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Abstract. This study developed to solve the problem of prediction of the natural frequencies of 
free vibration for laminated beams. The study presented the natural frequencies of composite 
beams with four layered and different boundary conditions. In each boundary condition, two cases 
are assumed: movable ends and immovable ends. Numerical results are obtained for the same 
material to demonstrate the effects of the aspect ratio, fiber orientation, and the beam 
end-movements on the non-dimensional natural frequencies of beams. Two aspect ratios are given 
in the numerical results, one is for relatively short-thick beams, while the other is for slender 
beams. It was found that the results of the non-dimensional frequencies obtained from the 
short-thick beams are generally much less than those obtained from the other slender beams for 
same fiber orientation and generally, the frequencies of longitudinal vibration increase as the 
aspect ratio increased. It was also found the values of the non-dimensional frequencies of the 
transverse modes are not affected by the longitudinal movements of the ends since these modes 
are generated by lateral movements only. However, the values of the natural frequencies of 
longitudinal modes are found to be the same for all beams with movable ends since they are 
generated by longitudinal movements only. 
Keywords: composite materials, laminated beams, natural frequencies, aspect ratios and 
movements of the ends. 

1. Introduction 

Composite have been used in engineering structures over the last four decades or so. They 
could be seen in a variety of applications as in craft wings and fuselage, satellites helicopter blades, 
wind turbines boats and vessels, tubes and tanks etc. Their advantages over traditional materials 
are widely recognized and these are high strength to weight ratio, and their properties which can 
tailored according to need. Other advantages include high stiffness, high fatigue and corrosion 
resistance, good friction characteristics, and ease of fabrication. They are made of fiber such as 
glass, carbon, boron, etc. embedded in matrix or suitable resin that act as binding material. The 
increasing use of composites has been required a good understanding of composite mechanics and 
their behavior. Many mathematical models for laminates subjected to static and dynamic loading 
have been developed. This paper addresses free vibration. The knowledge of the few lower natural 
frequencies of a structure is utmost importance in order to save it in service from being subjected 
to unnecessary large amplitude of motion which can cause immediate collapse or ultimate failure 
by fatigue. 

Free vibration analysis of laminated composite beams is presented by P. Subramanian, 
R. A. Jafari-Talookolaei et al. and A. Pagani [1-3] reference [1] used two higher order 
displacement based shear deformation theories, while references and [2, 3] used the first order 
shear deformation theory. M. Rueppel et al. [4] studied the damping of carbon fibre and flax fibre 

https://crossmark.crossref.org/dialog/?doi=10.21595/jve.2018.19355&domain=pdf&date_stamp=2018-08-15


EFFECTS OF AXIAL MOVEMENTS OF THE ENDS AND ASPECT RATIO OF LAMINATED COMPOSITE BEAMS ON THEIR NON-DIMENSIONAL NATURAL 
FREQUENCIES. A. F. AHMED ALGARRAY, HUA JUN 

 ISSN PRINT 1392-8716, ISSN ONLINE 2538-8460, KAUNAS, LITHUANIA 2129 

angle-ply composite laminate. Torabi K. et al. [5] Investigated on the effects of delamination size 
and its thickness-wise and lengthwise location on the vibration characteristics of cross-ply 
laminated composite beams. Analytical solutions for free vibration and buckling of composite 
beams using a higher order beam theory presented by He G. et al. [6]. Vibration prediction of 
thin-walled composite I-beams using scaled models analyzed by M. E. Asl et al. [7]. Within that 
study, which is an extension of Authors’ previous work on design of scaled composite models 
[8-10], similitude theory is applied to the governing equations of motion for vibration of a thin 
walled composite I-beam. Algarray et al. [11] studied the effects of end conditions of Cross-Ply 
laminated composite beams on their dimensionless natural frequencies 

2. Modeling analysis 

Fig. 1. Showed a composite laminated beam made up of 𝑛 layers with different orientation, 
thickness, and properties. Where 𝐿 is the length, b is breadth and ℎ is depth. 

 
Fig. 1. Composite laminated beam 

Treat the beam as a plane stress problem and employ first-order shear deformation theory. The 
longitudinal displacement (𝑈) and the lateral displacement (𝑊) can be written as follows: ൜𝑈ሺ𝑥, 𝑧, 𝑡ሻ = 𝑢ሺ𝑥, 𝑡ሻ + 𝑧𝜙ሺ𝑥, 𝑡ሻ,𝑊ሺ𝑥, 𝑧, 𝑡ሻ = 𝑤ሺ𝑥, 𝑡ሻ,  (1) 

where 𝑢 and 𝑤 are the mid-plane longitudinal and lateral displacements, 𝜙 is the rotation of the 
deformed section about the 𝑦-axis, 𝑧 is the perpendicular distance from mid-plane to the layer 
plane, and 𝑡 is time. 

The Strain-Displacement Relations: 

൞𝜀ଵ = 𝜕𝑈𝜕𝑥 = 𝜕𝑢𝜕𝑥 + 𝑧 𝜕𝜙𝜕𝑥 ,𝜀ହ = 𝜕𝑊𝜕𝑥 + 𝜕𝑈𝜕𝑧 = 𝜕𝑤𝜕𝑥 + 𝜙, (2) 

where: 𝜀ଵ is the longitudinal strain, and 𝜀ହ is the through-thickness shear strain. 

 
Fig. 2. Composite laminated beam with 3-noded lineal element 



EFFECTS OF AXIAL MOVEMENTS OF THE ENDS AND ASPECT RATIO OF LAMINATED COMPOSITE BEAMS ON THEIR NON-DIMENSIONAL NATURAL 
FREQUENCIES. A. F. AHMED ALGARRAY, HUA JUN 

2130 JOURNAL OF VIBROENGINEERING. AUGUST 2018, VOLUME 20, ISSUE 5  

By employing 3-noded lineal element as shown in Fig. 2. 
The displacements can be expressed in terms of shape function 𝑁 and nodal displacements: 𝑢 = 𝑁𝑢,   𝑤 = 𝑁𝑤,   ∅ = 𝑁∅. (3) 

The shape functions are: 𝑁ଵ = − ଶ ሺ1 − 𝑟ሻ, 𝑁ଶ = 1 − 𝑟ଶ, 𝑁ଷ = ଶ ሺ1 + 𝑟ሻ. 
From Eqs. (2), (3), the strains can be written as: 𝜖 = 𝐵𝑎, (4) 

where: 

𝐵 = ൦𝑑𝑁𝑑𝑟 0 𝑧 𝑑𝑁𝑑𝑟0 𝑑𝑁𝑑𝑟 𝑁 ൪ ,    𝑖 = 1, 2, 3.  

And 𝑎 is the vector of nodal displacements 𝑎 = ሾ𝑢 𝑤 ∅ሿ், 𝑖 = 1, 2, 3. 
The stress-strain relation:  𝜎 = 𝑐𝜖, (5) 

where 𝜎 = ሾ𝜎ଵ 𝜎ହሿ், 𝜖 = ሾ𝜖ଵ 𝜖ହሿ் and the matrix containing the transformed elastic constants: 𝑐 = 𝑐ଵଵ 00 𝑐ହହ൨.  

Substitute Eq. (4) in Eq. (5): 𝜎 = 𝑐𝐵𝑎. (6) 

The strain energy: 𝑈ௌ = 12 න 𝜖் 
 𝜎𝑑𝑣, (7) 𝑈ௌ = 12 𝑎𝑏 න 𝐵் 𝑐𝐵𝑑𝑥𝑑𝑧𝑎,  𝑈ௌ = 12 𝑎𝑏𝐾𝑎, (8) 

where: 𝐾 = න 𝐵் 𝑐𝐵𝑑𝑥𝑑𝑧  

The kinetic energy: 𝑇 = 12 න 𝜌 ቂ൫𝑢ሶ + 𝑧∅ሶ ൯ଶ + 𝑤ሶ ଶቃ 𝑑𝑣,  

where 𝜌 is density and the dot denotes differentiation with time: 
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𝑇 = −𝜔ଶ 𝑎2 න 𝜌 𝑁்𝑍𝑁𝑎𝑑𝑣,   𝑇 = − 12 𝑎𝑏𝜔ଶ𝑀𝑎, (9) 

where: 𝑀 = න 𝜌 𝑁்𝑍𝑁𝑑𝑥𝑑𝑧,  

𝑁 = 𝑁 0 00 𝑁 00 0 𝑁൩ ,   𝑍 = 1 0 𝑍0 1 0𝑍 0 𝑍ଶ൩.  

In the above derivation it is assumed the motion is harmonic and 𝜔 is circular frequency. 
In the absence of damping and external nodal load, the total energy is: Ԉ = 𝑈ௌ + 𝑇,   Ԉ = 12 𝑎𝑏𝐾𝑎 − 12 𝑎𝑏𝜔ଶ𝑀𝑎.  

The principle of minimum energy requires that: 𝜕Ԉ𝜕𝑎 = 0.  

The condition yields the equation of motion: 𝐾𝑎 − 𝜔ଶ𝑀𝑎 = 0,  ሾ𝐾 − 𝜔ଶ𝑀ሿ𝑎 = 0, (10) 

where: 

𝐾 =  𝐾
ୀଵ ,    𝑀 =  𝑀

ୀଵ ,   𝑎 =  𝑎
ୀଵ ,  

and 𝑛 is number of elements. To facilitate the solution of Eq. (10), we introduce the following 
quantities: 

ሾ𝐴ଵଵ, 𝐵ଵଵ, 𝐷ଵଵሿ =  න 𝑐ଵଵሾ1, Z, 𝑍ଶሿೖ
ೖషభ


ୀଵ 𝑑𝑧,    𝐴ହହ = 𝐾  න 𝑐ହହ

ೖ
ೖషభ


ୀଵ 𝑑𝑧,  

where 𝐾 is the shear correction factor. 
The transformed elastic constants are: 𝑐ଵଵ = 𝑐ଵଵᇱ 𝑐ସ + 2ሺ𝑐ଵଶᇱ + 2𝑐ᇱ ሻ𝑆ଶ𝐶ଶ + 𝑐ଶଶᇱ 𝑆ସ,     𝑐ହହ = 𝑐ସସᇱ 𝑆ଶ + 𝑐ହହᇱ 𝐶ଶ.  

In which: 𝑐ଵଵᇱ = 𝐸ଵ1 − 𝜈ଵଶ𝜈ଶଵ ,     𝑐ଵଶᇱ = 𝜈ଵଶ𝐸ଶଵ1 − −𝜈ଵଶ𝜈ଶଵ = 𝜈ଶଵ𝐸ଵଵ1 − −𝜈ଵଶ𝜈ଶଵ ,    𝑐ଶଶᇱ = 𝐸ଶଵ1 − 𝜈ଵଶ𝜈ଶଵ, 𝑐ᇱ = 𝐺ଵଶ,   𝑐ହହᇱ = 𝐺ଵଷ,    𝑐ସସᇱ = 𝐺ଶଷ,   𝑆 = sin𝜃,     𝐶 = cos𝜃.   

And 𝜃 is the angle of orientation of the ply with respect to the beam axis: 
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ሾ𝐼ଵ, 𝐼ଶ, 𝐼ଷሿ =  න 𝜌ሾ1, 𝑍, 𝑍ଶሿೖ
ೖషభ


ୀଵ 𝑑𝑧.  

Non-dimensional quantities used in the analysis are: 𝑢ത = ൬𝐿ℎ൰ 𝑢,    𝑤ഥ = 𝑤ℎ ,    ∅ഥ = ൬𝐿ℎ൰ ∅,    �̅�ଵଵ = ൬ 1𝐸ଵℎ൰ 𝐴ଵଵ,    𝐵തଵଵ = ൬ 1𝐸ଵℎଶ൰ 𝐵ଵଵ,  𝐷ഥଵଵ = ൬ 1𝐸ଵℎଷ൰ 𝐷ଵଵ,    �̅�ହହ = ൬ 1𝐸ଵℎ൰ 𝐴ହହ,    𝐼ଵ̅ = ൬ 1𝜌ℎ൰ 𝐼ଵ,     
𝐼ଶ̅ = ൬ 1𝜌ℎଶ൰ 𝐼ଶ,    𝐼ଷ̅ = ൬ 1𝜌ℎଷ൰ 𝐼ଷ,     𝜔ഥ = 𝜔ඨ 𝜌𝐿ସ𝐸ଵℎଶ.  

The element stiffness matrix: 𝐾 = න 𝐵் 𝑐𝐵𝑑𝑥𝑑𝑧,  

𝐾 = න
⎣⎢⎢
⎢⎢⎡𝐴ଵଵ 𝑑𝑁𝑑𝑥 𝑑𝑁𝑑𝑥 0 𝐵ଵଵ 𝑑𝑁𝑑𝑥 𝑑𝑁𝑑𝑥0 𝐴ହହ 𝑑𝑁𝑑𝑥 𝑑𝑁𝑑𝑥 𝐴ହହ 𝑑𝑁𝑑𝑥 𝑁𝐵ଵଵ 𝑑𝑁𝑑𝑥 𝑑𝑁𝑑𝑥 𝐴ହହ𝑁 𝑑𝑁𝑑𝑥 𝐷ଵଵ 𝑑𝑁𝑑𝑥 𝑑𝑁𝑑𝑥 + 𝐴ହହ𝑁𝑁⎦⎥⎥

⎥⎥⎤ 𝑑𝑥.  

The mass matrix is 9×9 symmetrical matrix: 

𝑀 = න 𝜌 𝑁்𝑍𝑁𝑑𝑥𝑑𝑧,      𝑀 = න 𝜌  𝑁𝑁 0 𝑍𝑁𝑁0 𝑁𝑁 0𝑍𝑁𝑁 0 𝑍ଶ𝑁𝑁 𝑑𝑥 𝑑𝑧, 
𝑀 = න 𝐼ଵ𝑁𝑁 0 𝐼ଶ𝑁𝑁0 𝐼ଵ𝑁𝑁 0𝐼ଶ𝑁𝑁 0 𝐼ଷ𝑁𝑁 𝑑𝑥.  

3. Results and discussion 

3.1. Effect of aspect ratios 

Two aspect ratios are given in the numerical results, which are 10 and 50. The first one is for 
relatively short-thick beams, while the other is for slender beams. The results of the 
non-dimensional frequencies obtained from the aspect ratio 10 are generally much less than those 
obtained from the other aspect ratio 50 for same fiber orientation. For example, the fundamental 
mode of the non-dimensional natural frequencies for a symmetric [30/–30/–30/30] angle-ply 
hinged _hinged beam with immovable ends is 1.9918 for the aspect ratio 10, and 2.1947 for the 
aspect ratio 50 as can be seen in Table 1. 

This observation can be seen in Fig. 3 to Fig. 5 for symmetric [45/–45/–45/45] angle-ply 
laminated beams. These figures show the variation of the non-dimensional frequencies with the 
aspect ratio range from 5 to 40 for the first three modes of vibration for all beams with immovable 
ends. It is obvious from the figure that the frequency increases rapidly for the range of aspect ratio 
from 5 to 20, and slows down beyond this range. When the aspect ratio is greater than 20, the 
beam is slender and consequently shear deformation and rotary inertia have small noticeable 
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effects on the natural frequencies. 
Table 2 shows the effect of aspect ratio in non-dimensional frequencies for symmetric  

[45/–45/–45/45] angle-ply beams. The percentage increase in the non-dimensional frequencies, 
for the first range of the aspect ratio, increases sharply as the mode order increased for all boundary 
conditions. For the second range, the percentage increase in frequencies is independent on the 
mode order. The longitudinal modes of free vibration are also affected by the change of aspect 
ratio. Generally, the frequencies of longitudinal vibration increase as the aspect ratio increased. 

Table 1. Non-dimensional natural frequencies ቂ𝜔 = 𝜔ඥ𝜌𝐿ସ 𝐸ଵℎଶ⁄ ቃ  
[30/–30/–30/30] composite beams with different aspect ratio 

Mode No. Beam type aspect ratio (𝐿/ℎ = 10) 
CF HH CC HC HF FF 

1 0.7465 1.9918 3.4380 2.7113 3.0503 4.3728 
2 3.7279 6.4128 7.4386 6.9645 7.9206 9.5329 
3 8.4193 11.4744 12.0720 11.7816 12.1545* 14.9573 
4 12.1545* 16.5865 16.9085 16.7518 13.1707 20.2046 
5 13.4194 21.6353 21.8199 21.7278 18.3742 24.3090* 
6 18.5147 24.3090* 24.3090* 24.3090* 23.4730 25.3532 
7 23.5463 26.6166 26.7237 26.6709 28.4805 30.3492 
8 28.5288 31.5448 31.6114 31.5778 33.4158 35.3042 
9 33.4400 36.4344 36.4743 36.4548 36.4635* 40.0877 
10 36.4635* 41.2968 41.3227 41.3093 38.2900 44.9060 
11 38.3118 46.1413 46.1540 46.1482 43.0983 48.6181* 
12 43.1022 48.6181* 48.6181* 48.6181* 47.7785 48.9418 

Mode No. Beam type aspect ratio (𝐿/ℎ = 50) 
CF HH CC HC HF FF 

1 0.7837 2.1947 4.8908 3.4027 3.4251 4.9666 
2 4.8503 8.6633 13.1481 10.8187 10.9431 13.4813 
3 13.3186 19.0823 24.9877 21.9844 22.3328 25.8305 
4 25.4001 32.9800 39.8324 36.3924 37.1019 41.4535 
5 40.6240 49.8113 57.1574 53.4997 54.6965 59.7934 
6 58.4417 69.0255 76.4775 72.7861 60.7725* 80.3045 
7 60.7725* 90.1153 97.3759 93.7899 74.5680 102.4978 
8 78.3401 112.6436 119.5087 116.1227 96.2177 121.5450* 
9 99.8689 121.5450* 121.5450* 121.5450* 119.2209 125.9612 
10 122.6521 136.2519 142.5999 139.4697 143.2325 150.3635 
11 146.3874 160.6577 166.4325 163.5836 167.9831 175.4481 
12 170.8386 185.6456 190.8379 188.2740 182.3175* 201.0230 

(*) Modes with predominance of longitudinal vibration 

Table 2. The effect of aspect ratio in non-dimensional frequencies for  
symmetric [45/–45/–45/45] angle-ply beams  

Beam 
type  

Approximate % increase in non-dimensional frequencies 
Aspect ratios from 5 to 20 Aspect ratios from 20 to 40 

1st. mode 2nd. mode 3rd. mode 1st. mode 2st. mode 3rd. mode 
CF 25 50 100 10 6 9 
HH 25 62 100 10 6 9 
CC 68 120 150 10 10 15 
HC 45 85 125 10 9 14 
HF 22 70 220 8 6 10 
FF 85 115 145 12 8 12 
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3.2. Effect of axial movements of the ends 

From the results of Table 1, that the values of the non-dimensional frequencies of the 
transverse modes are not affected by the longitudinal movements of the ends since these modes 
are generated by lateral movements only (at the yellow shaded). However, the values of the natural 
frequencies of longitudinal modes are found to be the same for all beams with movable ends since 
they are generated by longitudinal movements only. Table 3 shows this observation for symmetric 
[60/–60/–60/60] laminated beams with aspect ratio of 10. 

 
Fig. 3. Effect of aspect ratio on natural frequencies 

of a symmetric [45/–45/–45/45] cross-play  
clamped-free beam 

 
Fig. 4. Effect of aspect ratio on natural frequencies  

of a symmetric [45/–45/–45/45] cross-play  
clamped-clamped beam 

 
Fig. 5. Effect of aspect ratio on natural frequencies of  

a symmetric [45/–45/–45/45] cross-play free-free beam 

Table 1 also shows the fundamental modes of longitudinal vibration for various beams with 
immovable ends for the symmetric case [30/–30/–30/30] and for two aspect ratios, 10, and 50. It 
could be noticed that the values of non-dimensional natural frequencies of the longitudinal 
vibration for the clamped-free and hinged-free beams are equal, and those of the other beams are 
also the same. This phenomenon occurs since both clamped-free and hinged-free beams with 
immovable ends are the same when restricted from executing longitudinal motion at the ends. 
Similarly, the rest of beams with immovable ends have the same longitudinal end conditions. 

Table 3. The first two non-dimensional modes of longitudinal free vibration of  
[60/–60/–60/60] laminated beams with aspect ratio 10 

Beam ends Mode No. Beam type 
CF HH CC HC HF FF 

Immovable 1 5.6426 11.2852 11.2852 11.2852 5.6426 11.2852 
2 16.9279 22.5705 22.5705 22.5705 16.9279 22.5705 

Movable 1 11.2852 11.2852 11.2852 11.2852 11.2852 11.2852 
2 22.5705 22.5705 22.5705 22.5705 22.5705 22.5705 
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3.3. Verification  

The natural frequencies results which obtained by this study are closer with Abramovich [12] 
results, as show in Table 4, and difference between two results less than 0.6 % for cantilever and 
clamp-clamp beams. 

A third-order shear deformation theory was used by Kant et al. [13] in the analysis of the free 
vibration of composite and sandwich simply supported beams. Two comparisons of 
non-dimensional natural frequencies between the present method (using FSDT) and the results of 
this reference are presented in Table 5, which presented a comparison for symmetric [0/90/90/0] 
cross-ply laminated beams respectively, with aspect ratio of (𝐿/ℎ = 5), where the shear effect is 
significant. The comparison shows a difference of less than 3.3 % associated with the fundamental 
frequency and less than 4.5 % for higher modes. These differences are due to the employment of 
different shear theories as stated bellow.  

Table 4. Non-dimensional frequencies of [0/90/90/0] composite beams with  
immovable ends and aspect ratio 10 

Mode No. Cantilever  Clamp- clamp 
Present Ref. [11] Present Ref. [11] 

1 0.8866 0.8819 3.6855 3.7576 
2 4.1062 4.0259 7.7244 7.8718 
3 8.9536 9.1085 12.381 12.573 
4 11.504 12.193 17.192 17.373 
5 13.924 14.080 22.119 22.200 
6 18.980 18.980 23.007* 23.007 

Table 5. Non-dimensional frequencies of [0/90/90/0] composite beams with  
simple support ends and aspect ratio 5 

Mode No.  Present  Ref. [13] 
1 1.7619 1.820 
2 4.2749 4.528 
3 6.7214 7.201 
4 9.1414 9.814 
5 11.5783* – 

(*) Mode with predominance of longitudinal vibration 

It is clear, from the above comparisons, that the differences are very small even for higher 
modes. This confirms the accuracy of the method of analysis and the computer program. 

4. Conclusions 

In this paper, free vibration of four layered composite beams has been studied. Both secondary 
effects of transverse shear deformation and rotary inertia were included in the analysis. A 
first-order shear deformation theory was applied in the analysis. A finite element model has been 
formulated to predict the non-dimensional natural frequencies and to study the influence of aspect 
ratio and movable ends of fibers on the natural frequencies. Different end conditions were studied 
which are clamped-free, hinged-hinged, clamped-clamped, hinged-clamped, hinged-free, and 
free-free beams with immovable and movable ends. The main conclusion is the natural frequencies 
of a laminated beam generally increase with the aspect ratio and all beams with movable ends 
have equal longitudinal frequencies of vibration, while those of beams with immovable ends are 
different. Namely, clamped-free and hinged-free beams with immovable ends have equal 
longitudinal frequencies, and the other beams have also equal longitudinal frequencies. 
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