73 

6. Results comparison 

A comparison of present analysis with [11, 12] are presented in tabular (Table 4 and Table 5) 
as well as in graphical form (Fig. 5 and Fig. 6). 
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a) 

 
b) 

Fig. 2. Thermal gradient (𝛼) vs. frequency (𝜆) for fixed 𝑎/𝑏 = 1.5 

 
a) 

 
b) 

Fig. 3. Non homogeneity constant (𝑚) vs. frequency (𝜆) for fixed 𝑎/𝑏 = 1.5 

 
a) 

 
b) 

Fig. 4. Taper constant (𝛽) vs. frequency (𝜆) for fixed 𝑎/𝑏 = 1.5 

Table 4 shows the comparison of frequency modes of present paper with [11, 12] 
corresponding to tapering parameter 𝛽 for fixed value of thermal gradient 𝛼 and non homogeneity 
constant 𝑚 i.e., 𝛼 = 𝑚 = 0. Table 4 provides the information that frequency modes in present 
paper are less when compared with [11, 12]. The frequency modes of present paper, [11, 12] are 
coincides at 𝛼 = 𝑚 = 𝛽 = 0. 
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a) 

 
b) 

Fig. 5. Comparison of frequency modes with [11, 12] corresponding to taper constant (𝛽) 

 
Fig. 6. Comparison of frequency modes with [12] corresponding to thermal gradient (𝛼) 

Table 4. Comparison of frequency modes of presented study  
with [11, 12] corresponding to taper constant 𝛽 𝛽 𝑚 = 𝛼 = 0.0 𝜆ଵ 𝜆ଶ 

0.0 
64.77 255.98 
64.77 255.98 
64.77 255.98 

0.2 
71.40 282.12 
67.16 264.61 
71.84 283.76 

0.4 
78.27 309.17 
69.69 273.81 
80.25 316.46 

0.6 
85.34 336.90 
72.36 283.53 
90.21 354.87 

Note: The value written in bold and italic are from [11, 12] respectively 

Table 5 portrays the comparison of frequency modes of present paper with [12] corresponding 
to thermal gradient 𝛼 for fixed value of tapering parameter 𝛽 and non homogeneity constant 𝑚 
i.e., 𝑚 = 𝛽 = 0. It is noticed from Table 5 that frequency modes of present paper are less when 
compared with [12]. Frequency modes of present paper and [12] are coincides at 𝛼 = 𝑚 = 𝛽 = 0. 
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Table 5. Comparison of frequency modes of present study with [12] corresponding to thermal gradient 𝛼 𝛼 𝛽 = 𝑚 = 0.0 𝜆ଵ 𝜆ଶ 

0.0 64.77 255.98 
64.77 255.98 

0.2 63.13 249.50 
69.09 272.86 

0.4 61.45 242.84 
73.10 288.75 

0.6 59.71 236.00 
76.92 303.82 

Note: The value written in bold are from [12] 

7. Conclusions 

From the results discussion and comparison authors would like to record the following points. 
1) The frequency modes are less in case of circular variation in thickness (present paper) when 

compared to linear variation in thickness [11] and exponential variation in thickness [12] as shown 
in Table 4 and Fig. 5. 

2) The frequency modes are less in case of bi linear temperature variation on plate (present 
paper) when compared to exponential variation in temperature on plate [12] as shown in Table 5 
and Fig. 6. 

3) The frequency modes decrease when the temperature increases on the plate as shown in 
Table 1 and Fig. 2. 

4) When the non homogeneity increases in plate materials, frequency modes increases as 
shown in Table 2 and Fig. 3. 

5) The frequency modes also increase when the thickness of plate increases as shown in 
Table 3 and Fig. 4. 
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