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Abstract. The stability and bifurcation of a flexible rod-fastening rotor bearing system with a 
transverse open crack in a fastening rod are investigated. The nonlinear dynamic model of a 
cracked rod-fastening rotor system is established based on the finite element method. A 
methodology is introduced where shooting method, path-following technique, and Floquet theory 
are combined for determining the periodic solutions and stability margins of the system. The 
effects of crack depth and mass eccentricities on the system are studied by numerical simulations. 
Results show the system stability will reduce due to the presence of crack, two saddlebacks occur 
on the periodic-doubling borderline whose bottom location corresponds to the two resonant peak 
of bearing node, and effects of the crack and mass eccentricity play a dominant position in 
different conditions respectively. Comparisons between the cracked rotor system and the intact 
ones referred in the literature indicate that some special characteristics of cracked rod-fastening 
rotor system in motion orbits and frequency components can be used to detect the presence of 
crack and its depth. 
Keywords: dynamics, stability, bifurcation, crack, rod-fastening rotor system. 

1. Introduction 

The stability and bifurcation of cracked rotor bearing system have always been the focus of 
attention. The fatigue crack is a very typical failure of rotor bearing system, which always causes 
great damage to some extent. It is essential to find out the dynamic characteristics of rotor system 
at the initial stage of crack and take appropriate measures in time to avoid some serious losses, 
especially for complex rod-fastening rotor bearing system. Rod-fastening rotor bearing system is 
a kind of typical structural pattern of combined rotor system in which always more than two disks 
are fastened by one central rod or several circumferentially distributed rods. It widely exists in gas 
turbine, aircraft engine and power generation which occupy a dominant position in modern heavy 
industrial equipment. When there is a crack in a rotor spindle, a fastening rod or a disk of the 
rod-fastening rotor system, the dynamic behaviours of the system will become complicated 
compared with Jeffcott rotor system and the destructive effect is even more catastrophic in a sort 
of way. 

During the past several decades, for the dynamic behaviours of cracked rotor bearing system, 
many studies have been carried out theoretically or experimentally [1-14]. Most of their studies 
based on the Jeffcott rotor system and rotor shaft crack. Meanwhile, the dynamics of cracked rotor 
system with different structures have been attracted more attentions gradually and many of them 
didn’t contain the fastening rods. The effects of a transverse crack on the dynamics of a multi-rotor, 
multi-bearing system [15] or a fragment of the shaft of constant cross-section system with 
considering the coupled torsional and bending vibrations [16] are carried out, respectively. 
AL-Shudeifat [17, 18] obtained the time-varying stiffness of cracked rotor and investigated the 
stability of cracked rotor bearing system with two disks. Han and Chu [19] investigated the effect 
of a transverse crack on the parametric instability of a rotor-bearing system with two disks, and 
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one of them is asymmetric. Nagata and Inoue [20] developed an analytical method to detect the 
vibration behaviours of cracked rotor bearing system with three disks. Bala Murugan [21] 
conducted considerable analyses of cracked rotor bearing system with multi-disk and variable 
cross section. Their studies provided many useful strategies for treating the problem of cracked 
rotor bearing system especially for complex rotor systems. Whether it is the Jeffcott rotor or other 
complex rotor system mentioned above, they are not attached to any fastening rod. It is this typical 
structure between rod-fastening rotor system and non-rod fastening rotor system that makes some 
differences in dynamic behaviours. For non-rod-fastening rotor system, the corresponding 
dynamic models are developed based on condition that the system gravity occupies a domain 
position. While this assumption of dominant gravity can’t directly be used for the rod-fastening 
rotor system because the big tension stress of fastening rod far outweighs the compressive stress 
and additional bending stress caused by the system gravity. Meanwhile, it is worth noting that this 
will lead to this kind of rod-fastening rotor system working in an opening crack mode mostly. 
Besides, because of the alternating stress of system, a fatigue crack either in a rod or a disk become 
easy to appear on the direct contact position between the fastening rod and disk as well as in the 
vicinity of this position. While the crack is on shaft or fastening rod, the dynamic behaviours 
especially the nonlinear dynamic behaviours of system have not gained sufficient attentions. 

In order to reflect the dynamic behaviours of the rod-fastening rotor bearing system with cracks 
and consider the big tension stress effects of the fastening rod, the nonlinear dynamic model of 
the system with a transverse open crack in a fastening rod is developed based on the finite element 
method. A combined technique is employed to investigate the system stability and bifurcation.  

2. Modeling of cracked rod-fastening rotor bearing system 

2.1. Dynamic modeling of a fastening rod with no crack 

The flexible rod-fastening rotor bearing system is depicted in Fig. 1. Four rigid disks, mounted 
on the rotor shaft, are fastened by several circumferentially distributed rods and the rotor is 
supported by two radial cylindrical bearings. The rotor shaft is discretized by using the finite 
element method with Timoshenko beam, and then the attached fastening rod are modeled as spring 
element with no mass. The notations as illustrated in Fig. 1 and other essential physical parameters 
are given in Table 1. 

 
Fig. 1. Flexible rod-fastening rotor bearing system.  

The labels ‘a’, ‘b’, ‘c’, and ‘d’ denote the four disks for distinguishing 

The modeling of a fastening rod with no crack as explained in [22, 23] is briefly presented. 
The instantaneous tension of each rod as shown in Fig. 1 is determined by the position of rod both 
ending points, which are located on the corresponding disks ‘a’ and ‘d’. According to [22, 23], the 
elongation and axial force of 𝑖th fastening rod due to the vibration of rotor system can be expressed 
approximately as follows: Δ𝐿௜  = −𝑟(𝜑ௗ − 𝜑௔)cos(𝜔𝑡 + 𝛾௜)   + 𝑟(𝜓ௗ − 𝜓௔)sin(𝜔𝑡 + 𝛾௜), (1) 𝐹௜ = 𝐹଴௜ + Δ𝐹௜ = 𝐹଴௜ + 𝐸𝐴𝐿 Δ𝐿௜, (2) 



2977. STABILITY AND BIFURCATION OF A FLEXIBLE ROD-FASTENING ROTOR BEARING SYSTEM WITH A TRANSVERSE OPEN CRACK.  
NANSHAN WANG, HENG LIU, YI LIU, ZHIDONG XU 

3028 JOURNAL OF VIBROENGINEERING. DECEMBER 2018, VOLUME 20, ISSUE 8  

where 𝜑௔, 𝜑ௗ, 𝜓௔, and 𝜓ௗ are the tilting angles. 𝜔 is the rotating speed of the rotor. 𝑟 is the radius 
of distributed circumference of the n rods. where 𝛾௜ is the mounted angle of 𝑖th fastening rod and 
this rods are distributed averagely with 𝛾௜ = 2𝜋𝑖/𝑛 (𝑖 =1, 2, …, 𝑛, 𝑛 ≥ 3). 𝐹଴௜ , 𝐿, and 𝐴 is the 
pre-tightening force, the original length and the cross-section area of the fastening rod, 
respectively. 

Table 1. Material properties and geometric parameters of rotor system 
Parameters  values Parameters  values 

Mass density, 𝜌 (kg.m-3) 7800 Mass eccentricities of disks, 𝑒 (m) 0-2×10-5 
Young's modulus, 𝐸 (GPa) 210 Diameter of rods, 𝑑௥௢ௗ (m) 0.01 

Poisson ratio, 𝜈 0.3 Number of rods, 𝑛 12 
Diameter of shaft, 𝑑௦ (m) 0.08 Diameter of circumference of rods, 𝐷௥ (m) 0.12 

Length of shaft, 𝑙௦ (m) 1.1 Pre-tightening load of each rod, 𝐹଴ (N) 15700 
Diameter of disks, 𝑑ௗ (m) 0.16 Span of two bearing, 𝑙௕ (m) 0.9 

Width of disks, 𝑙ௗ (m) 0.08 Width of bearing, 𝐵 (m) 0.08 

Then the potential energy of 𝑖th rod is calculated as the following: 

𝑈௜ = න ൬𝐹଴௜ + 𝐸𝐴𝐿 𝑙൰௱௅೔
଴ 𝑑𝑙 = 𝐹଴௜ ⋅ Δ𝐿௜ + 𝐸𝐴2𝐿 ⋅ (Δ𝐿௜)ଶ. (3) 

Thus, the total potential energy with 𝑛 fastening rods distributed along the circumference 
averagely can be given as: 

෍ 𝑈௜௡
௜ୀଵ = ෍ 𝐹଴௜ ⋅ Δ𝐿௜௡

௜ୀଵ + ෍ 𝐸𝐴2𝐿 ⋅ (Δ𝐿௜)ଶ௡
௜ୀଵ . (4) 

Substituting the Eq. (1) into Eq. (4) and according to the geometrical relationship, the Eq. (4) 
can be expressed as follows: 

෍ 𝑈௜௡
௜ୀଵ = (−𝑎 𝑎 − 𝑏 𝑏)(𝜑ௗ 𝜑௔ 𝜓ௗ 𝜓௔)் + (𝜑ௗ 𝜑௔ 𝜓ௗ 𝜓௔)𝐊௥௢ௗ(𝜑ௗ 𝜑௔ 𝜓ௗ 𝜓௔)், (5) 

with𝑎 = 𝑟 ∑ 𝐹଴௜sin(𝜔𝑡 + 𝛾௜)௡௜ୀଵ , 𝑏 = 𝑟 ∑ 𝐹଴௜cos(𝜔𝑡 + 𝛾௜)௡௜ୀଵ , 𝑐 = 𝑛𝐸𝐴𝑟ଶ 2𝐿⁄ , and the constant 
stiffness matrix 𝐊௥௢ௗ as followed in Eq. (6): 

𝐊௥௢ௗ = ൮ 𝑐 −𝑐 0 0−𝑐 𝑐 0 00 0 𝑐 −𝑐0 0 −𝑐 𝑐 ൲. (6) 

In fact, in Eq. (5), the first term is caused by the generalized moment of the pre-tightening 
force, the second term is regarded as the dynamic stiffness term. When the pre-tightening forces 
for per rod is equal ( 𝐹଴௜  = 𝑐𝑜𝑛𝑠𝑡 and 𝑎 = 𝑏 = 0), the 𝑛 rods only provide a constant stiffness 
matrix 𝐊௥௢ௗ , and in contrast with an add-on moment vector 𝐟௥௢ௗ  as shown in Eq. (7) besides 
stiffness matrix 𝐊௥௢ௗ: 𝑓௥௢ௗ = 𝑟(−𝑎 𝑏 − 𝑎 𝑏)். (7) 
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2.2. Dynamic model of the fastening rod with a transverse open crack 

Because per fastening rod is mainly subjected to the axial big tension stress due to the 
pre-tightening assembling, which far outweighs the compressive stress and additional bending 
stresses caused by the system gravity. This will determine the open crack state of cracked rod in 
practical work when there is a crack in a fastening rod. Besides the contact edge position of disk 
and fastening rods always introduces the phenomenon of stress concentration. When there is a 
transversal open crack on the surface of a fastening rod in “1” location as depicted in Fig. 1, it 
always introduces the phenomenon of stress concentration and the reduction of stiffness, and the 
stability of the whole rotor bearing system will change compared with intact ones (which has no 
crack on the fastening rod). The schematic of a transversal open crack in a fastening rod is 
illustrated in Fig. 2. 

 
Fig. 2. The cross-section area of the cracked fastening rod, where ℎ, 𝑟଴ and 𝛼  

are the depth of crack, the radius of the fastening rod and the semi-central angel  
corresponding to the half width of a transverse crack, respectively 

When a transverse open crack occurs on the surface of the 𝑗th fastening rod, the crack section 
area and the instantaneous axial force of 𝑗th rod can be derived respectively as follows: 𝐴௖ = 𝑟଴ଶ(𝜋 − 𝛼 + sin𝛼 − 𝜆sin𝛼), (8) 𝐹௝ = 𝐹௜଴ + 𝐸𝐴௖𝐿଴ Δ𝐿௜, (9) 

with 𝜆 = ℎ/𝑟଴.  
Substituting the Eq. (8) into the Eq. (9), the instantaneous axial force of the 𝑗th fastening rod 

with a crack can be expressed as: 

𝐹௝  = 𝐹௜଴ + 𝐸𝑟଴ଶ(𝜋 − 𝛼 + sin𝛼 − 𝜆sin𝛼)𝐿଴ Δ𝐿௜. (10) 

The potential energy of 𝑗th cracked fastening rod can be given as: 

𝑈௝ = න ቆ𝐹௜଴ + 𝐸𝑟଴ଶ[𝜋 − 𝛼 + (1 − 𝜆)sin𝛼]𝑙𝐿଴ ቇ୼௅೔
଴ 𝑑𝑙. (11) 

Substituting the Eqs. (1) and (5) into the Eq. (11), the total potential energy of 𝑗th cracked 
fastening rod and the others with no crack can be given as: 

෍ 𝑈௜௡
௜ୀଵ௜ஷ௝

+ 𝑈௝  = ቌ−𝑎 𝑏−𝑏 𝑏 ቍ ൮𝜑ௗ𝜑௔𝜙ௗ𝜙௔ ൲் + 12 ⋅ ൮𝜑ௗ𝜑௔𝜙ௗ𝜙௔ ൲் 𝐊௥௢ௗ  ൮𝜑ௗ𝜑௔𝜙ௗ𝜙௔ ൲ + 12 ⋅ ൮𝜑ௗ𝜑௔𝜙ௗ𝜙௔ ൲் 𝐊௥௢ௗ௖  ൮𝜑ௗ𝜑௔𝜙ௗ𝜙௔ ൲, (12) 
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with: 

𝑓 = 𝐸𝐴𝑓(𝜆)𝑟ଶcosଶ(𝜔𝑡 + 𝛾௜)𝜋𝐿଴ ,     𝑔 = 𝐸𝐴𝑓(𝜆)𝑟ଶsinଶ(𝜔𝑡 + 𝛾௜)𝜋𝐿଴ , 𝑝 = 𝐸𝐴𝑓(𝜆)𝑟ଶ ⋅ sin[2(𝜔𝑡 + 𝛾௜)]𝜋𝐿଴ ,     𝑓(𝜆) = (−𝛼 + sin𝛼 − 𝜆sin𝛼),  

and the add-on stiffness matrix stiffness matrix 𝐊௥௢ௗ௖ as followed in Eq. (13): 

𝐊௥௢ௗ௖ = ൮ 𝑓 −𝑓 𝑝 −𝑝−𝑓 𝑓 −𝑝 𝑝0 0 𝑔 −𝑔0 0 −𝑔 𝑔 ൲. (13) 

It can be found that Eq. (5) and Eq. (12) are different, which shows the cracked rod-fastening 
rotor system will introduce the add-on stiffness matrix 𝐊௥௢ௗ௖ as shown in Eq. (13) besides 𝐊௥௢ௗ 
in Eq. (6) compared with intact rod-fastening rotor system. 

It is note that the additional stiffness matrix of the cracked fastening rod as shown in Eq. (13) 
is asymmetric. This asymmetry will break the existed relatively steady state of rotor system 
resulting in the change of the system stability. Meanwhile, the contribution of the additional 
stiffness matrix introduced by the crack is to reduce total stiffness of the system. 

2.3. Dynamic equations of cracked rotor bearing system 

The finite element method with Timoshenko beam element with four degrees of freedoms at 
each node is employed to discretize the rotor into 11 elements [24-27]. The four disks, fastening 
rods and two radial cylindrical bearings are assembled together with the rotor through the finite 
element method. Then the dynamic equation of the cracked rod-fastening rotor bearing system is 
formulated as follows: 𝐌ௌ𝑥ሷ ௌ + 𝐆ௌ𝑥ሶ ௌ + 𝐊ௌ𝑥ௌ = 𝐐ௌ + 𝐅ௌ, (14) 

with: 𝐌ௌ = 𝐌௥ + 𝐌ௗ,     𝐆ௌ = 𝐆௥ + 𝐆ௗ,    𝐊ௌ = 𝐊௥ + 𝐊௥௢ௗௌ + 𝐊௥௢ௗ௖ௌ , 𝐐ௌ = 𝐐௥ + 𝐐ௗ,     𝐅ௌ = 𝐅௥௢ௗ + 𝐅௢௜௟,  

where 𝐌, 𝐆, 𝐊, and 𝐐 are the mass matrix, gyroscope matrix, stiffness matrix and the external 
force vector (including gravity and unbalance force), respectively, and the corresponding 
superscript ‘𝑆’, ‘𝑟’, and ‘𝑑’ stand for the whole system, rotor shaft and disk, respectively. 𝐱 is one 
single node displacement vector, which have translational and rotational displacement about 𝑋-and 𝑌-axes of the fixed coordinate system, i. e. 𝐱 = [𝑥, 𝑦, 𝜓, 𝜑]். So for the displacement vector 
of a rotor with 𝑛 nodes, it can be given as 𝐱ୗ = [𝑥ଵ, 𝑦ଵ, 𝜓ଵ, 𝜙ଵ,⋅⋅⋅, 𝑥௡, 𝑦௡, 𝜓௡, 𝜙௡]் . 𝐊௥௢ௗௌ  is the 4𝑛 × 4𝑛 (node number 𝑛 = 12) stiffness matrix which consists of 𝐊௥௢ௗ . 𝐊௥௢ௗ௖ௌ  is the 4𝑛 × 4𝑛 
stiffness matrix of which the entries of zero entries except at the crack node location are equal to 𝐊௥௢ௗ௖ . 𝐅௥௢ௗ  and 𝐅௢௜௟  are 4𝑛 × 1  matrix of which the entries of zero entries except at the 
corresponding node location are equal to 𝐟௥௢ௗ and 𝐟௢௜௟, respectively. The oil force vector can be 
expressed as 𝐟௢௜௟ = (𝑓௕௫, 𝑓௕௫, 0, 0)் , which can be obtained from the typical infinite long bearings 
assumption [28]. 
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3. Method of solution and nonlinear analysis 

3.1. Method of solutions 

The whole system have 48 DOFs which contain linear and nonlinear DOFs. Although it is not 
very high dimension for advanced computer technology nowadays, it also need consume much 
time for real time simulation at different speeds. To save the computing time and retain necessary 
DOFs information, the free interface modal synthesis technology [22, 23 29, 30] are employed to 
reduce the system DOFs. The nonlinear DOFs corresponding to two bearing nodes and four disks 
nodes and other two corresponding nodes of linear DOFs are retained. Then the reduced system 
can be given as follows: 𝐌𝐪ሷ + 𝐆𝐪ሶ + 𝐊𝐪 = 𝐐, (15) 

where 𝐌 = 𝐓்𝐌ௌ𝐓 , 𝐆 = 𝐓்𝐆ௌ𝐓 , 𝐊 = 𝐓்𝐊ௌ𝐓 , and 𝐐 = 𝐓்𝐐ௌ + 𝐓்𝐅ௌ . 𝐪  is the reduced 
displacement vector. 𝑇 is a transformation matrix being introduced to reduce the original system. 
By introducing the state variable 𝐗 = (𝐪், 𝐪ሶ ்)், the corresponding reduced system equations in a 
state space can be written as follows: 𝐗ሶ = ൬ 𝐪ሶ𝐌ିଵ(𝐐 − 𝐊𝐪 − 𝐆𝐪ሶ )൰. (16) 

By system reduction, the local nonlinearity of nodes which locates in bearings and disks are 
retained as well as other two linear nodes, which means 32 DOFs in total are kept. Then the 
nonlinear stability and bifurcation behaviors can be obtained by numerical simulations. 

Assuming that the system is subjected to the external periodic load 𝐐௘௫(𝑡) with period 𝑇଴, i.e. 𝐐௘௫(𝑡) = 𝐐௘௫(𝑡 + 𝑇଴), which originates from the mass eccentricity. Then periodic solutions can 
be are calculated by solving a two point boundary value problem, which is defined by Eq. (19) 
supplemented with the boundary condition 𝐗(𝑡) = 𝐗(𝑡 + 𝑇଴). It can be written as: 

൜𝐗ሶ = 𝐟(𝐗, 𝑡, 𝜆),𝐗(𝑡) = 𝐗(𝑡 + 𝑇଴), (17) 

with 𝐟(𝐗, 𝑡, 𝜆) = ൬ 𝐪ሶ𝐌ିଵ(𝐐 − 𝐊𝐪 − 𝐆𝐪ሶ )൰, where 𝜆 is a system parameter, which can be the angular 

speed 𝜔 or the mass eccentricity 𝑒, etc. 
The periodic solutions of the system will become unstable in certain intervals of system 

parameters. It is important to determine the unstable intervals and which kind of nonlinear 
dynamic behaviors of system among the periodic, quasi-periodic, and chaotic it is. Here, for a 
given system parameter, the shooting method [22, 23, 29, 31-33] is adopted to obtain the details 
of periodic solutions. Then the path-following technique [31, 33] is used to investigate how a 
periodic solution is influenced by a change of 𝜆. The whole solution braches of system can be 
found with this combined technique, which is consist of a predictor-corrector mechanism as shown 
in Eq. (21) in nature: 

ቐ𝐗௡ାଵ = 𝐗௡ − ቈ∂𝐇(𝐗, 𝜆)∂𝐗௦ ቉ିଵ × ∂𝐇(𝐗, 𝜆)∂𝜆 × Δ𝜆,𝜆௡ାଵ = 𝜆௡ + Δ𝜆.  (18) 

For the Eq. (21), the next step solution, i.e. 𝐗௡ାଵ at 𝜆 = 𝜆௡ାଵ, can be determined by starting 
from a known solution 𝐗௡  at 𝜆 = 𝜆௡ , and combining with the corrected mechanism by using 
shooting method. 
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Lastly, the Floquet theory [22, 33] is employed to determine the local stability of periodic 
motion of nonlinear system. The procedure involves calculating the largest eigenvalues (Floquet 
multipliers) of the Jacobian matrix (the details see the [22, 23]) produced in the process of the 
shooting method. In general, the Floquet multipliers must be within the unit circle in the complex 
plane. While with the change of the system parameter, the stable periodic solution of system will 
happen to lose stability, which will show different forms of bifurcation. 

According to the situation of the maximum Floquet multipliers through the unit circle in the 
complex plane, the forms of bifurcation can be classified into three modes i.e. period-doubling 
bifurcation, quasi-periodic bifurcation and “cycle-fol” or “transcritical” bifurcation [23]. 

Each finite element node of system as shown in Fig. 1 is marked by integer from 1 to 12 in 
sequence. The corresponding parameters of the cracked and intact rod-fastening rotor bearing 
system are given in Table 1. The mass eccentricities of four disks are represented by 𝑒௔, 𝑒௕, 𝑒௖, 
and 𝑒ௗ (𝑒௔ = 𝑒௕ = 𝑒௖ = 𝑒ௗ = 𝑒) which results in the unbalance forces of system. Meanwhile, the 
numerical results of rod-fastening rotor system model with no crack as referred in [22, 23] are also 
given for comparison. The simulation results are obtained as shown from Fig. 3-11, respectively, 
through Fortran program by changing corresponding parameters. 

3.2. Simulation results and nonlinear analysis 

3.2.1. Effects of crack on the system stability and bifurcation 

For a given crack depth ℎ = 0.1𝑟଴ of the cracked fastening rod, the regulations of the stable 
and unstable solutions of the system with the change of the system parameters 𝑒 and 𝜔 for both 
cracked rod-fastening rotor bearing system and intact ones are shown in Fig. 3(a). 

 
a) 

 
b) 

 Fig. 3. a) 𝑒-𝜔 curves of the solution set of stability and bifurcation transition of the cracked  
and intact rotor systems, b) effects of the crack depth on the system stability and bifurcation 

Compared with intact rod-fastening rotor system, in general, the stability and instability 
regions of the cracked ones also have three parts, the stable 𝑇 periodic motion region 𝑆் , the 
period-doubling motion region SD and the quasi-periodic motion region 𝑆ொ which are developed 
by the corresponding two borderlines of TD-line, TQ-line and QD-line, respectively, as shown in 
Fig. 3(a). The TD-line and TQ-line are the period-doubling bifurcation borderline and 
quasi-periodic bifurcation borderline, respectively. Periodic-doubling motion or quasi-periodic 
bifurcation motion will occur when the rotating speed ω or the mass eccentricities 𝑒  crosses 
TD-line or TQ-line. The dashed QD-line is the critical parting line of period-doubling bifurcation 
motion region ST and quasi-periodic bifurcation motion region SQ. The symbols 𝑤௕଴ and 𝑤௕ଵ in 
Fig. 3(a) as well as 𝑤௕ଶ and 𝑤௕ଷ mentioned later in text are linear critical speed of the equilibrium 
point for the balanced rod-fastening rotor system (𝑒 = 0) and 𝑤௕଴, 𝑤௕ଵ, 𝑤௕ଶ and 𝑤௕ଷ correspond 
to the crack depth equaling to 0, 0.1𝑟଴, 0.2𝑟଴, and 0.3𝑟଴, respectively. Hopf bifurcation will occur 
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for the system and subsequently lose stability when the rotating speed exceeds linear critical speed 
for the balanced rod-fastening rotor system. 

It is worth noting that there are some different details between cracked rod-fastening rotor 
system with a transverse open crack in a fastening rod and intact ones as follows 

Firstly, the 𝑒-𝑤 curve of cracked rotor system tends to move to the lower right as a whole and 
the QD-line tends to a downward move. These differences are mainly caused by the existence of 
crack of the fastening rod which will introduce the additional stiffness and cause system stiffness 
to reduce. While these changes are very small when the rotating speed is approximately on the left 
side of the first saddleback of TD-line which corresponds to the location of the first resonance 
peak in Fig. 4(a) probably. This means the influences of shallow crack of the fastening rod on 
system dynamic behaviours is small for rod-fastening rotor system when they work under the 
rotating speeds corresponding to the first resonance peak. 

 
a) 

 
b) 

Fig. 4. Vibration amplitudes when ℎ = 0.1𝑟଴ and 𝑒 = 1 μm: a) bearing node, b) middle disk node 

Secondly, it can be found that it happens to two saddlebacks of TD-line as shown in Fig. 1 
which approximately corresponds to the two resonant peaks of bearing node for cracked 
rod-fastening rotor system as shown in Fig. 4(a). In contrast with the intact rotor system, the 
TQ-line shows just a saddleback. Thus, they will perform different dynamic behavious and 
stability in the location of second saddleback of cracked rod-fastening rotor system which one is 
stable and another is periodic-doubling bifurcation behaviours because of the presence of crack 
on the surface of the fastening rod. It is also worthwhile to note that the vibration amplitudes of 
the cracked rod-fastening rotor system under stable region with 1 μm mass eccentricity is bigger 
compared with the intact rotor system as shown in Fig. 4(a, b), especially for the middle disk node 
as shown in Fig. 4(b). 

Thirdly, the TQ-line shows a linear growth trend with the increment of rotating speeds and the 
mass eccentricities for two systems. Although the most part of TQ-line seems to move slightly to 
the right for cracked rotor system, it tends to move slightly to the left when the mass eccentricities 
equals to zero or near the zero regions. It can be seen that the linear critical speed 𝑤௕ଵ of cracked 
rotor system locates on the right of the linear critical speed 𝑤௕଴ of intact ones. This shows the 
cracked rod-fastening rotor system will early to lose stability for balanced ones (mass 
eccentricities 𝑒 = 0) or very small mass eccentricities compared with intact rotor system. 

3.2.2. Effects of crack depth on the system stability and bifurcation 

From the Fig. 3(b), It can be found the effects of crack depth on the system stability and 
bifurcation. With the increment of crack depth, the TD-line, QD-line and TQ-line happen to move 
down except the part between the two saddlebacks which increases. These shows the system 
stability gradually decreases on the whole due to the reduction of the system stiffness resulting 
from the crack of the fastening rod. It is note that the influence of crack becomes obvious with the 
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increment of crack depth when the rotating speed locates on the left side of the first downfold of 
the TD-line, especially for the crack depth greater than 0.2𝑟଴. The rotor system begins to become 
periodic-doubling motion even the mass eccentricities equal to zero when the crack depth comes 
up to 0.3𝑟଴. For the balanced rod-fastening rotor system (𝑒 = 0), the linear critical speed happens 
to a little shift to left with the increment of crack depth such as 𝑤௕ଷ on the left of 𝑤௕ଶ and 𝑤௕ଶ on 
the left of 𝑤௕ଵ. This reveals the stability of the balanced rod-fastening rotor system will decrease 
with the increment of crack depth which performs some differences on linear critical speed. 
Besides, it is worth note that the periodic-doubling motion occurring under small or zero mass 
eccentricities condition is the characteristic signal of cracked rod-fastening rotor system, which 
always performs stable 𝑇 periodic motion in corresponding region for intact rod-fastening rotor 
system. These may be useful for detecting the presence of a crack and its depth for this kind of 
rod-fastening rotor system 

3.2.3. Effects of mass eccentricity 

In this part, the effects of typical mass eccentricities 𝑒 = 0 μm, 8.3 μm, and 12 μm on the 
dynamic behaviours such as orbits of periodic motion, vibration model, frequency spectrums 
analysis, and Poincare map are studied as well as the intact ones in literature for comparison. 

(1) Mass eccentricity 𝑒 = 0 μm.  
It can be obtained that the cracked rod-fastening rotor system and intact ones lose their 

stabilities at 𝑤௕ଵ (12150 rpm) and 𝑤௕଴ (12160 rpm), respectively from Fig. 3(a). While the form 
of transition from steady state to full unstable state is different. After crossing the linear critical 
speed 𝑤௕ଵ  and 𝑤௕଴ , for example at 12240 rpm, the cracked rotor system loses stability by 
quasi-periodic bifurcation as shown in Fig. 5(a) which shows the orbits of whole 12 nodes and the 
intact ones by Hopf 𝑇 periodic solution as shown in Fig. 5(b). The vibration modes of rotor shaft 
of two systems at a transient time is different and it shows the vibration amplitude of cracked rotor 
system tends to be larger than the intact ones due to the presence of the crack of rod-fastening as 
depicted in Fig. 5(c). 

 
a) 

 
b) 

 
c) 

Fig. 5. Periodic solutions for all nodes when 𝑒 = 0 μm and 𝑤 = 12240 rpm: a) Quasi-periodic solutions  
for cracked rod-fastening rotor system with ℎ = 0.1𝑟଴, b) Hopf 𝑇 periodic solutions  

for intact systems, c) comparison of the whole vibration modes of two systems 

In order to further explore the dynamic behaviours, Fig. 6(a), (b) and (c) shows the orbits and 
frequency spectrum of bearing node. It can be seen clearly that the quasi-periodic bifurcation 
behaviours for cracked systems and Hopf 𝑇  periodic bifurcation for intact ones in Fig. 6(a). 
Besides there are some differences in frequency component, which occurs to whirling frequency 
about 204 Hz for cracked system except the whirling frequency about 120 Hz compared with the 
intact ones as shown in Fig. 6(b, c). 

(2) Mass eccentricity 𝑒 = 8.3 μm. 
According to the Fig. 3(a), it can be known that the cracked rod-fastening rotor system occurs 

to lose stability at 𝑤 =  13450 rpm when mass eccentricity 𝑒 =  8.3 μm as well as at  
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𝑤 = 13370 rpm for intact ones. Fig. 7(a) shows the periodic-doubling motion at 𝑤 = 13458 rpm 
and periodic-doubling motion at 𝑤 = 13440 rpm of bearing node for two systems respectively 
when 𝑒 = 8.3 μm. Poincare maps is a closed curve consisted of limited points for cracked system 
and the others are two isolated points for intact ones in Fig. 7(b), which confirms the corresponding 
motions are periodic-doubling and periodic-doubling, respectively. The frequency spectrums of 𝑌 
direction are illustrated in Fig. 7(c) which shows the frequency components are very consistent. 
This means that it is difficult to distinguish the cracked and intact rod-fastening rotor bearing 
systems by frequency components on this condition. 

 
a) 

 
b) 

 
c) 

Fig. 6. The bearing node dynamic behaviours when 𝑒 = 0 μm and 𝑤 = 12240 rpm for two systems:  
a) orbits, b) and c) frequency spectrums of 𝑋 and 𝑌 direction, respectively 

 
a) 

 
b) 

 
c) 

Fig. 7. Periodic-doubling (𝑤 = 13458 rpm) and quasi-periodic (𝑤 = 13440 rpm) solution of bearing nodes 
for two systems respectively when 𝑒 = 8.3 μm: a) orbits, b) Poincare map, c) frequency spectrums 

 
a) 

 
b) 

 
c) 

Fig. 8. Solutions for all nodes when 𝑒 = 8.3 μm: a) periodic-doubling solution (𝑤 = 13458 rpm)  
for cracked rod-fastening rotor system, b) quasi-periodic solution (𝑤 = 13440 rpm)  

for intact ones, c) comparison of the whole vibration modes for two systems 

Fig. 8(a, b) shows the periodic-doubling motion and quasi-periodic motion of the whole nodes 
for cracked and intact rod-fastening rotor system, respectively. Fig. 8(c) gives the vibration modes 
of two systems. Because of the presence of crack for cracked system, the vibration amplitude of 
cracked system is larger than the intact ones. 
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(3) Mass eccentricity 𝑒 = 12 μm. 
The nonlinear dynamic behaviours for two systems are very consistent when the crack depth 

is 0.1𝑟଴ and the system work on the left side of the first saddleback according to 𝑒-𝑤 diagram in 
Fig. 3(a). It can be seen that the periodic motions of bearing nodes occur for cracked and intact 
rotor system as shown in Fig. 9(a), and the two isolated points of Poincare maps as shown in 
Fig. 9(b) also confirm this nonlinear dynamic behaviours. Besides the frequency components of 
bearing node of frequency spectrums of 𝑋 direction in Fig. 9(c) are also same. In addition, the 
solutions of whole nodes are very consistent and periodic motions as shown in Fig. 10(a) and (b) 
as well as the vibration modes in Fig. 10(c). This reveals that the effects of crack are very small 
to some extent, especially when the system works under in the range of the first resonance peak 
and has a slight crack depth. While this phenomenon will change with the increment of crack 
depth as shown in Fig. 3(b). 

 
a) 

 
b) 

 
c) 

Fig. 9. Periodic-doubling solution (𝑤 = 6400 rpm) of bearing nodes for two systems respectively  
when 𝑒 = 12 μm: a) orbits, b) Poincare map, c) frequency spectrums of 𝑋 direction 

 
a) 

 
b) 

 
c) 

Fig. 10. Periodic-doubling solutions for all nodes when 𝑒 = 12 μm and 𝑤 = 6400 rpm:  
a) cracked rod-fastening rotor system, b) intact rotor system, c) the whole vibration modes for two systems 

4. Conclusions 

A transverse open crack model of a fastening rod is developed, the nonlinear dynamic model 
of rod-fastening rotor bearing system with crack on the surface of a fastening rod is established 
based on the finite element method and the stability and bifurcation of system as well as the effects 
of crack depth and the mass eccentricities on system are investigated. By numerical simulations 
and nonlinear analysis, some special characteristics of cracked rod-fastening rotor system are 
founded compared with the intact rod-fastening rotor system in the literature. It also explains the 
validity of proposed model. The main conclusions are developed as follows: 

1) In general, the stability will reduce, and the vibration amplitudes will increase in steady 
state when there is a crack on the surface of the fastening rod. Because of the presence of crack, 
this can introduce the add-on stiffness resulting in the reduction of system stiffness and the 
asymmetric effect. Meanwhile, it will happen to two saddlebacks of periodic-doubling border lines 
in 𝑒-𝑤 diagram which corresponds to the two resonant peaks of bearing node in 𝐴௫-𝑤 diagram. 
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The change of the solution sets of stability and bifurcation transition with the mass eccentricity 
and rotating speed become complicated when there is a crack compared with the intact system. 
The influences of the presence of crack on the nonlinear dynamic of system are not obvious when 
the crack depth is small and the rotating speed is on the left side of the first saddleback of 
periodic-doubling borderline. 

2) With the increment of the crack depth, the reduction of system stiffness and the asymmetric 
effect become more obvious. This causes the system instability to become more severe and 
complicated. The borderlines among the stability, periodic-doubling bifurcation, and 
quasi-periodic bifurcation regions occur to decline except the parts between the first and second 
saddleback. 

For the balanced rod-fastening rotor system (𝑒 = 0 or near zero), the linear critical speed 
decreases with the increment of crack depth and the cracked system loses stability by 
quasi-periodic bifurcation while the intact system by Hopf 𝑇 periodic bifurcation instead. Besides, 
the periodic-doubling bifurcation easily arises with increment of crack depth when the rotor 
system works under the balanced or small mass eccentricities states compared with the intact 
systems in which always represents a stable status. 

3) The results of numerical simulation indicate that the effects of crack on the system play a 
dominant position when the mass eccentricity is zero or small and there exist some differences in 
orbits, Poincare map, frequency component, and the vibration modes. These provide some useful 
special characteristics for detecting the presence of crack especially in orbits and frequency 
components. With the increment of the mass eccentricity and when it exceeds a critical value, the 
effects of mass eccentricity will play a dominant position and it is not easy to distinguish the two 
systems just from the routine orbits and frequency components in this state. 
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