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Abstract. As an important part of rotating machinery, bearings play an important role in 
large-scale mechanical equipment. Abnormal bearing conditions may cause the machine to 
malfunction, or even evolve into a serious accident. Therefore, the accurate and timely fault 
diagnosis of the bearing is of great significance. Based on EMD, this paper introduces the working 
principles and characteristics of EEMD and CEEMDAN, respectively. Then the signal was 
decomposed by EEMD and CEEMDAN respectively. The simulation results show that 
CEEMDAN has better effect on signal decomposition. Then, comparing the effect of CEEMDAN 
and EEMD on bearing fault feature frequency extraction, the experiment proves that CEEMDAN 
has a better ability to preserve original signal and eliminate noise than EEMD method, and can 
extract bearing fault feature more accurately and timely. 
Keywords: CEEMDAN, EEMD, denoising, fault diagnosis, feature extraction, bearings. 

1. Introduction  

As an important part of rotating machinery, bearings play an important role in large-scale 
mechanical equipment. However, due to the harsh working environment of the bearing, including 
corrosion, poor lubrication and plastic deformation, the bearing becomes one of the most easily 
broken parts of the machine. In order to diagnose bearing failures in a timely manner and prevent 
unpredictable accidents, it is particularly important to study bearing fault feature extraction 
techniques. In engineering applications, the fault characteristic frequency of the bearing is often 
extracted from the collected vibration signal. Therefore, vibration signal processing technology is 
widely used in the industrial field as the main analysis technology for bearing fault diagnosis. 

EMD is a new time-frequency analysis method proposed by Huang, which can decompose the 
signal into several intrinsic modal functions (IMFs) [1, 2]. The method can perform adaptive 
selection of base at the same time when multi-resolution decomposition is completed. This method 
solves the problem of base selection and is suitable for handling nonlinear and non-stationary 
signals. However, mode mixing may occur when decomposing the intrinsic mode component 
(IMC) [3, 4]. In order to reduce the mode mixing, Wu Z. et al. proposed the Ensemble Empirical 
Mode Decomposition (EEMD), which reduces the effect of mode mixing by adding auxiliary 
white noise and achieves good results to a certain extent [5, 6]. Zheng J. et al. proposed a partly 
ensemble EMD (PEEMD) method to solve the problem of mode mixing, which is an improvement 
on EEMD [7]. However, EEDM also has the problems of low decomposition efficiency, too many 
pseudo-components, and ineffective extraction of fault features. 

In order to solve these problems of the EEMD, Torres M. E. et al. proposed the complete 
ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method with adaptive 
noise [8]. This method adds adaptive white noise in each decomposition stage to reduce the mode 
mixing. Colominas M. A. et al. used the IMF of Gaussian white noise decomposed by EMD as 
the unique noise to be added at each decomposition stage to solve the “false” IMFs that may be 
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generated after CEEMDAN decomposes the signal [9]. Lei Y. et al. also applied this method to 
the fault diagnosis of locomotive rolling bearings [10]. But the diagnostic efficiency of this method 
was greatly reduced. This paper describes the use of CEEMDAN in bearing feature extraction and 
uses experiments to compare the accuracy of the proposed method with EEMD, and verifies the 
feasibility of the proposed method [11, 12]. 

The rest of this study is organized as follows. Section 2 presents the basic principles of EEMD 
and CEEMDAN. Section 3 describes and compares the simulation of EEMD and CEEMDAN. 
Section 4 provides an empirical comparison of the feature extraction between EEMD and 
CEEMDAN. Section 5 presents a concluding summary. 

2. Basic principles of EEMD and CEEMDAN 

2.1. EEMD’s principles 

EMD is based on the time scale characteristics of complex signal itself without any 
requirement to setup any basis functions [13]. This method decomposes noise signals into a series 
of data sequence retaining local feature information, which is called Intrinsic Mode Function 
(IMF). Based on this characteristic, EMD has a high signal-to-noise ratio while dealing with 
non-stationary and nonlinear data. EMD method needs to meet the following 3 conditions: 

(1) At least one maxima and one minimum must be contained in the signal. 
(2) Time characteristic scale is defined by the time interval between adjacent extreme points. 
(3) If there is no extreme point in the whole signal, but a turning point is available. Then 

differential can be done to the signal to obtain the extreme points. Finally, obtain the final 
decomposition results through the integration of IMFs. 

The EEMD method is improved on the basis of the EMD method. The mode mixing 
phenomenon will frequently appear while using EMD method. The reasons are as the following 
due to two kinds of circumstances: 

(1) A separate IMF signal contains completely different scale. 
(2) The same scale appears in different IMFs. The EEMD method used the statistic 

characteristic that white Gaussian noise has a uniform frequency distribution. After additional 
Gauss white noise background is added in the signal, signal region at different scales will be 
automatically mapped to the appropriate scale of background white noise. This makes it possible 
to have a unified framework for the analysis of time scales which can separate various time scales 
clearly, enhance the anti-mixing effect and form an effective, adaptive, and dynamic two filter 
group, solving the mode mixing problem of EMD method. 

The specific process of EEMD method: 
(1) Add Gauss white noise with zero mean and variance as constant 𝜔ሺ𝑡) on the original signal 𝛾ሺ𝑡) and get a new target signal 𝑌ሺ𝑡): 𝛶ሺ𝑡) = 𝛾ሺ𝑡) + 𝜔ሺ𝑡). (1) 

(2) Imply EMD decomposition on the signal 𝑌ሺ𝑡). Obtained A series of IMF components and 
residual components 𝑟௺ሺ𝑡) of the target signal: 

𝛶ሺ𝑡) =  𝑖𝑚𝑓ሺ𝑡)ேୀଵ + 𝑟ேሺ𝑡). (2) 

(3) Add 𝑁 sub different white noise to the target signal, and repeat the steps above: 

𝛶ሺ𝑡) =  𝑖𝑚𝑓ሺ𝑡)ேୀଵ + 𝑟ேሺ𝑡). (3) 
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(4) Do overall average operation of the above results to eliminate the influence of the many 
times adding of Gauss white noise on real IMF. Get the IMF component: 𝑖𝑚𝑓ሺ𝑡) = 1𝑛  𝑖𝑚𝑓ሺ𝑡)ୀଵ . (4) 

2.2. CEEMDAN’s principle 

EEMD has great significance in solving the problem of mode mixing in EMD. But it has 
several drawbacks. First, a large amount of computation is needed. Second, many false 
components will be decomposed and achieved if the parameter chosen is not reasonable. Torres 
M E and others put forward CEEMDAN method to solve this problem. This method adds adaptive 
white noise in every decomposing stage and calculates the only left residual signal to achieve 
every model component [14]. In this way, the problem of EEMD was solved. 

The specific process of CEEMDAN method: 
(1) Defined operator 𝛦ሺ∙) to represents the first 𝑘 modal component generated by the EMD 

calculation.𝜔ሺ𝑡) meet the Gauss white noise of 𝑁 (0, 1). 𝐼𝑀𝐹തതതതതതത is denoted as the first 𝑘 modal 
component of the CEEMDAN algorithm. Let 𝑌[𝑡] be the signal to be processed. CEEMDAN 
decomposed the signals 𝑌[𝑡] + ℰ𝜔ሺ𝑡), using EMD, for 𝐼 times, and obtained: 

𝐼𝑀𝐹തതതതതതଵ = 1𝐼  𝐼𝑀𝐹തതതതതതଵூୀଵ . (5) 

(2) Calculate the first margin of the first phase of the (𝑘 = 1): 𝛶ଵ[𝑡] = 𝑌[𝑡] − 𝐼𝑀𝐹തതതതതതଵ. (6) 

(3) Discompose these signals 𝛶ଵ[𝑡] + 𝜀ଵ𝛦ଵሺ𝜔[𝑡]) (𝑖 = 1, 2, …, 𝐼), till the first EMD mode 
component is decomposed. Then defined the second modal component as: 

𝐼𝑀𝐹തതതതതതଶ = 1𝐼  𝐸ଵூୀଵ ൫𝛶ଵ[𝑡] + 𝜀ଵ𝐸ଵሺ𝜔[𝑡])൯. (7) 

(4) While 𝑘 = 2, …, 𝐾, calculate the first 𝐾 margin: 𝛶[𝑡] = 𝛶ିଵ[𝑡] − 𝐼𝑀𝐹തതതതതത. (8) 

(5) Discompose these signals 𝛶[𝑡] + 𝜀𝛦ሺ𝜔[𝑡]) (𝑖 = 1, 2, …, 𝐼), till the first EMD mode 
component is decomposed. Then defined the 𝐾 + 1 modal components as: 

𝐼𝑀𝐹തതതതതതାଵ = 1𝐼  𝐸ଵூୀଵ ൫𝛶[𝑡] + 𝜀𝐸ሺ𝜔[𝑡])൯. (9) 

(6) Add 1 to 𝐾 , continue to carry out step 4 till the residual signal achieved can’t be 
decomposed any more (every residual signal contains on more than one extreme point). Finally, 𝐾 intrinsic mode functions are obtained. Residual signals meet:  

𝑅[𝑡]തതതതതത = 𝑌[𝑡] −  𝐼𝑀𝐹തതതതതതୀଵ . (10) 

3. Simulation 

Harmonics are resonant waves with the same frequency or multiple frequencies as the main 
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wave! They are parasitized with the main wave! It is commonly known as harmonics and higher 
harmonics! In order to verify CEEMDAN’s better denoising effect, this paper strictly set the same 
harmonic signals: 50 Hz, 150 Hz, and 300 Hz for simulation experiments. To better compare the 
decomposition performance of CEEMDAN and EEMD on the signal, set the same input 
parameters for the two methods, that is, the white noise amplitude is 0.1, the ensemble size is 100, 
and the sampling frequency is 2000 Hz, to ensure that the simulation verification is more accurate. 
The sampling time is 2 s and 𝑖ሺ𝑡) is the gause white noise signal, as shown in Eq. (11): 𝑥ሺ𝑡) = 2 sinሺ100𝜋𝑡) + 3 cosሺ300𝜋𝑡) + sinሺ600𝜋𝑡) + 𝑖ሺ𝑡). (11) 

The modal components are obtained by the decomposition of signals. However, some pseudo 
modal components are often obtained and not associated with original signals. So, these pseudo 
modal components in modal components need to be identified and eliminated. Calculate the 
correlation coefficient between each modal component and the original signal and remove the 
pseudo modal component. The formula of the correlation coefficient is following: 

𝑟 = ∑ ሺ𝑋 − 𝑋ത)ሺ𝑌 − 𝑌ത)ேୀଵට∑ ሺ𝑋 − 𝑋ത)ଶேୀଵ ට∑ ሺ𝑌 − 𝑌ത)ଶேୀଵ . (12) 

Fig. 1 shows the correlation coefficients between the first 8 modes of EEMD decomposition 
and the original signal. Obviously, the correlation coefficient of the first four modes is much larger 
than that of other modes. So, extract the first four modal components and reconstruct them. This 
eliminates residual modal components in the signal. 

 
Fig. 1. The correlation coefficient between the first 8 modes decomposed by EEMD and original signal 

 
Fig. 2. The correlation coefficient between the first  

8 modes decomposed by CEEMDAN and original signal 

Fig. 2 shows the correlation coefficients between the first 8 modes of the CEEMDAN 
decomposition and the original signal. In the same way, the first four modal components are 
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extracted and reconstructed to eliminate residual modal components in the signal. 
The signals were decomposed using EEMD and CEEMDAN, respectively. Then calculate the 

correlation coefficient between the reconstructed signal and the original signal. The signal-noise 
ratio reflects the purity of the signal, the larger the SNR, the stronger the signal purity. The 
signal-to-noise ratio of the reconstructed signal is calculated by the following equation: 

𝑆ேோ = 10 × logଵ ൝ 𝑆ଶ∑ ሺ𝑆 − 𝑆ᇱ)ଶேୀଵ
ே

ୀଵ ൡ. (13) 

Table 1 shows the correlation coefficient between the original signal and the reconstructed 
signal processed by the two methods, and also shows the signal-to-noise ratio of the reconstructed 
signal processed by the two methods. 

Table 1. The correlation coefficient and signal-to-noise ratio 
 Processed by EEMD Processed by CEEMDAN 

Correlation coefficient 0.9769 0.9774 
Signal to noise ratio 13.1768 13.2108 

Table 1 shows the correlation coefficient between the original signal and the reconstructed 
signal processed by the two methods. 

From Table 1, it can be concluded that the proposed method can effectively remove the 
interference factors in the signal and the resulting reconstructed signal can better reflect the 
original signal. 

4. Feature extraction 

To verify the effectiveness of this method, this paper chooses the rolling bearing as the research 
object then process the vibration signal of the bearing outer ring and the inner ring fault 
respectively. 

Bearing outer ring fault characteristic frequency expression is: 

𝑓 = 12 ൬1 − 𝑑𝐷 cos𝛼൰ 𝑓𝑍. (14) 

Bearing inner ring fault characteristic frequency expression is: 

𝑓 = 12 ൬1 + 𝑑𝐷 cos𝛼൰ 𝑓𝑍. (15) 

In the equation, 𝛧 represents the number of rolling elements, d presents the diameter of rolling 
body, a represents the bearing contact angle, 𝐷 represents the pitch circle diameter of bearing 
and 𝑓 presents rotating frequency. 

This paper uses bearing data measured by fault simulation test platform of rolling bearing in 
Electrical Engineering Laboratory of Case Western Reserve University. 

The platform’s parameters are set as follows: 
Bearing type is 6205-2RS JEM SKF, bearing speed is 1797 r/min, the sampling frequency is 

12 kHz, the number of data points is 4096, and fault diameter set is 0.021 inches. Measuring points 
are arranged in the drive motor output of the platform. 

The following Table 2 shows the fault frequency of the bearing outer ring and the inner ring 
calculated by the Eq. (14) and the Eq. (15). 

In Fig. 3, the time domain waveform and spectrum of the fault signal of the inner ring are 
presented, when the bearing’s rotational speed is at 1797 rpm. And from Fig. 3, it is appreciated 
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that the spectrum cannot identify directly the fault frequency mixed with a variety of noise signals. 

Table 2. Bearing fault characteristic frequency 
Rotational frequency 𝑓 Outer ring fault frequency 𝑓 Inner fault frequency 𝑓 

29.95 Hz 107.36 Hz 162.18 Hz 

 
Fig. 3. The time domain waveform and spectrum of the fault signal of the inner ring at 1797 rpm 

In the case of decomposing the inner ring’s fault signal through EEMD and CEEMDAN 
separately, the total modal number of CEEMDAN, both are 12, doesn’t have any increase 
compared with EEMD. Usually, the several modes in front, produced by extraction, are chosen as 
research objects because their correlation coefficients with original signals are high. Therefore, 
the paper takes the first 4 modes of EEMD and CEEMDAN respectively as the research objects. 
Which are shown in Fig. 4 and Fig. 5. 

 
Fig. 4. The first 4 modes of EEMD (the inner ring) 
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Fig. 5. The first 4 modes of CEEMDAN (the inner ring) 

In Fig. 4 and Fig. 5, the frequency around 29.5 Hz is bearing rotational frequency, and that 
around 162 Hz is of inner ring fault. What’s more, 2𝑓 frequency can also be seen in the figure, 
which is equal to 2 times the fault frequency, and 3𝑓  etc. it can be found obviously that 
CEEMDAN can find out more fault frequency and multiple frequency (especially in mode 3 and 
mode 4). 

In addition, the paper uses the decomposed spectrum to analyse the case of outer ring. In Fig. 6, 
the time domain waveform and spectrum of the fault signal of the outer ring are presented, when 
the bearing's rotational speed is at 1797 rpm. As it can be seen, the fault frequency mixed with a 
variety of noise signals cannot be identified directly. 

 
Fig. 6. The time domain waveform and spectrum of the fault signal of the outer ring at 1797 rpm 

As is shown in Fig. 7 and Fig. 8, EEMD and CEEMDAN is applied to decompose the outer 
ring fault signal separately. EEMD produces 12 modes, and CEEMDAN produces 13 modes. The 
total modal number of CEEMDAN is only 8 % more than EEMD and there isn’t any obvious 
increase. Just like the case in inner ring’s spectrum. The several modes in front have higher 
correlation coefficient with original signals. Therefore, the paper takes the first 3 modes of 
CEEMDAN and EEMD respectively as the research objects. 
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In spectrum above, the frequency around 29.5 Hz is bearing rotational frequency, and that 
around 108 Hz is of outer ring fault. What’s more, it can be seen 2𝑓 frequency, 3𝑓 frequency etc. 
It is easy to find that CEEMDAN can find out more fault frequency and multiple frequency 
(especially in mode 3). 

In conclusion, CEEMDAN is more effective than EEMD in extracting the characteristic 
frequencies of the fault signals inside and outside the bearing. Multiple modal components 
processed by CEEMDAN can identify the failure frequency of the signal. However, signals 
processed by EEMD are prone to mode mixing. 

 
Fig. 7. The first 3 modes of EEMD (the outer ring) 

 
Fig. 8. The first 3 modes of CEEMDAN (the outer ring) 

Maohua Xiao contributed to the design and optimization of the algorithm. Cunyi Zhang, Kai 
Wen·and Longfei Xiong performed the processing and analysis of experimental data and the 
completion of the manuscript. Guosheng Geng and Da Wu performed the revision of the 
manuscript. 
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5. Conclusions 

Based on the EMD, this paper describes in detail the working principles and features of EEMD 
and CEEMDAN. The feature extraction method in bearing fault diagnosis was analyzed. Through 
simulation experiments and bearing fault feature extraction experiments, this paper verifies that 
CEEMDAN has great advantages in retaining original signal information and eliminating signal 
noise. As a new technology to study bearing fault feature extraction, CEEMDAN has important 
research value and application prospects. 
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