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Abstract. Within this time of science and technology, tapered plates with different geometry 
conditions are used as a for the construction of wings and blades of aeronautical as well as 
engineering structures. The main aim of current work is to analyze the vibration of rectangular 
structure tapered plate with thermal effect variation along 𝑥 and 𝑦 axis. Rayleigh-Ritz method is 
use for judgment the solution of frequency equation. Now for several values of thermal gradient, 
aspect ratio and taper constant are considered to calculate structural parameters such as 
logarithmic decrement, time period and deflection. 
Keywords: visco-elastic, thickness, frequency, vibration, thermal effect. 

1. Introduction 

Study in the field of vibration plays an important role in the branch of applied science and 
engineering. By vibration we mean a movement of the particle of an elastic or rigid body which 
repeats itself periodically. In the modern era, we cannot neglect the effect of vibrations as all 
engineering machines and structures produce vibrations. Since vibrations directly effects the life 
and work-power of the machine, therefore knowledge about the first few modes of vibration is 
essential and necessary to a mechanical engineer, before finalizing a design.  

In these problems the thermal dependence of frequency on plates of different shapes are of 
great importance. In previous years, a lot of research has been done in the field of vibration of 
plates having different geometry such as orthotropic/isotropic, homogeneous/non-homogeneous 
and either considering or not considering the effect of temperature and thickness variation have 
been studied by number of authors. Transverse vibration analysis of rectangular plate having edges 
elastically against rotation and having two direction variations in thickness is discussed by Laura 
et al. [1]. Vibrational analysis of rectangle plate having thickness variation (linear and parabolic) 
along both the axes is studied by Gupta and Khanna [2, 3]. An effect of bi-directional exponential 
variation in thickness on vibrational modes using rectangle plate have described by Gupta et. al 
[4]. Lal and Dhanpati [5] have depicted the effect of non-homogeneity on vibration of orthotropic 
rectangular plates having varying thickness variation resting on Pasternak foundation. Effect of 
temperature, variation in Poisson ratio as non-homogeneity and simultaneous variation in density 
as well as in Poisson ratio to vibrational behavior of rectangular plate have described by Khanna 
and Kaur [6-8]. The transverse vibrations on simply supported plate with an oblique cut and 
generalized anisotropy have studied by Avalos and Laura [9]. Gupta and Singhal [10] studied 
parabolic thickness and temperature effect on vibrational frequencies of non-homogeneous 
rectangle plate. 

The analysis of temperature dependent vibration of plate is very significant in the design of 
power plant turbines, nuclear reactors and other structure works at elevated temperature. In the 
industries the materials exposed to high temperature generally deviate from Hooke’s law and 
behaves visco-elastically. The elastic and viscous behavior of material depends mainly on 
frequency and temperature. Consequently, the vibration analysis has become very important from 
the point of view of designing a structure to be familiar in advance about its reaction. So that the 
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essential measure to manage the structural vibrations and its amplitudes can be taken.  
Rayleigh-Ritz method is used for the solution of equation of frequency corresponding to first 

two modes of vibration. A two terms deflection function has been used as a solution. Here, existing 
examination is to analysis the initial two vibration modes of rectangular geometry plate whose 
thermal effect and thickness change exponentially in 𝑥 and 𝑦 directions.  

2. Differential equation of motion  

The classical differential equation of motion for the transverse displacement 𝑤  of the 
rectangular plate is given by [1]: 

𝐷∇ଶ𝑊 +  𝜌ℎ 𝜕ଶ𝑤𝜕𝑡ଶ , (1) 

and time function of plate is: 𝑇ሷ + 𝑝ଶ𝐷෩𝑇 = 0, (2) 

where 𝐷௫ = ாೣయଵଶ(ଵି௩ೣ ௩) , 𝐷௬ = ாయଵଶ(ଵି௩ೣ ௩) are flexural rigidity and 𝐷௫௬ = ீೣయଵଶ    is torsional 

rigidity along 𝑥 and 𝑦 axis. 
In mainstream of cases the impact of temperature is unobserved, yet they need to be taken into 

consideration. The motivation after this is that during heated up period’s structures are showing 
to high intensity heat fluxes and the material properties undergo significant changes hence the 
thermal effect on modulus of elasticity of material cannot be neglected. Most of engineering 
materials are found to have linear relationship between modulus of elasticity and temperature. 
Applications of such materials are due to lessening of weight and size, low operating cost and 
enhancement in efficiency and strength. So, we have considered two-dimensional temperature 
variations along 𝑥 and 𝑦-axis as [3]:  𝜏 = 𝜏𝐹(𝑥, 𝑦), (3) 

where: 

𝐹(𝑥, 𝑦) =  ቌ1 − ቆ 𝑒𝑒 − 1 − 𝑒௫ ⁄𝑒 − 1ቇቍ ቌ1 − ൭ 𝑒𝑒 − 1 − 𝑒௬ ൗ𝑒 − 1൱ቍ.  

Modulus of elasticity with time dependence is [3]:  𝐸௫(𝜏) = 𝐸ଵ[1 − 𝛼𝜏], 𝐸௬(𝜏) = 𝐸ଶ[1 − 𝛼𝜏], 𝐺௫௬ = 𝐺[1 − 𝛼𝜏]. (4) 

On using temperature distribution along 𝑥 and 𝑦-axis in Eq. (4) as: 

ቐ 𝐸௫(𝜏) = 𝐸ଵ[1 − 𝛼𝐹(𝑥, 𝑦)],𝐸௬(𝜏) = 𝐸ଶ[1 − 𝛼𝐹(𝑥, 𝑦)],𝐺௫௬(𝜏) = 𝐺[1 − 𝛼𝐹(𝑥, 𝑦)], (5) 

where 𝛼 = 𝛾𝜏(0 ≤ 𝛼 < 1) is thermal gradient parameter. 
Maximum strain energy 𝑆ா and kinetic energy 𝐾ா in cartesian coordinates are: 
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𝑆ா = 0.5 න න 𝐷௫ ቆ𝜕ଶ𝑊𝜕𝑥ଶ ቇଶ + 𝐷௬ ቆ𝜕ଶ𝑊𝜕𝑦ଶ ቇଶ + 2𝐷ଵ 𝜕ଶ𝑊𝜕𝑥ଶ𝜕𝑦ଶ + 4𝐷௫௬ ቆ𝜕ଶ𝑊𝜕𝑥𝜕𝑦ቇଶ൩



 𝑑𝑦𝑑𝑥,   (6) 

and: 

𝐾ா = 0.5  𝑝ଶ 𝜌 න න ℎ 𝑊ଶ𝑑𝑦𝑑𝑥



 , (7) 

where 𝐷ଵ = 𝑣௫𝐷௬൫= 𝑣௬𝐷௫൯ . Now, assuming thickness ℎ  varies exponentially along 𝑥  and 𝑦-axis as:  ℎ = ℎ 𝑍(𝑥, 𝑦), (8) 

where 𝑍(𝑥, 𝑦) = ቀ𝑒ఉభೣೌቁ ቀ𝑒ఉమ್ቁ, 𝛽ଵ and 𝛽ଶ are two taper constants. 

3. Solution by Rayleigh-Ritz method 

Rayleigh-Ritz method is applied for an appropriate deflection shape is selected and maximum 
strain and kinetic energy are equated. An equation in the following form is obtained as: 𝛿(𝑃ா − 𝐾ா) = 0. (9) 

Now, Kelvin type boundary conditions for the geometry of plate shown are: ൜𝑊 = 𝑊௫ = 0,   𝑥 = 0,   𝑎,𝑊 = 𝑊௬ = 0,   𝑥 = 0,   𝑦. (10) 

Appropriate deflection function in two terms for rectangular shape plate is [1]: 

𝑊(𝑥, 𝑦) = ቂቀ𝑥𝑎ቁ ቀ𝑦𝑏ቁ ቀ1 − 𝑥𝑏ቁ ቀ1 − 𝑦𝑏ቁቃଶ  ቂ𝐶ଵ + 𝐶ଶ ቀ𝑥𝑎ቁ ቀ𝑦𝑏ቁ ቀ1 − 𝑥𝑎ቁ ቀ1 − 𝑦𝑏ቁቃ, (11) 

and 𝐴ଵ and 𝐴ଶ are to be calculate. 
Now, unit less variables having no dimension are using for our convince as: 

𝑋 = 𝑥𝑎 ,    𝑌 = 𝑦𝑎,    𝑊ഥ = 𝑊𝑎 ,    ℎത = ℎ𝑎, 𝐸ଵ∗ = 𝐸ଵ1 − 𝑣௫𝑣௬ ,    𝐸ଶ∗ = 𝐸ଶ1 − 𝑣௫𝑣௬ ,    𝐸∗ = 𝑣௫𝐸ଶ∗ = 𝑣௬𝐸ଵ∗. (12) 

By using Eqs. (5), (8) and (12) in (6) and (7), we get: 

𝑆ா = 𝑄 න න = ⁄


ଵ
 ൝[1 − 𝛼[𝐹(𝑋, 𝑌)] × [𝐻(𝑋, 𝑌)]ଷ]

× ቆ𝜕ଶ𝑊𝜕𝑥ଶ ቇଶ + 𝐸ଶ∗𝐸ଵ∗ ቆ𝜕ଶ𝑊𝜕𝑦ଶ ቇଶ + 2𝑣 𝐸ଶ∗𝐸ଵ∗ ቆ𝜕ଶ𝑊𝜕𝑥ଶ 𝜕ଶ𝑊𝜕𝑦ଶ ቇ + 4 𝐺𝐸ଵ∗ (1 − 𝑣௫𝑣௬) ቆ𝜕ଶ𝑊𝜕𝑥𝜕𝑦ቇଶ൩ൡ 𝑑𝑌𝑑𝑋, (13)

𝐾ா = 0.5 𝑝ଶ𝜌 ℎതതത𝑎ହ න න 𝐻(𝑋, 𝑌)𝑊ഥ ଶ𝑑𝑌𝑑𝑋,/


ଵ
  (14) 

where: 
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𝑄 = 12 ൭𝐸ଵ∗ℎതଷ12 ൱ 𝑎. (15) 

Substitute the value of 𝑃ா and 𝐾ா from Eqs. (13) and (14) in (9), we get:  (𝑃ா∗ − 𝜆ଶ𝑝௦𝐾ா∗) = 0, (16) 

where: 

𝑆ா∗ = 𝑄 න න ൝[1 − 𝛼([F(X, Y)]) × [𝐻(𝑋, 𝑌)]ଷ] ⁄


ଵ
× ቆ𝜕ଶ𝑊𝜕𝑥ଶ ቇଶ + 𝐸ଶ∗𝐸ଵ∗ ቆ𝜕ଶ𝑊𝜕𝑦ଶ ቇଶ + 2𝑣 𝐸ଶ∗𝐸ଵ∗ ቆ𝜕ଶ𝑊𝜕𝑥ଶ 𝜕ଶ𝑊𝜕𝑦ଶ ቇ + 4 𝐺𝐸ଵ∗ (1 − 𝑣௫𝑣௬) ቆ𝜕ଶ𝑊𝜕𝑥𝜕𝑦ቇଶ൩ൡ 𝑑𝑦𝑑𝑥, (17) 

and: 

𝐾ா∗ = න න 𝐻(𝑋, 𝑌) 𝑊ഥ ଶ𝑑𝑌𝑑𝑋/


ଵ
 , (18) 

where: 

𝜆ଶ = 12𝑎ସ𝜌(1 − 𝑣௫𝑣௬)𝐸ଵℎଶ .  

Eq. (16) contains two unknowns 𝐶ଵ and 𝐶ଶ comes after putting Eq. (11). 𝐶ଵ and 𝐶ଶ are to be 
determined from Eq. (16) as: 𝜕(𝑃ா∗ − 𝜆ଶ𝑝ଶ𝐾ா∗)𝜕𝐴 = 0,   𝑛 = 1,2. (19) 

Simplify Eq. (19) we find the result as: 𝑄ଵ 𝐴ଵ + 𝑄ଶ 𝐴ଶ = 0,   𝑟 = 1,2. (20) 

The determinant formed by the coefficient of Eq. (20) must vanish for non-zero solution be: ฬ𝑄ଵଵ 𝑄ଵଶ𝑄ଶଵ 𝑄ଶଶฬ = 0. (21) 

Eq. (21) gives a quadratic equation in 𝑝ଶ and after solving one will get roots. On alter the value 
of 𝐶ଵ = 1 in (11) one get 𝐶ଶ = −𝑄ଵଵ/𝑄ଵଶ and Eq. (11) becomes: 

𝑊(𝑥, 𝑦) = ቂ𝑋𝑌 𝑎𝑏 (1 − 𝑋) ቀ1 − 𝑌 𝑎𝑏ቁቃଶ  1 + ൬− 𝐶ଵଵ𝐶ଵଶ൰ 𝑋𝑌 𝑎𝑏 (1 − 𝑋) ቀ1 − 𝑌 𝑎𝑏ቁ൨. (22) 

4. Time function for vibration of plate 

In general time function in Eq. (2) depends on 𝐷ෙ and for Kelvin-Voigt model 𝐷෩ used as: 

𝐷෩ = ൜1 + ቀ𝜂𝐺ቁ ൬ 𝑑𝑑𝑡൰ൠ. (23) 
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Now, visco-elastic constant 𝜂 and shear modulus 𝐺 taken with temperature dependence as that 
of Young’s moduli as: 𝐺(𝜏) = 𝐺(1 − 𝛾ଵ𝜏), 𝜂(𝜏) = 𝜂(1 − 𝛾ଶ𝜏). (24) 

On applying Eq. (3) in Eq. (24) with unit less term, one get: ൜𝐺 = 𝐺[1 − 𝛼ଵሼ[𝐹(𝑋, 𝑌)]ሽ],   𝛼ଵ = 𝛾ଵ𝜏,   0 ≤ 𝛼ଵ ≤ 1,𝜂 = 𝜂[1 − 𝛼ଶሼ[𝐹(𝑋, 𝑌)]ሽ],   𝛼ଶ = 𝛾ଶ𝜏,   0 ≤ 𝛼ଶ ≤ 1, (25) 

where 𝛼ଵ and 𝛼ଶ = Thermal constants along 𝑥 and 𝑦-axis.  
After using Eq. (23) in general time function Eq. (2), one gets differential equation of second 

order for time function 𝑇 as: 𝑇ሷ + 𝑝ଶ𝑘𝑇ሶ + 𝑝ଶ𝑇 = 0, (26) 

where: 

𝑘 = 𝜂𝐺 = 𝜂ൣ1 − 𝛼ଶ[𝐹(𝑋, 𝑌)]൧𝐺ൣ1 − 𝛼ଵ[𝐹(𝑋, 𝑌)]൧. (27) 

On finding general solution Eq. (26), one gets solution in the form as: 𝑇(𝑡) = 𝑒௧[𝐿ଵcos𝑏ଵ𝑡 + 𝐿ଶ sin 𝑏ଵ𝑡], (28) 

where 𝑎ଵ = − మଶ    and 𝑏ଵ = 𝑝ට1 − ቀଶ ቁଶ
 and 𝐿ଵ, 𝐿ଶ are constant. 

Assuming preliminary condition for finding the value of 𝐿ଵ and 𝐿ଶ as: 𝑇 = 1,   𝑇ሶ = 0,   𝑡 = 0. (29) 

On putting preliminary condition in Eq. (28) it become: 

𝐿ଵ = 1,   𝐿ଶ = 𝑝ଶ ቀ𝜂𝐺ቁ2𝑏ଵ = − 𝑎ଵ𝑏ଵ. (30) 

Use result of Eq. (30) in Eq. (28), one get: 𝑇(𝑡) = 𝑒భ௧ cos 𝑏ଵ𝑡 + ൬− 𝑎ଵ𝑏ଵ൰ sin 𝑏ଵ𝑡൨. (31) 

On using Eqs. (31) and (22) deflection function 𝑊(𝑥, 𝑦, 𝑡) = 𝑊(𝑥, 𝑦)𝑇(𝑡), become:  

𝑊(𝑥, 𝑦) = ቂ𝑋𝑌 𝑎𝑏 (1 − 𝑋) ቀ1 − 𝑌 𝑎𝑏ቁቃଶ 1 + ൬− 𝐶ଵଵ𝐶ଵଶ൰ 𝑋𝑌 𝑎𝑏 (1 − 𝑋) ቀ1 − 𝑌 𝑎𝑏ቁ൨       × 𝑒భ௧ cos 𝑏ଵ𝑡 + ൬− 𝑎ଵ𝑏ଵ൰ sin 𝑏ଵ𝑡൨. (32) 

Time period for the first two fundamental modes of vibration is given as: 𝐾 = 2𝜋𝑝 . (33) 
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Now, Logarithmic decrement for the first two fundamental modes of vibration is given as: Λ = log ൬𝑊ଶ𝑊ଵ൰ . (34) 

5. Result and discussion 

Arithmetic result for first two fundamental modes of vibration with exponentially thickness 
and thermal effect variation are calculated with exactness with most modern computer tools i.e. 
MATLAB.  

Calculation is done for logarithmic decrement (^), time period (𝐾) and deflection (𝑤) for 
various values of 𝛽ଵ and 𝛽ଶ and 𝑎/𝑏 at various points for Ist and 2nd modes of vibrations. For 
calculations, the following material parameters of ‘Duralium’ which is an alloy of Aluminium, 
Copper, Magnesium and Manganese have been taken: 𝐸 = 7.08×1010 N/M2, 𝐺 = 2.632×1010 N/M2, 𝜂 = 14.612×105 Ns/M2, 𝜌 = 2.80×103 kg/M3, 𝑣 = 0.345, where ℎ is the thickness of the plate 
taken at the centre is ℎ = 0.01 mm. 

Fig. 1. illustrates the result of 𝐾 (time period) for distinct value of 𝛼 (thermal gradient) to 1st 
and 2nd modes of vibration. It is interesting to seen from figure that as 𝛼 raises 𝐾 raises for 1st 
and 2nd modes of vibration. 

Fig. 2. illustrates the result of 𝐾 (time period) for distinct value of 𝑎/𝑏 = 1.5 (aspect ratio) to 
1st and 2nd modes of vibration. It is interesting to seen from figure that as 𝑎/𝑏 raises then 𝐾 fall 
for 1st and 2nd modes of vibration. 

 
Fig. 1. Vibration of time period 𝐾×10-5 with  

different values of thermal gradient 𝛼  
and aspect ratio 𝑎/𝑏 = 1.5 

 
Fig. 2. Vibration of time period 𝐾*10-5 with 

different values of aspect ratio (𝑎/𝑏) 
 

Fig. 3, 4. illustrates the result of 𝐾 (time period) for distinct value of 𝛽ଵ and 𝛽ଶ (taper constants) 
for 1st and 2nd modes of vibration. It is interesting to seen from figures that as 𝛽ଵ and 𝛽ଶ raises 
then time period fall for 1st and 2nd modes of vibration. 

Fig. 5. illustrate the result of deflection 𝑤 for 1st and 2nd modes of vibration for 𝑎/𝑏 = 1.5 
(aspect ratio) with other distinct value: 𝛽ଵ = 𝛽ଶ = 0.0, 𝛼 = 0.0, 𝛼ଵ = 0.2, 𝛼ଶ = 0.3, 𝑌 = 0.6 and 
time = 0𝐾 and 5𝐾. 

It is interesting to see that from figure as 𝑎/𝑏 raises from 0.1 to 0.5 then deflection 𝑤 raises but 
as the value of aspect ratio raises from 0.5 to 1.0 then we clearly see that deflection 𝑤 fall for 1st 
and 2nd modes of vibration. 

Fig. 6. illustrate the result of deflection 𝑤 for first two modes of vibration for aspect ratio 𝑎/𝑏 = 1.5 with other different values: 𝛽ଵ = 𝛽ଶ = 𝛼 = 𝛼ଵ = 𝛼ଶ = 0.0 and time = 0𝐾 and 5𝐾,  𝑋 = 𝑌 = 0.6. 
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Fig. 3. Time period 𝐾*10-5 for  

various value of 𝛽ଵ and 𝑎/𝑏 = 1.5 

 
Fig. 4. Variation of time period 𝐾*10-5 with different 

values of 𝛽ଶ and constant aspect ratio (𝑎/𝑏 = 1.5) 

 
Fig. 5. Deflection (𝑤*10-5) for various value of 𝑋 and 𝑌, 𝑎/𝑏 = 1.5 and  𝛽ଵ = 𝛽ଶ = 0.0, 𝛼 = 0.0, 𝛼ଵ = 0.2, 𝛼ଶ = 0.3, time = 0𝐾 and 5𝐾 

 
Fig. 6. Deflection (𝑤*10-5) for various value  
of 𝑎/𝑏 and 𝛽ଵ = 𝛽ଶ = 𝛼 = 𝛼ଵ = 𝛼ଶ = 0.0 

 
Fig. 7. Logarithmic decrement (Λ) for various value  

of 𝛽ଵ and 𝛽ଶ and 𝛼 = 𝛼ଵ = 𝛼ଶ = 0.0, 𝑎/𝑏 = 1.5 

It is interesting to see that from the figure as aspect ratio raises then deflection raises for 1st 
and 2nd modes of vibration. 

Fig. 7. illustrate result for Λ (logarithmic decrement) for 𝑎/𝑏 (aspect ratio) various cases are 
deliberate for time period against taper constant, 𝑎/𝑏 and 𝛼 which are stated as below: 𝑎/𝑏 = 1.5 
for 1st and 2nd modes of vibration along distinct value of taper constants 𝛽ଵ. It is interesting to 
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note that from figure as taper constant raises then logarithmic decrement fall for 1st and 2nd modes 
of vibration. 

In above graphical data we can see that:  
• Thermal gradient 𝛼 increases, time period increases continuously. 
• Aspect Ratio 𝑎/𝑏 increases, time period decreases continuously. 
• Taper constants (𝛽ଵ, 𝛽ଶ) increases, time period decreases continuously. 
• 𝑋- increases, deflection show parabolic nature for different value of 𝑋. 
• Aspect Ratio 𝑎/𝑏 increases, deflection increases continuously. 
• Taper constant 𝛽ଵ increases, logarithmic decrement decreases. 

6. Conclusions 

This paper has devoted to study the effect of orthotropic tapered rectangular plate for first two 
fundamental frequencies based on classical plate theory. If thermal stresses are removed in the 
above case, the result match with the unheated plate in which temperature effect was not taken 
into account. After comparing with [5] authors conclude that as temperature effect introduced, 
time period and deflection increase gradually in comparison to unheated plate of varying  
thickness. Thus, engineers can find an alteration in the frequencies of a plate by a suitable selection 
of a variety of plate restriction measured at this time and accomplish their basic requirements. 
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