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Abstract. A new perturbation method has been proposed to investigate the sensitivities of the 
eigen-parameters (frequencies and mode shapes) and the modal strain energy density of a damaged 
beam. The sensitivities were obtained via the Rayleigh quotient and Taylor series expansion. The 
damage was simulated by the reduction in the cross-sectional area of the beam. The theoretical 
relationships were established between the damage parameter and the variations of the frequency 
and modal strain energy. The analytical formulae explicitly reveal the underlying mechanism that, 
the frequency, which is closely related to the modal strain energy of the entire structure, is less 
sensitive to the local damage; the modal strain energy density, on the other hand, is able to reflect 
the local damage in a small region. The results of the perturbation analyses were validated with 
the finite element analyses and experimental tests of the beam models with 2 damage levels. The 
first resonant frequencies decrease slightly with the increases of the damage. When 30 % of the 
cross-sectional area is cut off in the damaged zone, the first resonant frequencies are still 95 % 
and 98 % those of the intact beam for the bending vibration around 𝑥-axis and around 𝑦-axis; 
meanwhile, the modal strain energy increases 94 % and 54 % in the damage zone, which closely 
correlates with the local damage parameters. The proposed perturbation method has the potential 
to assess the quality of damage indictors faster and more easily than FE and experimental methods. 
Keywords: beam, damage detection, sensitivity analysis, perturbation method, resonant 
frequency, modal strain energy. 

1. Introduction 

Early detection and quantification of structural damages are of great importance to ensure the 
lifetime safety, prevent catastrophic events, and increase the service of structures. Currently 
available damage detection methods include magnetic field methods, ultrasonic methods, 
eddy-current methods, and thermal field methods [1], which are localized experimental methods. 
Most of these experimental methods require that the damage location is approximately known in 
advance and accessible for inspection. Due to these limitations, the need for global damage 
detection methods has led to the development of the static damage detection technology [2, 3] and 
dynamic damage detection technology [4]. The underlying idea behind the vibration-based 
technology is that, the changes in the physical properties (stiffness, mass, and damping) of a 
structure will cause detectable changes in its modal parameters (frequencies, modes, and strain 
energy) which are the functions of its physical properties [5, 6]. Hence, the changes in the modal 
parameters can be assumed as indictors for damage detection. The variations of the physical 
properties of a structure, caused by damages, include the reduction in the structural stiffness and 
modification of the structural geometry, etc. Vibration-based damage detection techniques have 
attracted much attention in past decades and many approaches have been developed, based on the 
vibration response of structures [7]. Early studies found that the resonant frequencies were less 
sensitive to low levels of damage [1, 8]. The frequencies, as global parameters, generally cannot 
provide spatial information about structural changes [1]. On the other hand, it has been 
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experimentally proved that the mode shapes [7-9] and modal strain energy [10-13] are more 
sensitive to structural damages. 

The damage detection methods using mode shapes and their derivatives as a basic feature are 
more sensitive to local damage as the mode shapes contain local information [7-9]. The traditional 
mode shape change method uses the mode shape changes between the intact and damaged 
structures as a basic feature for damage identification. The displacement mode shape itself is not 
very sensitive to a small damage. To enhance the sensitivity of mode shape data to the damage, 
the mode shape curvature has been proposed as a promising feature for damage identification 
[7, 8]. For beam-type or plate-type structures, the second derivatives of the mode shapes are highly 
sensitive to a damage and can be used to localize it [9]. The difference of the curvature mode 
shapes between the intact and damaged structures is introduced as a damage indicator [7]. The 
modal strain energy is directly related to the mode shape curvatures for beam-type or plate-type 
structures; as a special case of the mode shape curvature-based method, the modal strain energy 
has been widely used for damage identification [10-16]. A damage indictor was created [13, 17] 
based on the change in the modal strain energy between the intact and damaged structures. The 
selection of a damage indictor will affect the final results and accuracy of structural damage 
detection [4]. The effectiveness of a damage detection method is determined by its sensitivity to 
a structural damage.  

The sensitivity of the modal strain energy-based methods is related to those of the eigen-pairs 
of the concerned system. A variety of methods for computing the derivatives of eigen-pairs have 
been developed by many researchers. When a damage occurs in a structure, it can be represented 
by a small perturbation of the original system [18, 19]. The variation of an eigen-function can be 
expressed as a linear combination of the eigen-functions of the undamaged structure [18-20]. This 
method employs the modal superposition idea and needs all the mode shapes to obtain an accurate 
sensitivity of each mode shape, which is almost an impossible task. Often only the lower order 
frequencies and associated mode shapes are calculated. Recently, the calculation of the derivative 
of an eigenvector was substantially simplified, it required only the information of the 
corresponding eigenvector to be differentiated [21]. Most of sensitivity analyses were based on 
the matrix theory of a discrete system. In matrix analyses, it is not easy to reveal the mechanism 
how the damage parameter influences the sensitivity of damage indictors [19], and the influential 
relationship are submerged by the matrix calculations. To the knowledge of the authors, there are 
not theoretical comparisons between the sensitivities of various damage detection methods based 
on a continuum model.  

To introduce a damage indictor for structural damage detection, one essential issue is to 
effectively evaluate its sensitivity to the variation of the structural parameters. This paper aims to 
propose a perturbation method based on the Rayleigh quotient via a beam model to evaluate the 
sensitivities of the first frequency and the modal strain energy in a region. The perturbation of the 
eigen-function of the damaged beam is expressed as the Taylor series of the eigen-functions of the 
undamaged beam, and the sensitivities are obtained. The analytical relationships are established 
between the variation rates of the frequency and strain energy with the damage parameter. These 
relationships approximately illustrate the sensitivity of these damage indictors to a structural 
damage. The sensitivities of the frequency-based and modal strain energy-based methods are 
investigated and compared. Furthermore, the finite element (FE) simulations and experimental 
modal analyses are conducted to validate the results obtained in the perturbation analyses. It is 
expected that the proposed method would be able to approximately assess the quality of a damage 
indictor. 

2. Method 

Consider the bending vibration of an elastic beam (Fig. 1). The Young’s modulus and mass 
density of the beam are denoted by 𝐸 and 𝜌; the area and second moment of a cross section are 
denoted by 𝐴 and 𝐼. A damage zone with a length of 𝑑 exists at 𝑧 = 𝑠. Assume that the length (𝐿) 
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of the beam is more than 10 times the characteristic length of its cross section, and it can be 
analyzed by the Euler beam theory [22]. 

2.1. Perturbation analysis of a beam 

For the bending in a principal plane, the governing equation of free vibration of the beam is 
expressed in the variational form [23] as: Π − 𝜆Ψ = 0, (1) 

where Π =  𝐸𝐼𝑤ᇱᇱଶ𝑑𝑧  is (2 times) the strain energy and Ψ =  𝜌𝐴𝑤ଶ𝑑𝑧  is (2 times) the 
amplitude of kinetic energy, and where 𝜆 = 𝜔ଶ  is the eigen-value with 𝜔 being the (angular) 
frequency. Define Π =  𝐸𝐼 ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱ𝑑𝑧  and Ψ =  𝜌𝐴 ⋅ 𝑤 ⋅ 𝑤𝑑𝑧 , where, 𝜆 , 𝜆  and 𝑤 , 𝑤 are the 𝑖th and 𝑗th eigen-values and eigen-functions of the undamaged beam, which satisfy the 
orthogonal conditions:  Ψ = 𝛿,   Π = 𝜆Ψ, (2) 

where 𝛿 is the Kronecker delta. It should be noted that Π and Ψ are not tensors and a repeated 
index does not represent summation. The 𝑖th eigen-value 𝜆 satisfies the Rayleigh quotient:  𝜆 = ΠΨ. (3) 

 

 
a) 

 
b) 

Fig. 1. Bending vibration of an elastic beam: a) location of a damage zone at  
the position 𝑧 = 𝑠 and the damage length is 𝑑, b) cut depth in the damage section 

After a damage is introduced into the original intact beam, its 𝐸𝐼 and 𝜌𝐴 have perturbations of Δሺ𝐸𝐼ሻand Δሺ𝜌𝐴ሻ respectively; hence, for the damaged beam: 𝐸෨𝐼ሚ = 𝐸𝐼 + Δሺ𝐸𝐼ሻ,   𝜌𝐴ሚ = 𝜌𝐴 + Δሺ𝜌𝐴ሻ. (4) 

The governing equation of the damaged beam in the variational form is: Π෩ − 𝜆ሚΨ෩ = 0, (5) 

with Π෩ =  𝐸෨𝐼ሚ𝑤 ᇱᇱଶ𝑑𝑧  and Ψ෩ =  𝜌𝐴ሚ𝑤 ଶ𝑑𝑧 . Similarly, we define the integrations: 

Π෩ = න 𝐸෨𝐼ሚ ⋅ 𝑤ᇱᇱ
 ⋅ 𝑤ᇱᇱ𝑑𝑧,   Ψ෩ = න 𝜌𝐴ሚ ⋅ 𝑤

 ⋅ 𝑤𝑑𝑧, (6) 

where, 𝑤 and 𝑤 are the 𝑖th and 𝑗th eigen-functions of the damaged beam, and the corresponding 
eigen-values are 𝜆ሚ and 𝜆ሚ. They satisfy the orthogonal conditions: 
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Ψ෩ = 𝛿,   Π෩ = 𝜆ሚΨ෩.  (7) 

It is assumed that the eigen-pair, 𝜆ሚ and 𝑤, of the damaged beam are close to those of the 
undamaged beam, 𝜆 and 𝑤; hence they can be expressed as: 𝜆ሚ = 𝜆 + ∆𝜆,   𝑤 = 𝑤 + ∆𝑤, (8) 

where ∆𝜆 and ∆𝑤 are the perturbations of 𝜆 and 𝑤, introduced by the damage.  
By using Eqs. (4) and (8) and ignoring the terms higher than second order, Eq. (6) becomes: 

Π෩ = Π + න ൣ∆ሺ𝐸𝐼ሻ ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱ + 𝐸𝐼 ⋅ ൫𝑤ᇱᇱ ⋅ ∆𝑤ᇱᇱ + 𝑤ᇱᇱ ⋅ ∆𝑤ᇱᇱ൯൧𝑑𝑧,
  (9) 

and: 

Ψ෩ = Ψ + න ൣ∆ሺ𝜌𝐴ሻ ⋅ 𝑤 ⋅ 𝑤 + 𝜌𝐴 ⋅ ൫𝑤 ⋅ ∆𝑤 + 𝑤 ⋅ ∆𝑤൯൧
 𝑑𝑧, (10) 

and then: 

𝜆ሚΨ෩ = 𝜆Ψ + ∆𝜆Ψ + 𝜆 න ൣ∆ሺ𝜌𝐴ሻ ⋅ 𝑤 ⋅ 𝑤 + 𝜌𝐴 ⋅ ൫𝑤 ⋅ ∆𝑤 + 𝑤 ⋅ ∆𝑤൯൧
 𝑑𝑧. (11) 

Following [24] and [18], the perturbation of the 𝑖th eigen-function of the damaged beam can 
be expressed as the Taylor series of the eigen-functions of the undamaged beam: 

∆𝑤 =  𝜁𝑤ஶ
ୀଵ , (12) 

where 𝜁 is the coefficient of the 𝑛th eigen-function 𝑤. Substituting Eq. (12) into Eqs. (9) and 
(11) and utilizing the orthogonal conditions Eq. (2), we have:  

Π෩ = Π + න ∆ሺ𝐸𝐼ሻ ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱ𝑑𝑧
 + Π𝜁 + Π𝜁, (13) 

and: 

𝜆ሚΨ෩ = 𝜆Ψ + ∆𝜆Ψ + 𝜆 න ∆ሺ𝜌𝐴ሻ ⋅ 𝑤 ⋅ 𝑤𝑑𝑧
 + 𝜆൫Ψ𝜁 + Ψ𝜁൯. (14) 

Substitution of Eqs. (13) and (14) into the second equality of Eq. (7) yields:  

න ∆ሺ𝐸𝐼ሻ ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱ𝑑𝑧
 + ൫𝜆 − 𝜆൯Ψ𝜁 − ∆𝜆Ψ − 𝜆 න ∆ሺ𝜌𝐴ሻ ⋅ 𝑤 ⋅ 𝑤𝑑𝑧

 = 0. (15) 

For 𝑗 = 𝑖, Eq. (15) gives: 

∆𝜆 = ቈන ∆ሺ𝐸𝐼ሻ ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱ𝑑𝑧
 − 𝜆 න ∆ሺ𝜌𝐴ሻ ⋅ 𝑤 ⋅ 𝑤𝑑𝑧

  Ψൗ . (16) 
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By using Eqs. (3) and (16), the sensitivity of the 𝑖th eigen-value is: ∆𝜆𝜆 = ቈන ∆ሺ𝐸𝐼ሻ ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱ𝑑𝑧
 − 𝜆 න ∆ሺ𝜌𝐴ሻ ⋅ 𝑤 ⋅ 𝑤𝑑𝑧

  Πൗ . (17) 

For 𝑗 ≠ 𝑖, Eq. (15) gives: 

𝜁 = ቈන ∆ሺ𝐸𝐼ሻ ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱ𝑑𝑧
 − 𝜆 න ∆ሺ𝜌𝐴ሻ ⋅ 𝑤 ⋅ 𝑤𝑑𝑧

  ൣ൫𝜆 − 𝜆൯Ψ൧൘ . (18) 

The quantity 𝜁 is found from Eq. (10) and the orthogonal conditions Eqs. (3) and (7), which 
leads to: 

𝜁 = − 12  ∆ሺ𝜌𝐴ሻ ⋅ 𝑤 ⋅ 𝑤𝑑𝑧 Ψ . (19) 

The modal strain energy stored in a region (say, the 𝑘th) of the 𝑖th mode is expressed as  
[19, 25, 26]: 

Θሺሻ = න 𝐸𝐼 ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱೖశభೖ 𝑑𝑧, (20) 

where [𝑍, 𝑍ାଵ] are the nodal coordinates of the 𝑘th region. The change of the modal strain 
energy (by ignoring the terms higher than second order) is: 

∆Θሺሻ = න ∆ሺ𝐸𝐼ሻ ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱೖశభೖ 𝑑𝑧 + න 2𝐸𝐼 ⋅ 𝑤ᇱᇱ ⋅ ∆𝑤ᇱᇱೖశభೖ 𝑑𝑧. (21) 

Substitution of Eq. (12) into Eq. (21) yields:  

∆Θሺሻ = න ∆ሺ𝐸𝐼ሻ ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱೖశభೖ 𝑑𝑧 + 2  𝜁ஶ
ୀଵ න 𝐸𝐼 ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱೖశభೖ 𝑑z. (22) 

The beam model (Fig. 1) has a length 𝐿 = 0.80 m and a rectangular cross section with a width 𝑏 = 0.03 m and a height ℎ = 0.06 m. The Young’s modulus, Poisson’s ratio, and mass density of 
the beam (steel) are 𝐸 = 210 GPa, 𝑣 = 0.3, and 𝜌 = 7800 kg/m3. Two damage levels (10 % and 
30 %) are introduced into the damage zone (𝑑 = 0.02 m), i.e., the portion of 𝛿ℎ is removed (here 𝛿 = 10 % and 30 % respectively) along the bottom of the damage zone (Fig. 2). 

Table 1. Reduction ratios of the area and its second moment induced by a cut in a cross section ℎௗ / ℎ 𝐴ௗ / 𝐴 𝐼ௗ௫ / 𝐼௫ 𝐼ௗ௬ / 𝐼௬ 𝛿 𝛼 𝜙௫ 𝜙௬ 
0.9 0.9 0.729 0.9 0.1 –0.1 –0.271 –0.1 
0.7 0.7 0.343 0.7 0.3 –0.3 –0.657 –0.3 

As the damage is localized in a small zone where the cross sectional area, 𝐴, of the beam and 
its second moment, 𝐼 , are reduced; thus, ∆ሺ𝜌𝐴ሻ = 𝛼ሺ𝜌𝐴ሻ  and ∆ሺ𝐸𝐼ሻ = 𝜑ሺ𝐸𝐼ሻ  in the damage  
zone, everywhere else ∆ሺ𝜌𝐴ሻ = 0 and ∆ሺ𝐸𝐼ሻ = 0. The reduction ratios of the cross sectional area 
and flexible rigidity (𝛼 and 𝜑) are related to the parameter 𝛿 as listed in Table 1. As the second 
moment of a cross section area is different about 𝑥 and 𝑦-axis, the reduction ratio of the second 
moment is denoted by 𝜑௫ and 𝜑௬ for bending around 𝑥 and 𝑦-axis respectively. In the table, ℎௗ 
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and 𝐴ௗ are the height and area of the cross section in the damage zone and 𝐼ௗ௫ and 𝐼ௗ௬ are the 
corresponding second moment of the cross section 𝐴ௗ  about 𝑥  and 𝑦 -axis; 𝐼௫  and 𝐼௬  are the 
second moment of the cross section 𝐴 about 𝑥  and 𝑦-axis. It is easy to obtain that: 𝛼 = − 𝛿 , 𝜑௬ = − 𝛿, and 𝜑௫ = ሺ1 + 𝛿ሻଷ − 1.  

For the beam concerned, Eq. (16) gives: 

∆𝜆 = ቆ𝜙 න 𝐸𝐼 ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱ𝑑𝑧௦ାௗ ଶ⁄
௦ିௗ ଶ⁄ − 𝜆𝛼 න 𝜌𝐴 ⋅ 𝑤 ⋅ 𝑤𝑑𝑧௦ାௗ ଶ⁄

௦ିௗ ଶ⁄ ቇ Ψൗ . (23) 

From Eq. (17), the sensitivity of the 𝑖th eigen-value is simplified to:  ∆𝜆𝜆 = ቆ𝜙 න 𝐸𝐼 ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱ𝑑𝑧௦ାௗ ଶ⁄
௦ିௗ ଶ⁄ − 𝜆𝛼 න 𝜌𝐴 ⋅ 𝑤 ⋅ 𝑤𝑑𝑧௦ାௗ ଶ⁄

௦ିௗ ଶ⁄ ቇ න 𝐸𝐼 ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱ𝑑𝑧
൘ . (24) 

Eqs. (18) and (19) give: 

𝜁 = ቆ𝜙 න 𝐸𝐼 ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱ𝑑𝑧௦ାௗ ଶ⁄
௦ିௗ ଶ⁄ − 𝜆𝛼 න 𝜌𝐴 ⋅ 𝑤 ⋅ 𝑤𝑑𝑧௦ାௗ ଶ⁄

௦ିௗ ଶ⁄ ቇ ൣ൫𝜆 − 𝜆൯Ψ൧൘ ,   𝑗 ≠ 𝑖, (25) 

and: 

𝜁 = − 12 𝛼  𝜌𝐴 ⋅ 𝑤 ⋅ 𝑤𝑑𝑧௦ାௗ ଶ⁄௦ିௗ ଶ⁄ Ψ . (26) 

For the case that the 𝑘 th region falls within the damage zone [𝑠 − 𝑑/2, 𝑠 + 𝑑/2 ], i.e.,  ∆ሺ𝐸𝐼ሻ = 𝜙ሺ𝐸𝐼ሻ, from Eqs. (22) and (20), the change rate of the modal strain energy for the 𝑖th 
mode can be expressed as: ∆ΘሺሻΘሺሻ = 𝜙 + 2  𝜁ஶ

ୀଵ න 𝐸𝐼 ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱೖశభೖ 𝑑𝑧 න 𝐸𝐼 ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱೖశభೖ 𝑑𝑧൙ . (27) 

If the region concerned is outside the damage zone, ∆ሺ𝐸𝐼ሻ = 0, then Eqs. (22) and (20) lead 
to: ∆ΘሺሻΘሺሻ = 2  𝜁ஶ

ୀଵ න 𝐸𝐼 ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱೖశభೖ 𝑑𝑧 න 𝐸𝐼 ⋅ 𝑤ᇱᇱ ⋅ 𝑤ᇱᇱೖశభೖ 𝑑𝑧൙ . (28) 

The beam is divided into 80 regions, and the modal strain energy for the first modes and its 
change rates are calculated for the two damage levels. The integrations are carried out in a 
MATLAB program. The eigen-pairs of an intact beam under free-free boundary conditions are 
listed in the Appendix. 

2.2. FE analyses 

For the sake of validations, the FE analyses of the steel beam (Fig. 2) are conducted. Besides 
the intact beam model, 2 damage levels (10 % and 30 %) are considered in the damage zone 
(𝑑 = 0.02 m). The software package ABAQUS (SIMULIA Inc., Providence, USA) is used to 
obtain the first 8 resonant frequencies, mode shapes, and the corresponding strain energy density 
in each element. Both ends are set free, and about 12400 continuum elements (C3D8R) are used.  
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Fig. 2. FE mesh of the steel beam 

2.3. Experimental modal analyses 

The experimental set-up (Fig. 3) for modal analysis includes an excitation hammer, response 
measuring sensors (accelerometers) and an acquisition system (JM3840, Jing-Ming Technology 
Inc., Yangzhou, China). The specimen is laid on sponge (Fig. 3) to simulate free-free boundary 
condition. Totally 10 accelerometers with nominal sensitivity of 100 mV/g are attached on the top 
surface of the beam. The impulse force is provided by the micro-hammer instrumented with a 
force sensor to measure the input force. The time histories of the force and acceleration are 
collected by the acquisition instrument and analyzed in a computer. The frequency response 
functions (FRFs) and the modal parameters are gained by using the kit software associated with 
JM3840 acquisition instrument. The parameters of the experimental instruments are listed in 
Table 2. 

 
a) 

 
b) 

Fig. 3. Experimental set-up for modal analyses and testing specimens 

Table 2. Parameters of the experimental instruments 
Name Pattern Specifications Manufacturer 

Excitation hammer/sensor JML-03 Sensibility: 0.08 mv/N Jing-Ming Technology 
Inc., Yangzhou, China 

Accelerometer YD2150 Sensibility: 4.99 mv/m/s2 Xi-Yuan Technology Inc., 
Yangzhou, China 

Data acquisition system JM3840 16 channels; sampling rate: 2 kHz Jing-Ming Technology 
Inc., Yangzhou, China 

Modal analysis software JMTEST Version 7.9 Jing-Ming Technology 
Inc., Yangzhou, China 

Calculation of the strain energy in a region involves the displacement and rotation at the 
measurement points. As the rotation cannot be measured directly, it is usually estimated from the 
difference of the displacement values of two adjacent points [27], which may introduce substantial 
inaccuracy. Hence the strain energy density is not included into the experimental analyses in this 
paper. 
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3. Results and discussions 

There are 2 vibration modes, i.e., bending around 𝑥-axis and 𝑦-axis. Fig, 4 shows the first 
mode shapes for the bending vibration around 𝑥-axis and 𝑦-axis. 

The first resonant frequencies for bending vibration around 𝑥-axis and 𝑦-axis are obtained by 
using the 3 methods (perturbation, FE, and experimental) for 2 damage levels (Table 3). The first 
resonant frequencies decrease as the damage increases. The variation rates of the first resonant 
frequencies of the damaged beam from those of the intact beam are listed in the parentheses. 

When the beam is cut off 10 % in the height in the damage zone, the bending stiffness is 
reduced 27 % around 𝑥-axis and 10 % around 𝑦-axis; which results in the frequency being reduced 
2 % and 1 % respectively for the bending vibration around 𝑥-axis and 𝑦-axis. When the beam is 
cut off 30 % in the height, the bending stiffness is reduced 66 % around 𝑥-axis and 30 % around 𝑦-axis; which results in the frequency being reduced 5 % and 2 % respectively for the bending 
vibration around 𝑥-axis and 𝑦-axis. 

 
a) First bending vibration mode around 𝑥-axis 

 
b) a) First bending vibration mode around 𝑦-axis 

Fig. 4. The first mode shapes for bending vibration around 𝑥-axis and 𝑦-axis 

Table 3. Resonant frequencies and their variations obtained by 3 methods 
– Damage level 0 % (intact) 10 % 30 % 

First bending mode around 𝑥-axis 

Perturbation 487.97 
(0 %) 

477.72 
(–2.1 %) 

463.57 
(–5.0 %) 

FE 486.96 
(0 %) 

477.23 
(–2.0 %) 

430.39 
(–11.6 %) 

Experimental 479.49 
(0 %) 

471.19 
(–1.7 %) 

424.81 
(–11.4 %) 

First bending mode around 𝑦-axis 

Perturbation 243.98 
(0 %) 

242.03 
(–0.8 %) 

238.36 
(–2.3 %) 

FE 244.53 
(0 %) 

243.36 
(–0.5 %) 

237.82 
(–2.7 %) 

Experimental 244.63 
(0 %) 

242.68 
(–0.8 %) 

238.77 
(–2.4 %) 

The 3 methods obtain the similar variations of the first resonant frequencies. For the bending 
vibration around 𝑥-axis, the perturbation method predicts 2 % and 5 % reduction in the first 
resonant frequency for the damage of 10 %, and 30% respectively; while the FE method predicts 
2 % and 12 % reduction and the experimental method predicts 2 % and 11 % reduction. For the 
bending vibration around y-axis, the perturbation method predicts 1 % and 2 % reduction in the 
first resonant frequencies for the damage of 10 % and 30 % respectively; while the FE method 
predicts 1 % and 3 % reduction and the experimental method predicts 1 % and 2 % reduction. 

The low sensitivity of the first eigenvalue to a damage of a structure has been demonstrated 
analytically by the beam model. As shown in Eq. (24), the denominator,  𝐸𝐼 ⋅ 𝑤ଵᇱᇱ ⋅ 𝑤ଵᇱᇱ𝑑𝑧 , 
actually represents the strain energy of the whole beam for the first mode; while the integrals,  𝐸𝐼 ⋅ 𝑤ଵᇱᇱ ⋅ 𝑤ଵᇱᇱ𝑑𝑧௦ାௗ∕ଶ௦ିௗ∕ଶ  and 𝜆ଵ  𝜌𝐴 ⋅ 𝑤ଵ ⋅ 𝑤ଵ𝑑𝑧௦ାௗ∕ଶ௦ିௗ∕ଶ , represent the strain energy and kinetic 
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energy stored at the damaged part for the first mode. The sensitivity of the first eigenvalue to the 
damage is proportional to the energy changes at the damage region and inversely related to the 
strain energy of the whole beam. As the damage region, [𝑠 − 𝑑/2, 𝑠 + 𝑑/2], is much smaller than 
the beam length 𝐿, so the strain energy stored in the damage zone usually is much smaller than the 
strain energy of the whole beam. Furthermore, the coefficients 𝜙 is the same order as 𝛼, both are 
smaller than 1. This explains why the change rate of the first eigen-value, ∆𝜆ଵ/𝜆ଵ, is less sensitive 
to the changes of the stiffness and mass in the damage zone. Additionally, the resonant frequency 
is less sensitive than the corresponding eigenvalue to the damage. The change of the first 
eigenvalue of the damaged beam is 𝜆ሚଵ/𝜆ଵ = ሺ1 + ∆𝜆ଵ 𝜆ଵ⁄ ሻ, and the change of the corresponding 
(angular) frequency is 𝜔ଵ/𝜔ଵ=ඥ1 + ∆𝜆ଵ/𝜆ଵ. By using Taylor expansion for a small variation ∆𝜆ଵ/𝜆ଵ, its first-order approximation is 𝜔ଵ/𝜔ଵ ≈ (1+0.5∆𝜆ଵ/𝜆ଵ). This result demonstrates that 
the change rate of the first frequency is only half that of the corresponding eigenvalue. 

The perturbation method is able to predict relatively accurate results for the frequency 
variations for a small damage (see Table 3). For the case with 10 % damage, the three methods 
(perturbation, FE, and experimental) obtained similar results (–2.1 %, –2.0 %, and –1.7 %) for 
bending around 𝑥-axis and (–0.8 %, –0.5 %, and –0.8 %) for bending around y-axis. For the case 
with 30 % damage, the three methods still produced similar results (–2.3 %, –2.7 %, and –2.4 %) 
for bending around 𝑦-axis; however, for bending around 𝑥-axis there existed evident difference  
(–5.0 %, –11.6 %, and –11.4 %) among the results predicted by the three methods. Firstly, for the 
sake of simplicity, the perturbation analyses only consider the first order increment, so it is more 
suitable for a small perturbation. As shown in Table 1, the reduction in the flexible rigidity (for 
bending around 𝑥-axis) is more than 87 % for the case with 30 % damage, thus the perturbation 
analyses would have evident inaccuracy for this case (Table 3). Secondly, the damage is not 
symmetric about the neutral axis of the original beam and the stress distribution would be very 
complex in the damage location, hence the assumption of plane section in the Euler beam theory 
is not really suitable in the damage region, which will also induce the inaccuracy in this part.  

 
a) First mode of the bending vibration around 𝑥-axis 

 
b) First mode of the bending vibration around 𝑦-axis 

Fig. 5. Variation rate of strain energy density within elements: a) perturbation, b) FE  

The change rates of the strain energy density stored in each region (compared with the value 
of the intact beam) are shown in Fig. 5 for the 2 methods (perturbation and FE) and the 2 damage 
levels. Both the perturbation and FE methods obtain the similar pattern of the change rates. The 
strain energy density varies dramatically in the damage zone and less obviously somewhere else. 
For the bending vibration around 𝑥-axis, the perturbation method predicts 27 % and 65 % increase 
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in the damaged part for the damage levels of 10 % and 30 % respectively; while the FE method 
predicts 18 % and 75 % increase in the damaged part. For the bending vibration around 𝑦-axis, 
the perturbation method predicts 10 % and 28 % increase in the damaged part for the damage 
levels of 10 % and 30 % respectively; while the FE method predicts 20 % and 145 % increase in 
the damaged part. 

The variation of the strain energy density indeed reflects the damage degree of the beam 
(Fig. 5). For the regions outside the damage zone, the change rate of the strain energy density is 
very small, as the coefficients 𝜁  are very small; for the regions within the damage zone, the 
change rate of the strain energy density is evident, as the coefficients 𝜙 is the same order as 𝛼. 
For the bending vibration around 𝑥-axis, the change rate of the modal strain energy density, which 
is mostly influenced by 𝜙 (i.e., 𝜙௫), can be as high as 27 % and 65 % respectively for the 2 damage 
levels; for the bending vibration around 𝑦-axis, the change rate of the modal strain energy is 10 % 
and 28 % respectively for the 2 damage levels. These conclusions are also confirmed by the FE 
results (Table 3), both show same trend. 

4. Conclusions 

A perturbation method has been proposed for prediction of the changes in the resonant 
frequencies and modal strain energy due to a small damage of a structure. The sensitivities of the 
frequency and modal strain energy are expressed explicitly in analytical formulae. These 
formulations provides us with a clearer view of the mathematical framework to explain why the 
lowest resonant frequency, as a global mechanical parameter, is less sensitive to a local defect in 
a structure and why the modal strain energy density is more sensitive to a damage.  

The proposed perturbation method is able to assess the quality of a damage indictor. It can be 
implemented more easily and faster than FE and experimental methods. The perturbation analyses 
have revealed that the change rate of the first resonant frequency is related to the energy change 
in the damage zone and inversely related to the strain energy of the whole beam; thus, it is less 
sensitive to damage in a small region. While the change rate of the strain energy density is closely 
related to damage in a small region; hence, it is more sensitive to a damage than the first resonant 
frequency. The conclusions obtained from the perturbation analyses are validated with the FE 
simulations of the damaged beam. 

Acknowledgements 

This research was partially supported by the project (No. 31470908) of the National Natural 
Science Foundation of China. 

References 

[1] Cornwell P., Doebling S. W., Farrar C. R. Application of the strain energy damage detection method 
to plate-like structures. Journal of Sound and Vibration, Vol. 224, Issue 2, 1990, p. 359-374. 

[2] Courant R., Hilbert D. Methods of Mathematical Physics. Wiley, 1953. 
[3] Dessi D., Camerlengo G. Damage identification techniques via modal curvature analysis: overview 

and comparison. Mechanical Systems and Signal Processing, Vol. 52, 2015, p. 181-205. 
[4] Doebling S. W., Farrar C. R., Prime M. B. A summary review of vibration-based damage 

identification methods. Shock and Vibration Digest, Vol. 30, Issue 2, 1998, p. 91-105. 
[5] Doebling S. W., Hemez F. M., Peterson L. D., Farhat C. Improved damage location accuracy using 

strain energy-based mode selection criteria. AIAA Journal, Vol. 35, Issue 4, 2015, p. 693-699. 
[6] Entezami A., Shariatmadar H. Damage detection in structural systems by improved sensitivity of 

modal strain energy and Tikhonov regularization method. International Journal of Dynamics and 
Control, Vol. 2, Issue 4, 2014, p. 509-520. 

[7] Fan W., Qiao P. Vibration-based damage identification methods: a review and comparative study. 
Structural Health Monitoring, Vol. 10, Issue 1, 2011, p. 83-111. 



SENSITIVITY ANALYSES OF RESONANT FREQUENCIES AND MODAL STRAIN ENERGY OF DAMAGED BEAMS BY PERTURBATION METHOD.  
G. CHEN, P. P. GONG, P. LIANG 

50 JOURNAL OF VIBROENGINEERING. FEBRUARY 2019, VOLUME 21, ISSUE 1  

[8] Fan W., Qiao P. A strain energy-based damage severity correction factor method for damage 
identification in plate-type structures. Mechanical Systems and Signal Processing, Vol. 28, 2012, 
p. 660-678. 

[9] Farrar C. R., Jauregui D. A. Comparative study of damage identification algorithms applied to a 
bridge: I. Experiment. Smart Materials and Structures, Vol. 7, Issue 5, 1998, p. 704-719. 

[10] Fox R. L., Kapoor M. P. Rates of change of eigenvalues and eigenvectors. AIAA Journal, Vol. 6, 
Issue 12, 1968, p. 2426-2429. 

[11] Guan H., Karbhari V. M. Improved damage detection method based on element modal strain damage 
index using sparse measurement. Journal of Sound and Vibration, Vol. 309, Issue 3, 2008, p. 465-494. 

[12] Hu H., Wu C. Development of scanning damage index for the damage detection of plate structures 
using modal strain energy method. Mechanical Systems and Signal Processing, Vol. 23, Issue 2, 2009, 
p. 274-287. 

[13] Kim J. T., Stubbs N. Improved damage identification method based on modal information. Journal 
of Sound and Vibration, Vol. 252, Issue 2, 2002, p. 223-238. 

[14] Li L., Hu Y., Wang X. Numerical methods for evaluating the sensitivity of element modal strain 
energy. Finite Elements in Analysis and Design, Vol. 64, 2013, p. 13-23. 

[15] Pandey A. K., Biswas M., Samman M. M. Damage detection from changes in curvature mode 
shapes. Journal of Sounds and Vibration, Vol. 145, Issue 2, 1991, p. 321-332. 

[16] Rao S. S. Vibration of Continuous Systems. Hoboken, N.J., Wiley, 2007. 
[17] Shi Z., Law S., Zhang L. Improved damage quantification from elemental modal strain energy 

change. Journal of Engineering Mechanics, Vol. 128, Issue 5, 2002, p. 521-529. 
[18] Stubbs N., Kim J. T. Damage localization in structures without baseline modal parameters. AIAA 

Journal, Vol. 34, Issue 8, 1996, p. 1644-1649. 
[19] Timoshenko S., Young D. H., Weaver W. Vibration Problems in Engineering. Wiley, New York, 

1974. 
[20] Washizu K. Variational Methods in Elasticity and Plasticity. Pergamon Press, Oxford, New York, 

1982. 
[21] Wu S., Zhou J., Rui S., Fei Q. Reformulation of elemental modal strain energy method based on 

strain modes for structural damage detection. Advances in Structural Engineering, Vol. 20, Issue 6, 
2016, p. 896-905. 

[22] Yan Y., Cheng L., Wu Z., Yam L. Development in vibration-based structural damage detection 
technique. Mechanical Systems and Signal Processing, Vol. 21, Issue 5, 2007, p. 2198-2211. 

[23] Yazdanpanah O., Seyedpoor S. M., Bengar H. A. A new damage detection indicator for beams 
based on mode shape data. Structural Engineering and Mechanics, Vol. 53, Issue 4, 2015, p. 725-744. 

Appendix 

For the case with both ends free, the eigen-values [28] are: 

𝜆𝑖 = ቀ𝜅𝑖𝐿 ቁ4 𝐸𝐼𝜌𝐴, (29) 

with 𝜅𝑖 = 4.7300, 7.8532, 10.9956, 14.1372,… ሺ2𝑖 + 1ሻ𝜋 ∕ 2, …. The eigen-modes are: 

𝑤𝑖ሺ𝑧ሻ = ቂcos ቀ𝜅𝑖𝑧𝐿 ቁ + cosh ቀ𝜅𝑖𝑧𝐿 ቁቃ − cos 𝜅𝑖 − cosh 𝜅𝑖sin 𝜅𝑖 − sinh 𝜅𝑖 ቂsin ቀ𝜅𝑖𝑧𝐿 ቁ + sinh ቀ𝜅𝑖𝑧𝐿 ቁቃ, (30) 

and their second-order derivatives are: 

𝑤𝑖ᇱᇱሺ𝑧ሻ = ቀ𝜅𝑖𝐿 ቁ2 = ቄቂ− cos ቀ𝜅𝑖𝑧𝐿 ቁ + cosh ቀ𝜅𝑖𝑧𝐿 ቁቃ      − cos 𝜅 − cosh 𝜅sin 𝜅 − sinh 𝜅 ቂ− sin ቀ𝜅𝑧𝐿 ቁ + sinh ቀ𝜅𝑧𝐿 ቁቃൠ. (31) 
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