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Abstract. The plate theory of ܰth order is constructed on the background of the Lagrangian 
variational formalism of analytical dynamics of continuum systems and the dimensional reduction 
approach of I. N. Vekua – A. A. Amosov. The plate model is defined within the configuration 
space, the set of field variables, and the Lagrangian density. The field variables are determined by 
the coefficients of the biorthogonal expansion of the spatial displacement vector field with respect 
to the dimensionless normal coordinate. The dynamic equations are derived as Lagrange equations 
of the second kind of the two-dimensional continuum system. The dynamics of the plane elastic 
layer is considered as an example, the normal wave propagation is described on the basis of refined 
plate theories of various orders, and the convergence of approximate solutions to the exact solution 
of the three-dimensional elastodynamics problem is analyzed for different wavenumbers. 
Keywords: shells, plates, thin-walled waveguides, analytical dynamics, Lagrangian formalism, 
normal waves, phase and group velocities. 

1. Introduction 

A plate is used nowadays as a mathematical model of many modern devices in machine 
industry. It is to be noted that in the high-frequency dynamics of composite plates the classical 
Kirchhoff’s and even the refined first-order shear deformation plate theories fail whereas they are 
quietly consistent with the low-frequency dynamics of thin-walled structures [1-6]. Moreover, the 
waveguide modeling requires refined plate theories; the authors of the paper [7] note that “more 
reliable 2D models are needed for high-frequency vibrations, wave propagation etc.”. In general, 
the refinement of plate models consists in the accounting of supplementary degrees of freedom in 
addition to the translation and rotation of the middle surface point in the plate kinematics  
[1, 8-11]. Such plate theories so-called “quasi-3D models” are used as well for highly anisotropic 
composite plates and functionally graded thin-walled structures [6, 12-14], as for the investigation 
of boundary layers in dynamics [15], boundary and edge waves [16-18], etc. The refined plate and 
shell theories can be also useful in problems of interaction of acoustic waves and thin-walled 
structures based on approximate diffraction models (e. g. see [19-21], and others). 

Many methods of construction of refined plate and shell models can be used. The asymptotic 
integration approach [15] seems to be powerful and efficient method of the qualitative analysis of 
the plate and shell dynamics (for instance, see [22]). On the other hand, the asymptotic method 
does not allow one to construct the full hierarchy of solutions [23] approximating the 
three-dimensional solution in various norms [24]. At the same time the formal series expansion of 
the displacement vector, stress tensor etc. offers some features of numerical algorithm 
construction if such a plate model is used together with finite element [24] or meshless numerical 
simulation [25]. As well power series can be used [1, 4, 26, 27] as special function expansions  
[12, 13, 28]. One of the most powerful and universal approaches is based on generalized Fourier 
series [6, 9, 10, 24, 26, 29-31].  

Here the higher-order plate theory based on the Lagrangian formalism of analytical mechanics 
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of continua combined with the dimensional reduction approach [9] is used. The plate model 
interpreted as a two-dimensional continuum consists in the configuration space, the set of field 
variables being the biorthogonal expansion coefficients of the three-dimensional displacement 
vector field with respect to the thickness coordinate, and the Lagrangian density defined on the 
two-dimensional area corresponding to the plate middle surface (for more details, see [11, 31, 32]). 
This kind of theory so-called “elementary” allows one to satisfy the boundary conditions on the 
faces of a plate approximately as a result of the convergence of the sequence of two-dimensional 
solutions. To satisfy the boundary conditions exactly, for instance in the case of contact interaction, 
the mixed formulation [29, 30] can be used, or the “extended” theory [9] or can be constructed. In 
particular, the boundary conditions shifted from the faces onto the middle surface become 
constraint equations, and the constrained variational problem is solved by the Lagrange multipliers 
method [33]; this approach allows one to obtain consistent low-order approximations [27] but 
seems to be a bit too complex when the order of the theory rises.  

The well investigated problem of normal wave propagation in the plane elastic layer [34] can 
be used to analyse the properties of the constructed theories hierarchy and the convergence of the 
two-dimensional solutions [35-40]. Here the normal waveforms corresponding to some specific 
wavenumbers are analysed; some results unpublished in the cited articles are presented. 

2. Equations of the analytical dynamics of a plate as a two-dimensional Lagrangian 
continuum system 

Let the plate be a three-dimensional elastic body: ܸ ⊂ ܴଷ, തܸ = ܸ ∪ ߲ܸ, ߲ܸ = ܵ± ⊕ ܵ஻, with 
the faces ܵ± and a lateral surface ܵ஻ [11, 31-33]:  ∀ܯ∗ ∈ തܸ,    (∗ܯ)܀ = + (ܯ)ܚ ܯ    ,ܖଷߦ ∈ ଷߦ    ,ܵ ∈ [−ℎ, ℎ],  

where ܵ is the smooth base surface and 2ℎ is the plate thickness [11, 31].  
The mathematical model of a plate consists in the two-dimensional manifold ܵ ,  ܵ̅ = ܵ ∪ (߲ܵ = ܵ ∩ ܵ஻) with the curvilinear chart ߦଵ, ߦଶ [11]:  ∀ܯ ∈ (ܯ)܀    ,̅ܵ ≡ ,ଵߦ)ܚ ,(ଶߦ ఉߦ ∈ కܦ ⊆ ܴଶ,   ߚ = 1,2.  

The covariant base vectors defined as ܚఈ = ߲ఈܚ, ߲ఈ ≡ ఈߦ߲/߲  allow one to determine the 
metrics ܽఈఉ = ఈܚ ⋅ ܖ ;ఉܚ = ଵܚ) × ܽ√/(ଶܚ = const is the normal unit vector, and ܽ = det ܽఈఉ. 

The linear dynamics problem statement for a plate can be based on the Hamilton principle  
[11, 32]: 

ܪߜ ≡ ߜ න  ௧బ
௧భ ቌන  ௏ ௏ܸ݀ܮ + න  డ௏ డ௏݀ܵቍܮ ݐ݀ = ௧ୀ௧బ|ܝ      ,0 = ሶܝ       ,଴܃ |௧ୀ௧బ =   .଴܄

The volumetric and surface Lagrangian densities can be written as follows [36]:  ܮ௏ = ሶܝߩ] ⋅ ሶܝ − (∇ ⊗ :۱ :்(ܝ (∇ ⊗ 2/[(ܝ + ۴ߩ ⋅ డ௏ܮ       ,ܝ = డ௏|ܙ ⋅  (1) ,ܝ

where ܝ = ఈܚఈݑ +   .is the spatial distribution of the displacement vector field ܖଷݑ
The Lagrangian formalism of analytical dynamics allows one to introduce the configuration 

manifold Ω with the generalized coordinates ܝ(௞): కܦ × ܴା → ெܶܵ, ݇ ∈ ܰ ∪ {0} [11, 31], so that ܝ = (௞)݌ and the tangent fibration ௨ܶΩ can be defined with the base vectors ,((௞)ܝ)ܝ =  .(௞)ܝ߲/ܝ߲
For linear systems such as the Eq. (1) the configuration manifold Ω becomes a Euclidian space; 
thus, the reduction of the three-dimensional elastodynamics problem given by Eq. (1) consists in 
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the projection of Ω onto its subspace Ωே (݇ = 0,1 … ܰ) [11, 36, 38]. To construct a plate theory, 
the biorthogonal system ݌(௞)(ߞ) (ߞ)(௞)݌ ,  is used, therefore ܝ(௞)  can be interpreted as field 
variables of the first kind [11]: ܝ(௞) = ,ܝ) ,ݑ) ଵ. Here((௞)݌  ଵ is the scalar product [11, 32], and(ݒ
the vector components ݑ௜(ߦఈ, ∈are supposed to be square integrable over [–1,1] (ߞ  The density .ߞ
of Lagrangian can be now defined on ܵ̅ as follows [32, 38]: 

,௜(௞)ݑௌ൫ܮ ሶݑ ௜(௞), ∇ఈݑ௜(௞)൯ = 12 ሶݑ(௠)(௞)ߩ (௠)௜ ሶݑ ௜(௞) − 12 ℎିଵ൫ܥ(௞௠)௜ଷ௝ఊ ∇ఊݑ௝(௠) + ௜ଷ௝(௞௠)ܥ ௜(௡)ݑ(௞⋅)(⋅௡)ܦ௝(௠)൯ݑ
     − 12 ቀܥ(௞௠)ఈఉ௝ఊ∇ఊݑ௝(௠) + ఈఉ௝(௞௠)ܥ ఈ(௞)ݑ௝(௠)ቁ∇ఉݑ − 12 ቀܥ(௞௠)ଷఉ௝ఊ∇ఊݑ௝(௠) + ଷఉ௝(௞௠)ܥ ௜(௞)ܨ+     ଷ(௞)ݑ௝(௠)ቁ∇ఉݑ ௜(௞)൯ݑడௌ൫ܮ   ,௜(௞)ݑ = ஻(௞)௜ݍ .௜(௞)ݑ  (2) 

Here ∇ఈ denotes the covariant derivative on ܵ, and the following linear operators are defined 
(see [11]): ߩ(௞)(௠) = ൫݌ߩ(௠), ஻(௞)௜ݍ   ,൯ଵ(௞)݌ = ቀݍ௜หெ∈ௌಳ, ቁଵ(௞)݌ (௞⋅)(⋅௡)ܦ   , = ൫݀݌(௡) ⁄ߞ݀ ,   .൯ଵ(௞)݌

The generalized stiffness for arbitrary anisotropic plates are defined as follows [11, 32, 38]: ܥ(௞௠)ఈ௜ ఋ = ℎିଵܦ(௞⋅)(⋅௡)ܥ(௡௠)ఈଷ௜ ఋ,   ܥ(௞௠)ଷ௜ఋ = ℎିଵܦ(௞⋅)(⋅௡)ܥ(௡௠)ଷଷ௜ఋ ఈ௜(௞௠)ܥ   , = ℎିଵܦ(௞⋅)(⋅௡)ܥ(௡௠)ఈଷ௜ ଷ௜(௞௠)ܥ, = ℎିଵܦ(௞⋅)(⋅௡)ܥ(௡௠)ଷଷ௜ ௜௝௣௤(௞௠)ܥ   , = ൫ܥ௜௝௣௤݌(௞), .൯ଵ(௠)݌   

Here ܥ௜௝௞௟ are contravariant components of the elastic constants tensor ۱.  
Thus, the two-dimensional continuum system is defined on ܵ̅ within the finite-dimensional 

configuration space Ωே , ܰ + 1 field variable ܝ(௞) , and the Lagrangian densities ܮௌ డௌܮ , . The 
dynamic equations of the generalized plate theory of ܰ th order can be obtained as Lagrange 
equations of the second kind [31] for the two-dimensional continuum system given by the Eq. (2) 
(see also [32, 38]):  ߩ(௞)(௠)ݑሷ (௠)ఈ = ∇ఉቀܥ(௞௠)ఈఉఊఋ∇ఋݑఊ(௠) + ଷ(௠)ݑఈఉଷఋ∇ఋ(௞௠)ܥ + ఈఉఊ(௞௠)ܥ ఊ(௠)ݑ + ఈఉଷ(௞௠)ܥ ఈఊఋ(௞௠)ܥ−       ଷ(௠)ቁݑ ∇ఋݑఊ(௠) − ఈଷఋ(௞௠)ܥ ∇ఋݑଷ(௠) − ఈఊ(௞௠)ܥ ఊ(௠)ݑ − ఈଷ(௞௠)ܥ ଷ(௠)ݑ + (ܲ௞)ఈ ሷݑ(௠)(௞)ߩ (3) , (௠)ଷ = ∇ఉቀܥ(௞௠)ଷఉఊఋ∇ఋݑఊ(௠) + ଷ(௠)ݑଷఉଷఋ∇ఋ(௞௠)ܥ + ଷఉఊ(௞௠)ܥ ఊ(௠)ݑ + ଷఉଷ(௞௠)ܥ ଷఊఋ(௞௠)ܥ−       ଷ(௠)ቁݑ ∇ఋݑఊ(௠) − ଷଷఋ(௞௠)ܥ ∇ஔݑଷ(௠) − ଷఊ(௞௠)ܥ ఊ(௠)ݑ − ଷଷ(௞௠)ܥ ଷ(௠)ݑ + (ܲ௞)ଷ . (4) 

Their natural boundary conditions can be represented in the following notation [32, 38]: ቂቀܥ(௞௠)ఈఉఊఋ∇ఋݑఊ(௠) + ଷ(௠)ݑఈఉଷఋ∇ఋ(௞௠)ܥ + ఈఉఊ(௞௠)ܥ ఊ(௠)ݑ + ఈఉଷ(௞௠)ܥ ఉߥଷ(௠)ቁݑ − ఈ(௞)ݍ ቃ ఈ(௞)ቚ୻ݑߜ = 0, (5) ቂቀܥ(௞௠)ଷఉఊఋ∇ఋݑఊ(௠) + ଷ(௠)ݑଷఉଷఋ∇ఋ(௞௠)ܥ + ଷఉఊ(௞௠)ܥ ఊ(௠)ݑ + ଷఉଷ(௞௠)ܥ ఉߥଷ(௠)ቁݑ − ଷ(௞)ݍ ቃ ଷ(௞)ቚ୻ݑߜ = 0. (6) 

Finally, the initial conditions are represented as follows: ݑ(௞)ఈ ห௧ୀ௧బ = (ܷ௞)ఈ , ሶݑ (௞)ఈ ห௧ୀ௧బ = (ܸ௞)ఈ , ଷ(௞)ݑ ห௧ୀ௧బ = (ܷ௞)ଷ , ሶݑ (௞)ఈ ห௧ୀ௧బ = (ܸ௞)ଷ . (7) 

The initial-boundary value problem statement, Eq. (3-7), corresponds to the so-called 
“elementary” theory of plates of the ܰth order; in other words, the boundary conditions on the 
faces ܵ± are considered implicitly and can be satisfied only after solution’s convergence at the 
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point ߞ = ± 1. This theory allows one to obtain the simplest equations system and is preferable 
for higher orders. To satisfy the boundary conditions exactly we can formulate the “extended” 
theory of plates (for more details see [33]). 

3. Modeling of the normal waves in the plane elastic layer on the background of the ࡺth 
order plate theory 

Let us consider the plane problem for an elastic layer of thickness 2ℎ; here and below ߤ 
denotes shear modulus, ߥ denotes the Poisson ratio, and ߩ is the mass density. Let the normal 
waves be propagating along the axis ܱݔଵ. Finally, let us introduce the following dimensionless 
variables (see also [11, 35-38]): ߦ = ߬    ,ଵℎିଵݔ = ෤ఈ(௞)ݑ   ,ଶℎିଵܿݐ =  ఈ(௞)ℎିଵ, (8)ݑ

where ܿଶ = ଵߤ ଶ⁄ ଵିߩ ଶ⁄  denotes the shear wave velocity. 
Thus, accounting for the material isotropy and homogeneity, for the homogeneous boundary 

conditions ݍ±௜ = 0 and absence of bulk forces (ܨ(௞)௜ = 0), and for the definition of the dilatation 
wave velocity ܿଵ = ߣ) + ଵ(ߤ2 ଶ⁄ ଵିߩ ଶ⁄ , we transform the general dynamic Eqs. (3), (4) to the 
following dimensionless formulation derived in [36, 37]:  

ఛ߲ଶݑଵ(௞) = 4(1 − ଵ(௞)ݑଶ)߲కଶߚ + ഥ(⋅௠)(௡⋅)ܦ(⋅௞)(௡⋅)ܦ ଵ(௠)ݑ − (⋅௞)(௠⋅)ܦൣ − 2(1 − ഥ(⋅௠)(௞⋅)ܦ(ଶߚ2 ൧ݑଶ(௠),
ఛ߲ଶݑଶ(௞) = ߲కଶݑଶ(௞) + 4(1 − ഥ(⋅௠)(௡⋅)ܦ(⋅௞)(௡⋅)ܦ(ଶߚ ଶ(௠)ݑ − ൣ2(1 − (⋅௞)(௠⋅)ܦ(ଶߚ2 − ഥ(⋅௠)(௞⋅)ܦ ൧ݑଶ(௠), (9) 

ଶߚ = ൬ܿଶܿଵ൰ଶ = (1 − 2)(ߥ2 − ഥ(·௠)(௞·)ܦ    ,(ߥ2 = (௞·)(·  ௠)ܦ .  

The displacement field in the normal wave propagating along ܱߦ is defined as follows [34]: ܝ(௞) = ߦ)ߢ݅]exp(௞)܃ − ܿ̃௉௛߬)],    ݅ = √−1. (10) ܿ̃௉௛ = ܿ௉௛ ܿଶ⁄  denotes the dimensionless phase velocity depending on the dimensionless 
wavenumber ߢ = ݇ℎ, ܃(௞) is the amplitude vector. Substituting Eq. (10) into Eq. (9) we obtain 
the spectral problem defined by the Eq. (11) analogous to the one described in [35]: หۯ − ܿ̃௉௛ଶ۷ห = ۯ (11) ,0 = ൭4(1 − (௞)(௠)ߜ(ଶߚ + ഥ(⋅௠)(௡⋅)ܦ(⋅௞)(௡⋅)ܦଶିߢ (⋅௞)(௠⋅)ܦଵൣିߢ݅ − 2(1 − ഥ(⋅௠)(௞⋅)ܦ(ଶߚ2 ൧݅ିߢଵൣ2(1 − (⋅௞)(௠⋅)ܦ(ଶߚ2 − ഥ(⋅௠)(௞⋅)ܦ ൧ (௞)(௠)ߜ + ଶ(1ିߢ4 − ഥ(⋅௠)(௡⋅)ܦ(⋅௞)(௡⋅)ܦ(ଶߚ ൱. (12) 

The eigenvalues of the matrix ۯ, Eq. (12), depending on ߢ form the spectra of longitudinal and 
bending waves. The corresponding dispersion curves for the phase velocities are shown on  
Figs. 1 and 2 (see also [11] and [35] for the dispersion curves corresponding to the dimensionless 
phase frequencies). It can be seen that the curves corresponding to the phase velocities of the 
lowest-order longitudinal and bending modes tend to the Rayleigh wave velocity as the 
wavenumber rises, ߢ → ∞. All dispersion curves except the 1st one have the characteristic cross 
points with the line corresponding to the dilatation velocity, ܿ௉௛(݊) = ܿଵ , ݊ >  0; the exact 
solution of the three-dimensional elastodynamics problem [34] gives the characteristic 
wavenumber ߢ∗ = ଶିߚ)݊ߨ − 1)ଵ/ଶ. The phase velocities computed on the basis of the spectral 
problem given by the Eqs. (11), (12) for the plate theories of the order ܰ = 1, 2, 3, …, 10 are 
shown below in the Table 1. The same results for the phase frequencies are presented in [36]. 
Analyzing it, we can conclude that the solution at the point ߢ∗ converges slowly that the at the 



2841. ON THE EQUATIONS OF THE ANALYTICAL DYNAMICS OF THE QUASI-3D PLATE THEORY OF I. N. VEKUA TYPE AND SOME THEIR SOLUTIONS.  
EKATERINA L. KUZNETSOVA, ELENA L. KUZNETSOVA, LEV N. RABINSKIY, SERGEY I. ZHAVORONOK 

1112 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAR 2018, VOL. 20, ISSUE 2. ISSN 1392-8716  

point ߢ = 0 corresponding to the locking frequencies of normal waves (see [11, 35]). 
Exact solution (solid lines), theory of 20th order (dashed line), ߥ = ఔଵିఔ for plane strain. 

 
Fig. 1. Phase velocities ܿ̃௉௛ of symmetric waves, ݇, ݉ = {2݊, ܰ + 2݊ + 2}, ݊ ∈ ൤0, ቂଵଶ (ܰ + 1)ቃ൨ ∪ ܼ 

 
Fig. 2. Phase velocities ܿ̃௉௛ of antisymmetric waves, ݇, ݉ = {2݊ + 1, ܰ + 2݊}, ݊ ∈ ൤0, ቂଵଶ (ܰ + 1)ቃ൨ ∪ ܼ 

Table 1. Approximate dimensionless phase velocities of longitudinal modes ܿ௉௛௡ ܿଵ⁄  computed at the point ߢ∗ = ଶିߚ)݊ߨ − 1)ଵ/ଶ on the basis of the plate theories of the order ܰ = 1, 2, 3, …, 10 
 ݊ 

ܰ 
1 2 3 4 5 6 7 8 9 10 

1 1.20 1.13 1.03 1.01 1.00 1.00 1.00 1.00 1.00 1.00 
2 – 1.17 1.14 1.07 1.04 1.02 1.01 1.00 1.00 1.00 
3 – – 1.36 1.29 1.09 1.05 1.03 1.02 1.00 1.00 
4 – – – 1.27 1.27 1.15 1.10 1.05 1.03 1.02 
5 – – – – 1.58 1.42 1.15 1.12 1.09 1.05 
6 – – – – – 1.43 1.38 1.18 1.15 1.10 
7 – – – – – – 1.85 1.54 1.18 1.16 
8 – – – – – – – 1.68 1.50 1.21 
9 – – – – – – – – 2.14 1.66 

10 – – – – – – – – – 1.96 

4. Approximate normal waveforms based on the ࡺth order plate theory 

Let us construct the waveforms following from the eigenvectors of the operator Eq. (12): ݑఈ௡(ߞ) = ଵܷ,ଶ௞௡݌௞(ߞ),    [ ଵܷ௞௡    ଶܷ௞௡] = ݇    ,௡܃ = 0, … , ܰ,    ݊ = 0, … , ܰ. (13) 

Let us consider the same wavenumber ߢ∗ = ଶିߚ)݊ߨ − 1)ଵ/ଶ . The exact solution of the 
three-dimensional problem (e. g. see [34]) known as Goodier and Bisop modes allows one to 
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represent the displacement components as follows: ݑොଵ௡∗(ߞ) = (−1)௡ + ൬12 ଶିߚ − 1൰ cos(ߞ݊ߨ),  ݑොଶ௡∗(ߞ) = ቈ݊(1 − ඥ1ߚଶ)2ߚ2 − ଶ቉ߚ sin(ߞ݊ߨ). (14) 

The normalized exact and approximate waveforms ݑఈ௡ = |ොఈ௡ݑ|ఈ௡/maxݑ  defined by the  
Eqs. (13), (14) are shown on the Fig. 4. 

 
a) 

 
b) 

 
c) 

Fig. 4. Normal waveforms of longitudinal modes.  
Exact solution (solid line), theory of 20th order (○-symbols) 

For more details see [37]. Let us consider hence another characteristic point, ܿ̃௉௛ = √2/2, 
corresponding to the Lamé modes.  

For the longitudinal waves (ߢ = 2݊)ߨ − 1)/2) we have the following exact solution [34]: ݑොଵ௡(ߞ) = cos2݊)ߨ − (ߞ)ොଶ௡ݑ    ,ߞ(1 = sin2݊)ߨ − ݊    ,ߞ(1 = 1,2, …. (15) 

The normalized exact and approximate waveforms corresponding to these modes are shown 
on the Fig. 5. 

 
a) 

 
b) 

Fig. 5. Normal waveforms of bending modes.  
Exact solution (solid line), theory of 20th order (○-symbols) 

The relative mean square error of the waveform approximation given by the ܰth order plate 
theory can be introduced as follows [37]: 



2841. ON THE EQUATIONS OF THE ANALYTICAL DYNAMICS OF THE QUASI-3D PLATE THEORY OF I. N. VEKUA TYPE AND SOME THEIR SOLUTIONS.  
EKATERINA L. KUZNETSOVA, ELENA L. KUZNETSOVA, LEV N. RABINSKIY, SERGEY I. ZHAVORONOK 

1114 © JVE INTERNATIONAL LTD. JOURNAL OF VIBROENGINEERING. MAR 2018, VOL. 20, ISSUE 2. ISSN 1392-8716  

∆௡ = (ߞ)ఈ௡ݑ‖ − ‖(ߞ)ොఈ௡ݑ‖‖(ߞ)ොఈ௡ݑ ଶ‖(ߞ)ොఈ௡ݑ‖    , = ,ොఈ௡ݑ)  ොఈ௡)ଵ. (16)ݑ

This error definition will be used below to estimate minimum orders of plate theory that allow 
one to approximate the exact solution [34]. 

5. Conclusions 

Thus, the convergence of the approximation given by the sequence of solutions based on the 
plate theories of various orders depends significantly on the wavenumber ߢ especially in the phase 
velocity domain ܿ̃ > The phase velocities converge slowly near the point ܿ௉௛௡ .ߚ = ܿଵ. It can be 
seen that five lowest phase velocities obtained on the background of the quasi-3D plate theory 
tends to the dilatation velocity ܿଵ at following plate model’s orders (Table 2). 

Table 2. Convergence of the 1, 2, …, 5th phase velocities given by the ܰth order plate theory:  (ܿ௉௛௡ − ܿଵ) ܿଵ ≤ 1⁄ ߢ , = ଶିߚ)݊ߨ − 1)ଵ/ଶ ݊ 1 2 3 4 5 ܰ 3 5 7 8 11 

The same situation can be observed after constructing the normal waveforms at different 
nonzero wavenumbers (for more results see [37]). 

The convergence of the waveforms computed at the point ߢ = ଶିߚ)݊ߨ − 1)ଵ/ଶ (Goodier and 
Bishop modes) as well as at the point ߢ = 2݊)ߨ − 1)/2 (Lamé modes) on the groundwork of the 
quasi-3D plate theory of ܰth order is estimated by the mean square error ∆ఈ௡, Eq. (16).  

Let us define the numerical convergence by the threshold level ∆ఈ௡ ≤ 0,05 (this depend on the 
problem, but this level seems to be satisfying in most applications). The minimum model orders 
allowing one to obtain such a convergence of the waveforms corresponding to the lowest 
propagating modes are shown in the Table 3. 

Table 3. Convergence of the 1, 2, …, 5th normal waveforms based on  
the relative mean square error, Eq. (16): ∆ఈ௡ ≤ 0,05 ݊ ܰ 

1 2 3 4 5 

 (ߞ)ଵ௡ݑ

ߢ = ଶିߚඥ݊ߨ − 1 
ߢ 19 15 12 8 5 = 2݊)ߨ − 1)2  
5 9 13 16 20 

 (ߞ)ଶ௡ݑ

ߢ = ଶିߚඥ݊ߨ − 1 
ߢ 19 16 13 9 5 = 2݊)ߨ − 1)2  
6 9 12 16 20 

It can be also shown that the relative mean square error of the approximate normal modes ݑఈ௡ 
become almost stable in the wavenumber domain ߢ ∈ where ߱௡ [௡, 15߱ߚ] = ܿ௉௛௡  is the phase ߢ
frequency, and can be roughly estimated by the error ∆ఈ௡(݇∗), ߢ∗ = ଶିߚ)݊ߨ − 1)ଵ/ଶ [37]. 

The obtained solution can be useful in the transient waveguide dynamics analysis based on the 
approximate models. It can be noted that these approximations give the upper estimate of the phase 
velocities of the normal waves due to the reduced number of degrees of freedom (field variables), 
but the obtained overestimation depends not only on the model order.  

It is shown that the approximate satisfaction of the boundary conditions on the faces in terms 
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of the “elementary” plate theory results in the overestimated longitudinal and bending stiffness 
especially for the lowest-order models. This drawback can be eliminated on the basis of the 
“extended” plate theories [33] that allow one to take into account the boundary conditions on the 
plate faces that are “lost” in the “elementary” theories and to account their effect on the tangent 
components of the stiffness tensors ܥ(௞௠)ఈ௜ఉ௝. 
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