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Abstract. The paper describes a Kalman filtering technique for dynamic displacement estimation 
using accelerometer and laser sensor measurements. Data fusion of measurements from multiple 
sensors can give the more accurate results because of different advantages of sensors. Since the 
acceleration and displacement have different sampling rates, the multi-rate Kalman filter is 
applied. The filter is expanded with the fixed interval smoother to improve reconstruction 
accuracy of displacements. A modelled signal consisting of two sinus functions and Gaussian 
distributed noise is used to validate developed state-space model. 
Keywords: Kalman filter, smoother, accelerometer sensor, laser sensors, sensor data fusion. 

1. Introduction 

The vibration analysis is useful for the surveillance of a structure safety and structural health 
monitoring. The high-velocity fluid flow interaction with structural components can induce 
self-excited vibrations of the system elements in many engineering applications, for example, 
water-cooling systems or heat exchangers. In the exploration process of flow-induced vibrations 
in the rod bundle, two main interesting parameters are the rod oscillation frequency depending on 
surrounding flow velocity and the relationship between the rod position and the flow velocity.  

Most commonly measured parameter for the characterisation of the structure response on the 
flow excitation is acceleration due to its relatively simple implementation. Using direct numerical 
double-integration of acceleration measurements to obtain displacements have to encounter with 
an integration error, which is not linearly accumulated during integration [1]. Traditional methods, 
such as baseline correction techniques, two-baseline schemes or others, usually cannot give 
acceptable accuracy to evaluate displacements in the case when the mean value of acceleration 
measurements is non-zero or there are nonlinearities in displacements [2].  

An alternative approach is to apply techniques of Kalman filters [3] analysing data from 
multiple sensors. In particular case, accelerometers and laser sensors are used to describe 
dynamics of a structure. Data fusion of measurements from different sensors can give the more 
accurate results, for example, accelerometer provides a better description of high-frequency 
process whereas laser sensors are more suitable to explore the low-frequency range. Due to sensors 
specific, the measurements of laser sensor and accelerometer are usually taken at different 
sampling rates. Smyth and Wu [4] used multi-rate Kalman filter data fusion to evaluate 
displacements. Measurement process was modelled using the state-space equation for velocity and 
acceleration. The technique of real-time estimation of dynamic displacement based on measured 
velocity and displacement from two different sensors are described by Kim and Sohn [2]. They 
construct a state-space model for displacement and the total error. 

In this paper is described multi-rate Kalman filter with fixed interval smoother for a state-space 
model for displacement, velocity and the accelerometer error. A modelled signal consisting of two 
sinus functions and Gaussian distributed noise is used to validate developed algorithm. 

2. Displacement estimation using acceleration and displacement measurements 

Non-contact accelerometer and laser sensors measurements can be done to analyse the flow 
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velocity influence on the rod oscillation frequency and amplitude. Usually, accelerometer sensors 
have a higher sampling rate. However double integration leads to drift of the calculated mean 
value. The Kalman filter can be used to avoid an integration error. We assume that Kalman filter 
can be applied to each axis in the plane of the motion separately. 

2.1. Double integration 

It is assumed that the following mathematical model Eq. (1-2) can describe the rod movement 
in the discrete-time domain: ݔሶ(݇ + 1) = (݇)ሶݔ + ݐ∆(݇)ሷݔ + ݇)ݔ(1) ,ݐ∆(݇)ሷݔߝ + 1) = (݇)ݔ + ݐ∆(݇)ሶݔ + 12 ଶݐ∆(݇)ሷݔ + 12 ሷݔߝ ଶ, (2)ݐ∆(݇)

where ݔሶ(݇) and ݔ(݇) are calculated velocity and displacement at the time step ݇, ∆ݐ is the time 
interval for acceleration measurements and ݔߝሷ (݇) is acceleration measurement error which is a 
combination of offset bias and zero-mean stochastic noise process, [5] (݇)ݓ. 

2.2. Formulation of the Kalman filter 

The dynamic displacement evaluates using displacement ݔ(݇), velocity ݔሶ(݇) and error ݔߝሷ (݇) 
as state variables: 

(݇)ܠ =  ሶݔ(݇)ݔ ሷݔߝ(݇) (݇), (3)

Equations of the state-space model for multi-rate data fusion of laser and accelerometer 
measurements are as follows: ܠ(݇) = ݇)ܠۯ − 1) + ۰൫ݑ(݇ − 1) + ݇)ݓ − 1)൯, (4)ܢ(݇) = (݇)ܠ۶ + (5) ,(݇)ݒ

where ݑ(݇) is measured acceleration, ݖ(݇) is measured displacement, ݒ(݇) is measurement noise 
of a laser sensor and: 

ۯ = 1 ݐ∆ ଶ0ݐ∆0.5 1 0ݐ∆ 0 1 ൩ ,     ۰ = 0.5∆ݐଶ∆0ݐ ൩ ,    ۶ = ሾ1 0 0ሿ. (6)

The system equation Eq. (4) and observation equation Eq. (5) estimates in two steps: predictor, 
Eq. (7-8) and corrector Eq. (10-12): ܠି = ାିܓܠۯ + ି۾ିଵ, (7)ܝ۰ = ାିܓ۾ۯ ்ۯ + ݇    ,ۿ = 1,2, … , ܰ, (8)

where: ۿ = (9) ,۰۰்ݍ

and ݍ is the covariance of the noise ܠ :(݇)ݓା = ିܠ + ۹൫ࢠ − ۶ܠି൯, (10)
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ା۾ = ൫۷ − ۹۶ܓ൯۾ି, (11) ۹ = ି۶்۾ ൫۶۾ି۶் +  ൯ି, (12)ݎ

where ݎ is the covariance of the measurement noise ݒ(݇). 
Since the acceleration and displacement have different sampling rates, the optimal estimates 

of the state variables can process by multi-rate Kalman filter [4]. In time steps when displacement 
measurements are not available, only the prediction step is performed. The large sampling interval 
of the laser sensor can lead to drift of the displacement estimation. Smoothing can produce a better 
assessment [4]. 

Fixed-interval smoothing by Rauch-Tung-Striebel (RTS) [6] is used to correct the filtered 
signal. The RTS algorithm combines forward Kalman filtering and backward filtering Eqs. (15-17) 
with the following initialisation: ܠே௦ = ାܠ ே௦۾     , = ା۾ ௦ܠ (13) , = ାܠ + ۹௦ ൫ܠାଵܛ − ାଵିܠ ൯, (14) ۾௦ = ା۾ − ۹௦ ൫۾ାଵି − ܛାଵ۾ ൯(۹௦ )்,    ݇ = ܰ − 1, … ,0, (15) 

where the smoother gain is: ۹௦ = ା۾ ାଵି۾்൫ۯ ൯ି. (16) 

3. Test cases 

Two modelled input signals one for displacements and one for acceleration are used to validate 
described algorithm. Dynamic displacement due to the flow-induced vibrations of the rod is 
estimated using data fusion of experimentally obtained acceleration and displacement 
measurements. 

3.1. Case with modelled signal 

For displacement simulation combination of two sinusoidal signals is used. The input of 
displacements is approximated as a quantized signal to resemble real measurements: ݔ =  − ଶߨ16 sin(6ݐߨ) − ଶ(ߨ80)70 sin(80ݐߨ). (17) 

Accelerometer signals obtained using the second-order derivative of the displacement Eq. (8). 
Noise with a normal distribution is applied to both input signals. The modelled signals can see in 
Fig. 1. 

 
a) 

 
b) 

Fig. 1. Modelled input signals: a) the laser sensor, b) accelerometer 
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a) 

 
b) 

Fig. 2. Calculated output signals: a) and corresponding error b) 

Displacement sampling time is two times larger than acceleration sampling. Example of 
filtered signals and the difference between modelled ݔ and filtered ݔ signals are shown in Fig. 2. 

Maximum amplitudes of displacement using the filter without and with smoother at two noise 
levels are summarised in Table 1. 

In all cases, the filter gives larger maximum amplitude as a modelled signal. Comparison of 
maximum values shows that reconstructions of the filter with smoother provide better agreement 
with expected values. Smoother decreases error approximately twice. 

Table 1. Comparison of maximum displacements depending on noise 
Maximum noise  

(% of maximum amplitude) 
Kalman filter 

(% of maximum amplitude) 
Kalman filter with smoother 
(% of maximum amplitude) 

13.09 +4.6 +2.0 
13.66 +3.1 +1.5 
13.75 +4.4 +2.0 
26.04 +6.9 +3.4 
24.86 +8.6 +5.1 
27.83 +6.5 +4.1 

3.2. Experimental case 

Experimental session was started with measurements at zero flow rate. Thus we presume that 
only noise was presented in the time signal. Typical distributions of the signal (noise) measured 
by accelerometers (Acc3 and Acc4) are shown in Fig. 3. In all presented cases the signal 
distribution is similar to Gaussian distribution (red line in the figure). 

 
a) Acc3 

 
b) Acc4 

Fig. 3. Signal (noise) distribution using experimental accelerometer data 

Displacements calculations using acceleration time history can also be done by so-called 
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Omega Arithmetic (OA) method [7]. There are found no differences between displacement 
reconstruction using multi-rate Kalman filter or OA when flow velocity is steady. However, 
multi-rate Kalman filter, unlike OA, can reconstruct the rod displacements in the unsteady regime 
when flow velocity is slowly increasing or decreasing in time, see Fig. 4.  

 
a) 

 
b) 

Fig. 4. Reconstruction of displacement: a) when flow velocity is increasing  
using multi-rate Kalman filter, b) omega arithmetic algorithm 

4. Conclusions 

The fusion of an acceleration and displacement measurements using smoothing based multi-rate 
Kalman filter to estimate dynamic displacement is implemented and tested. Validation of proposed 
method is done by a modelled signal with additional normal distributed noise. Comparison of 
obtained results shows that smoother reduces reconstruction error approximately twice in given cases. 
The multi-rate Kalman filter can reconstruct time history when the flow velocity is slowly increased 
or decreased in unsteady flow rate measurements. The Omega Arithmetic method is less successful 
to reconstruct the rod coordinate oscillations in flow transients. 
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