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Abstract. The information on arguments of an oil reservoir to a well test from the point of view 
of the Bayesian inference are express through even allocation of odds in room of arguments. In 
article application of confidential spacing for a quantitative appraisal of the information receive 
from the analysis of results of well test which one are us for upgrading of allocations of odds are 
offered. Use of confidential spacing for an appraisal of a correctness of a choice of a laboratory 
formation are show. 
Keywords: well test, fiducially intervals, reservoir model, estimation of reservoir parameters. 

1. Introduction  

If information about the parameters of the formation before well testing, then information 
about these parameters from the point of view of Bayesian inference is expressed through a 
uniform probability distribution in the parameter space. The well test data contains the necessary 
information about the parameters, and the goal of analyzing the results of well test is to extract 
this information for use in updating the probability distributions in the parameter space. 
Confidence intervals can give a quantitative estimate of the information obtained [1]. 

Direct application of confidence intervals to the results of well test requires two conditions. 
First, the errors that represent the difference between the actual pressure value and its true value 
must be independent and normally distributed with respect to the true pressure change. The second 
condition is that for a domain in a parameter space sufficiently close to their estimates, the 
objective function can be approximated by a linear form by expanding it in a first-order Taylor 
series. 

When these conditions are met, the updated probability distribution of unknown parameters 
generates a multidimensional normal distribution in the parameter space. A feature of the 
multidimensional normal distribution is that it is completely characterized by only two parameters: 
the mean value vector and the covariance matrix. For nonlinear regression analysis, the mean 
value vectors are parameter estimates, and the covariance matrix is calculated using the inverse 
Hesse matrix of the objective function on the basis of the final values of the estimates [2, 3]. 

2. The model of the system 

The condition that the function describing the model can be approximated by expanding it in 
a Taylor series of the first order leads to the following expression: 

ሻߠሺܨ = ൯ߠ൫ܨ +  ቆ߲ߠ߲ܨቇఏୀఏ ൫ߠ − ൯ߠ
ୀଵ . (1)

It is believed that the observed pressure readings are normally distributed with respect to the 
true value of ܨሺߠ,  :ሻ with the known varianceݔ
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Prob൫ݕ|ܨሺߠ, ሻ൯ݔ = Probሺݕ|ߠሻ = ߪߨ2√1 exp ൬− ଶߪ12 ൫ݕ − ,ߠሺܨ  ሻ൯ଶ൰. (2)ݔ

As a result of observations of pressure values, the likelihood function for the parameters has 
the form: 

,ଵݕ|ߠሺܮ … , ሻݕ = Probሺݕଵ, … , ሻߠ|ݕ = ෑ ൭ ߪߨ2√1 exp ൬− ଶߪ12 ൫ݕ − ,ߠሺܨ ሻ൯ଶ൰൱ݔ
ୀଵ  

    = 1൫√2ߪߨ൯ exp ቆ− ଶߪ12 ቀ܀ − ۸ ⋅ ൫ߠ − ൯ቁ்ߠ ቀ܀ − ۸ ⋅ ൫ߠ −  ൯ቁቇ, (3)ߠ

where: 

܀ = ቌݕଵ − ,ߠ൫ܨ ݕ⋮ଵ൯ݔ − ,ߠ൫ܨ ൯ቍݔ ,    ۸ = ۈۈۉ
൬ۇ ଵ൰௫భߠ߲ܨ߲ … ൬ ⋮൰௫భߠ߲ܨ߲ ⋱ ⋮൬ ଵ൰௫ߠ߲ܨ߲ … ൬ ۋۋی൰௫ߠ߲ܨ߲

ۊ
ఏୀఏ

. (4) 

OLS is equivalent to the maximum of the likelihood function, which takes place if and only if: ۸்܀ = . (5) 

As a result: 

,ଵݕ|ߠሺܮ … , ሻݕ = 1൫√2ߪߨ൯ exp ቆ− ଶߪ12 ൬܀்܀ + ൫ߠ − ߠ൯்۸்۸൫ߠ −  ൯൰ቇ. (6)ߠ

The Hessian matrix in the Gaussian method, divided by 2, is defined as [2]: 

۶ =
ۈۉ
ۇۈۈ ൬ ଵ൰ߠ߲ܨ߲ ൬ ଵ൰ߠ߲ܨ߲

ୀଵ …  ൬ ଵ൰ߠ߲ܨ߲ ൬ ൰ߠ߲ܨ߲
ୀଵ⋮ ⋱ ⋮ ൬ ൰ߠ߲ܨ߲ ൬ ଵ൰ߠ߲ܨ߲

ୀଵ …  ൬ ൰ߠ߲ܨ߲ ൬ ൰ߠ߲ܨ߲
ୀଵ ۋی

ۊۋۋ
ఏୀఏ

. (7) 

Then: ۸்۸ = ۶. (8) 

If for parameters the locally uniform a priori probability distribution is used (non-informative 
a priori probability distribution), then by the Bayes theorem the posterior probability distribution 
of the parameters after the ݊ observations [1, 4]: 

Probሺݕ|ߠଵ, … , ሻݕ = ,ଵݕ|ߠሺܮ … , ሻݕ ⋅ Probሺߠሻ ,ଵݕ|ߠሺܮ … , ሻݕ ⋅ Probሺߠሻ݀ߠ = ,ଵݕ|ߠሺܮ … , ሻݕ ,ଵݕ|ߠሺܮ … , ߠሻ݀ݕ , (9) 

where Probሺߠሻ is a locally uniform a priori probability distribution. 
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By the definition of the multidimensional normal distribution: 

න |۶|ଵ ଶ⁄ሺ2ߪߨଶሻ ଶ⁄ exp ቆ− ଶߪ12 ൫ߠ − ߠ൯்۶൫ߠ − ൯ቇߠ ߠ݀ = 1. (10)

Therefore, the equation takes the form: 

Probሺݕ|ߠଵ, … , ሻݕ = |۶|ଵ ଶ⁄ሺ2ߪߨଶሻ ଶ⁄ exp ቆ− ଶߪ12 ൫ߠ − ߠ൯்۶൫ߠ − ൯ቇ. (11)ߠ

That is, the parameters ߠ form a multidimensional normal distribution with respect to ߠ with 
the covariance matrix ߪଶ۶ିଵ. Eq. (11) quantifies the uncertainty associated with the parameter 
estimates. 

When variance ߪଶ is unknown, the above reasoning requires a little refinement. ߪଶ can be 
obtained from the mean square error ݏଶ, which is calculated as: ݏଶ = ܵܵ݊ − ݉, (12)

where: 

ܵܵ = ൫ݕ − ,ߠሺܨ ሻ൯ଶݔ
ୀଵ . (13)

In this case ݏଶ is an unbiased estimate of ߪଶ, and ߪଶ has an inverse gamma distribution with 
respect ݏଶ with ݊ − ݉ degrees of freedom: 

Probሺߪଶ|ݏଶሻ = 2Γሺݒ 2⁄ ሻ ቆݏݒଶ2 ቇ ௩ାଵߪ1 exp ቆ− ଶቇ, (14)ߪଶ2ݏݒ

where ݒ = ݊ − ݉. 
Since ߠ  and ߪଶ  are independent random variables, ߠ  does not change even when ߪଶ  is 

replaced by ݏଶ. 
As a result, a posteriori probability distribution for ߠ can be obtained by excluding ߪଶ when 

integrating the total a posteriori probability distribution density for ߠ and ߪଶ: 

Probሺݕ|ߠଵ, … , ሻݕ = න Probሺߠ, ,ଵݕ|ଶߪ … , ଶஶߪሻ݀ݕ
        = න Probሺݕ|ߠଵ, … , ,ݕ ଶሻߪ ⋅ Probሺߪଶ|ݏଶሻ݀ߪଶஶ

 . (15)

After substituting Eqs. (11) and (14) into Eq. (15), we obtain: 

Probሺݕ|ߠଵ, … , ሻݕ = Γሺ݊ 2⁄ ሻ|۶|ଵ ଶ⁄ ൫Γሺ1ିݏ 2⁄ ሻ൯Γሺݒ 2⁄ ሻ൫√ݒ൯ ൭1 + ൫ߠ − ߠ൯்۶൫ߠ − ଶݏݒ൯ߠ ൱ି௩ାଶ . (16)

Therefore, when ߪଶ is unknown, the parameters ߠ form the multidimensional ݐ – distribution 
of the Student relative to ߠ with the covariance matrix ݏଶ۶ିଵ and ݊ − ݉ degrees of freedom. 

The marginal probability distribution of the parameter ߠ  is determined by excluding ߠ  
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(݅ ≠ ݆, ݅ = 1,…, ݉) when integrating over the space ߠ: 

Prob൫ߠหݕଵ, … , ൯ݕ = 1ට2ߪߨఏೕଶ exp ൭− ఏೕଶߪ12 ൫ߠ −  ൯ଶ൱, (17)ߠ

where ߪఏೕ is the Standard deviation, defined as: ߪఏೕଶ =  ଶℎିଵ, (18)ߪ

where ℎିଵ is the ݆th diagonal element of the inverse Hessian matrix computed at the point. 
The more information is received about the parameters based on well test, the narrower the 

probability distribution with the shorter tails becomes. Accordingly, marginal probability 
distributions narrow down. Confidence intervals are used to quantify the range of marginal 
probability distributions. 

By definition, a 95 % confidence interval covers 95 % of the area under the probability density 
curve, i.e. It is a range, the confidence probability of getting parameter values inside which is 95 %. 
Since the probabilities are distributed according to the normal law, the corresponding marginal 
distributions of each parameter are symmetric with respect to the estimates of these parameters. 
This means that the 95 % confidence interval is also symmetric with respect to the parameter 
estimate. 

Usually, there are two types of confidence intervals: the range of absolute values and the range 
of relative values. Relative values are obtained by dividing the absolute values by the value of the 
parameter estimate. 

In cases where the variance ߪଶ is unknown, the (1 −  th confidence interval for each % 100·(ߙ
parameter is determined from the following inequality [1]: ߠ − ఏೕߪ ⋅ ଵିఈݐ ଶ⁄ ≤ ߠ ≤ ߠ + ఏೕߪ ⋅ ଵିఈݐ ଶ⁄ , (19) 

where ݐଵିఈ ଶ⁄  is the table value of the quantile of the order 1 – 2/ߙ for the ݐ – Student’s distribution 
with ݊ − ݉ degrees of freedom. 

In cases where ݊ − ݉ > 30, the value ݐଵିఈ ଶ⁄  can be replaced by the corresponding value for 
the normal distribution. So, for ߙ = 0,05 its value will be equal. Then Eqs. (19) takes the form 
ߠ :”ݕ“ − 1,96 ⋅ ఏೕߪ ≤ ߠ ≤ ߠ + 1,96 ⋅  ఏೕ. (20)ߪ

The ሺ1 − ሻߙ ⋅ 100 % th confidence interval for the relative values of each parameter is 
determined from the following inequality: 

1 − ఏೕߪ ⋅ ଵିఈݐ ଶ⁄ߠ ≤ ߠߠ ≤ 1 + ఏೕߪ ⋅ ଵିఈݐ ଶ⁄ߠ . (21) 

Similarly, when ݊ − ݉ > 30, the confidence interval for the relative values of each parameter 
can be represented as: 

1 − 1,96 ⋅ ߠఏೕߪ ≤ ߠߠ ≤ 1 + 1,96 ⋅ ߠఏೕߪ . (22) 

The correlation coefficient between any two parameters is calculated on the basis of elements 
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located outside the main diagonal of the inverse Hessian matrix, at the point ߠ =  :ߠ

ߩ = ℎିଵටℎିଵ ⋅ ℎିଵ. (23)

As long as there are mathematical correlations between the parameters, none of them can be 
uniquely determined. 

The joint application of confidence intervals and correlation coefficients requires the 
construction of confidence areas. (1 – ߙ)·100 % th confidence area of parameters is defined as 
follows: ൫ߠ − ߠ൯்۶൫ߠ − ൯ߠ ≤ ,ଵିఈሺ݉ܨଶݏ݉ ݊ − ݉ሻ, (24)

where ܨଵିఈሺ݉, ݊ − ݉ሻ is a tabulated quantile value of the order 1 − ݊ distribution with ݉ and – ܨ for ߙ − ݉ degrees of freedom. 
For the convenience of the use of confidence intervals in the verification of the model, the 

variance of the probability distribution is taken into account, and not the correlation between the 
parameters. In practice, the values of the confidence intervals: ±10 % for permeability ݇ , 
coefficient of accumulation ܥ, distance to the border (ݎ), crack length (ݔ); ±20 % for coefficient 
of elastic capacity ߱, transmittance ±1 ;ߣ for skin factor ܵ and ±0.005 MPa for initial pressure ( ܲ). 
They were obtained heuristically on the basis of real experiments on the interpretation of field and 
simulated well test data. 

The key idea is that if the model is chosen correctly and there is enough data, then all 
parameters should be within these acceptable limits. In this case, it is assumed that the model is 
selected correctly. Otherwise, the model is considered unacceptable, since confidence intervals 
exceed statistically allowable limits. 

The variance of the probability distribution of each parameter is the product of the product of 
the mean square error and the corresponding diagonal element of the inverse Hessian matrix. 

The mean square error is used to represent the variance of errors, which has a finite value, 
provided that a suitable model is selected. If this condition is met, then the mean square of the 
errors does not depend on the number of data and the time interval of well test. However, in the 
case of an incorrect model, the mean square of the errors becomes larger than the real value of the 
error variance. 

The inverse Hessian matrix is a function of the number of parameters of the formation, which 
is equivalent to the dependence on the choice of the model, the correlation between the parameters, 
the amount of data and the time interval of well test. The property of the diagonal elements of the 
inverse Hessian matrix is that their values decrease monotonically with increasing amounts  
of data. 

3. Computational experiments 

Let’s demonstrate how confidence intervals can be used to assess the correctness of the model. 
For this purpose, the data of well test was modeled by the method of lowering the level. The 
purpose of the demonstration is to show how the confidence intervals solve the problem when it 
is known in advance whether the reservoir model corresponds to the data or not. 

In the first case, the model was chosen correctly. The pressure values for well test by the 
method of level reduction were calculated using the flow model in an infinite formation, to which 
random errors were then added. Information on the reservoir and the fluid that saturates it: 
borehole radius ݎ௪ =  0.1 m, reservoir thickness ℎ =  5 m, volume factor ܤ =  1 ሾ݉ଷሿ௦௩ ሾ݉ଷሿ⁄ ,  viscosity ߤ =  10-3 Pa·sec, porosity ߶ =  0.2, initial pressure  
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ܲ = 20 MPa, total compressibility ܿ௧ = 10-4 MPa-1, operating rate ݍ = 100 m3/day. 
The true values of the parameters are ݇ = 0.05 µm2, ܵ = 10 and ܥ = 0.2 m3/MPa. The random 

number generator generated a set of random errors distributed according to the normal law with 
zero mathematical expectation and variance 2.5·10-5 MPa2. Depending on the number of data 
points, the following four cases were considered: a) 51 data point, b) 61 data point, c) 71 data 
point and d) 81 data point. A flow model was used in an infinite reservoir with three parameters 
(݇, ܵ and ܥ). The correspondence of the model to the data is illustrated in Fig. 1. 

For simplicity, the results are given only for one parameter permeability. Marginal 
probabilities are shown in Fig. 2. The corresponding 95 % confidence intervals for permeability 
are summarized in Table 1. 

Table 1. 95 % confidence intervals for permeability in case of correct model 
Number of data points 51 61 71 81 
Parameter estimation 0.0484 0.0498 0.0498 0.0499 ݏଶ 2.74⋅10-5 2.90⋅10-5 2.67⋅10-5 2.69⋅10-5 hିଵ 1.55⋅10-2 2.09⋅10-3 6.40⋅10-4 2.82⋅10-4 ߪఏଶ =  ఏ 6.51⋅10-4 2.46⋅10-4 1.31⋅10-4 8.70⋅10-5ߪ ଶℎିଵ 4.24⋅10-7 6.07⋅10-8 1.71⋅10-8 7.57⋅10-9ݏ
Confidence interval 2.71 % 0.99 % 0.52 % 0.35 % 

Decision Acceptable Acceptable Acceptable Acceptable 
 

 
a) 51 points 

 
b) 71 points 

 
c) 61 points 

 
d) 81 points 

Fig. 1. Simulated well test data and its correspondence to the correctly chosen reservoir model 

In fact, only cases b), c) and d) contain useful information on permeability. As follows from 
Table 3, the permeability estimates are fairly close to the true value of 0.05 µm2. Therefore, in Fig. 2 
all probability distributions are grouped around this value. As the number of data increases, more 
permeability information appears, and the corresponding deviation (ߪఏ) decreases. The spread of the 
distributions narrows, and the normal distribution tends to take the form of the Dirac delta function. 
From the standpoint of confidence intervals, all cases are acceptable, i.e. The model is chosen 
correctly. 
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Fig. 2. Marginal densities of the probability distribution in the case of  

a correctly chosen reservoir model 

4. Conclusions 

In principle, confidence intervals can be used to accept or reject the selected model. Regardless 
of whether the model is chosen correctly or not, confidence intervals ultimately yield consistent 
results. But it must be taken into account that in practice, when verifying a model, confidence 
intervals should be determined for all parameters. In addition, confidence intervals are easy to 
calculate, since all the necessary information is contained in the results of nonlinear regression, and 
it is not difficult to use for model verification, as was demonstrated above. 

However, comparative analysis based on confidence intervals has two drawbacks  
(practical and theoretical) from the standpoint of discriminant analysis of models. 

First, the confidence intervals are directly proportional to the variance of the probability 
distribution of the parameter, which in turn is a combination of the mean squared error  
(estimated variance) ݏଶ  and the diagonal element of the Hesse inverse matrix ℎିଵ . That is, 
confidence intervals can be in acceptable redistributions, even if an incorrect model is used. 

Secondly, confidence intervals are convenient for verification of models, but are not suitable 
for their discriminant analysis. In other words, based on confidence intervals, you can determine 
whether the model is suitable or not, but nothing can be said about which of the models is better. 
This is due to the fact that the correlation between parameters is not taken into account when 
calculating confidence intervals. However, in general, reservoir parameters are nonlinearly related 
to each other, which must be taken into account when verifying. Moreover, Eq. (11) indicates that 
the dimension of the probability distribution of the parameters coincides with their number. That 
is, different models with different number of parameters have different dimensions of probability 
distributions. Therefore, a direct comparison of the corresponding confidence intervals is clearly 
not enough. 
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