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Abstract. An efficient method, namely fixed interface mode synthesis-interval factor method 
(FIMS-IFM), is proposed to calculate the natural frequency of structure considering elastic joint 
with interval uncertainty. In this proposed method, the interval uncertain elastic joint is treated as 
spatial beam element with interval uncertain material parameters. Additionally, both the proposed 
method and Monte-Carlo simulation method are used to calculate the natural frequency of a 
specially designed structure with interval uncertain elastic joint. A meaningful conclusion can be 
acquired via comparing the calculation results of the two methods that, FIMS-IFM is correct and 
high-efficiency. 
Keywords: interval uncertainty, elastic joint, natural frequency, fixed interface mode synthesis 
method, interval factor method. 

1. Introduction 

In pace with the rapid development of science and technology, the engineering structure is 
increasingly complex, and there are more and more elastic joints existing in these complex 
structure [1]. In general, both the material and dimension parameters of the elastic joint hold 
interval uncertainty [2, 3]. As a consequence, for obtaining more accurate vibration properties of 
the increasingly complex structure, the interval uncertainty of the elastic joint should be taken into 
consideration. 

Fixed interface mode synthesis method (FIMSM), initially proposed by Hurty [4], is an 
efficient way to analyze the dynamic properties of large-scale complex structure. In reference [5], 
via using generalized spring to simulate the elastic joint, the dynamic properties of structure 
considering elastic joint is preliminarily investigated according to FIMSM. Interval factor method 
(IFM) is a nonprobabilistic mean to solve the uncertain problems with high efficiency, which has 
been used to calculate both the natural frequency and modal shape of structure considering interval 
uncertainty [2, 6-7]. 

In this project, via equating the interval uncertain elastic joint into spatial beam element with 
interval uncertain material parameters (both Young’s Modulus ܧ  and Poisson’s Ratio ߤ ), a 
high-efficiency method to calculate the natural frequency of structure considering elastic joint 
with interval uncertainty on the basis of both FIMSM and IFM is developed, which is named as 
FIMS-IFM and verified through simulation. All the conclusions drawn from this work are of great 
significance to analyze engineering problems. 

2. Natural frequency of structure considering uncertain elastic joint 

Assume that a complex structure-ܣ is composed of two parts (namely ܲ and ܳ respectively), 
and the two parts are connected via elastic joint with uncertainty (namely ~ݍ, ݅ =	1, 2,…, ݊). 
Thus, structure-ܣ considering elastic joint can be illustrated as Fig. 1. 

In general, when we use FIMSM to calculate the natural frequency of structure-ܣ, it can be 
divided into two substructures, namely substructure-ܲ  and substructure-ܳ , according to the 
substructure division principle of mode synthesis method. The interface node sets of substructure-
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ܲ and substructure-ܳ are as follows: 

௩ܲ = ሼ|݅ = 1,2,⋯ , ݊ሽ,					ܳ௩ = ሼݍ|݅ = 1,2,⋯ , ݊ሽ,	 (1)

where ௩ܲ and ܳ௩ are the interface node sets of substructure-ܲ and substructure-ܳ, respectively. 

 
Fig. 1. A schematic diagram of structure-ܣ 

 
Fig. 2. A schematic diagram of substructures 

Due to the existence of the elastic joint between substructure-ܲ  and substructure-ܳ , the 
displacement of node  is not equal to it of node ݍ. In such situation, therefore, the analysis 
results, obtained according to FIMSM, are imprecise. Nevertheless, this problem can be solved 
via dividing the elastic joint as an independent substructure, namely substructure-ܥ. As a result, 
for obtaining more precise analysis results, we divide structure- ܣ  into three independent 
substructures as shown in Fig. 2. 

After the substructure division is completed, based on the working principle of FIMSM, it is 
easy to obtain the mass matrix, stiffness matrix and mode set of substructure-ߣ) ߣ = ܲ, ܳ) as ۻఒ, ۹ఒ and ఒ, respectively. In addition, the mode set ఒ is composed of both the reserved normal 
mode set ఒ  and constrained mode set ఒ  of substructure-[5 ,4] ߣ. As to the elastic joint, its 
stiffness can be equaled via the stiffness matrix of spatial beam element since substructure-ܥ owns 
only interface nodes [8]. Meanwhile, the stiffness uncertainty of the elastic joint can be simulated 
by the uncertainty of the material parameters (both Young’s Modulus ܧ and Poisson’s Ratio ߤ) of 
spatial beam element. The stiffness matrix of spatial beam element ۹ is given by: ۹ = ۹ଵܧ + 1ܧ + 	,۹ଶߤ (2)

where both ۹ଵ and ۹ଶ are deterministic matrices. As a consequence, the stiffness matrix of 
substructure-۹ ܥ can be written as: ۹ = ۵ሾdiagሺ۹,⋯ , ۹ሻሿ۵் = ۹ଵܧ + 1ܧ + 	,۹ଶߤ (3)

where ۵ is a deterministic transformation matrix, both ۹ଵ and ۹ଶ are deterministic matrices as 
well. Regarding to the mass of the elastic joint, it can be ignored because of the little effect on the 
dynamic properties of structure. As a result, the mass matrix of substructure-ۻ ܥ equals  [8]. 
At the same time, we can obtain the mode set of substructure-ܥ ఒ is an identity matrix [5]. 

From what has been discussed above, the mass matrix ۻ, stiffness matrix ۹, mode set  and 
displacement vector ܆ of structure-ܣ can be obtained as: 

ۻ = ۻ   ۻ   ொ൩ۻ = ۻ      ொ൩ۻ ܭ					, = ۹   ۹   ۹ொ൩ ,				߶ =       ொ,	܆ = ቂሺ܆௨ሻ் ሺ܆௩ሻ் ሺ܆௩ሻ் ௩ொ൧்܆ൣ ൫܆௨ொ൯் ൫܆௩ொ൯்ቃ்,	 (4)
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where ܆௨ఒ  and ܆௩ఒ  denote the displacement vector of the internal nodes and interface nodes of 
substructure- ߣ  respectively, ܆௩ఒ  yields the displacement vector of the interface nodes of 
substructure-ܥ corresponding to substructure-ߣ. Thus, the modal coordinate ܇ corresponding to 
the mode set  can be given by: ܆ = ,܇					܇ = ቂሺ܇ሻ் ሺ܇ሻ் ሺ܇ሻ் ൫܇ொ൯் ൫܇ொ൯் ൫܇ொ൯்ቃ்,	 (5)

where ܇ఒ and ܇ఒ are the modal coordinates corresponding to the reserved normal mode set ఒ  

and constrained mode set ఒ of substructure-ߣ respectively, ܇ఒ is the constrained mode set of 
substructure-ܥ  corresponding to substructure-ߣ . The displacement coordination condition of 
interface connecting is given by: ܆௩ = ௩ொ܆					,௩܆ۺ = 	,௩ொ܆ொۺ (6)

where both ۺ and ۺொ are coordinate rotation transformation matrices. A meaningful result can 
be achieved from Eqs. (4-6) that: ܇ = ொ܇					,܇ۺ = 	.ொ܇ொۺ (7)

From Eq. (7) we can obtain that, the element of modal coordinate ܇ is not independent of each 
other, thus, to transform the modal coordinate ܇ into an independent modal coordinate set is 
necessary in FIMSM. The modal coordinate transformation relationship is given by: 

܇ = ܈܁ =
ێێۏ
ۍێێ
۷    ۷   ۺ     ொۺ  ۷    ۷ ۑۑے

ېۑۑ ێێێۏ
ۑۑےொ܇ொ܇܇܇ۍ

ېۑ ܁				, =
ێێۏ
ۍێێ
۷    ۷   ۺ     ொۺ  ۷    ۷ ۑۑے

ېۑۑ ܈					, = ێێێۏ
ۑۑےொ܇ொ܇܇܇ۍ

	,ېۑ (8)

where ܁ is the modal coordinate transformation matrix and ܈ is the independent modal coordinate. 
As a result, the modal mass matrix ۻ and modal stiffness matrix ۹ corresponding to ܈ can be 
obtained as: ۻ = ۹				,܁ۻ்்܁ = 	.܁்۹்܁ (9)

As a consequence, the vibration equation of structure-ܣ, obtained on the basis of FIMSM, can 
be present as: ۻ܈ሷ + ۹܈ = .	 (10)

The mode set  of the vibration equation shown in Eq. (10) is given by: ሺ۹ − ߱ଶۻሻ = ,				 = ሾ ⋯  ⋯ሿ,	 (11)

where  is the ݅th order mode. Then according to Rayleigh Quotient we can achieve the ݅th order 
angular frequency ߱ of structure-ܣ as: 
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߱ଶ = ் ۹ࢶ் ۻ = ் ்܁்۹்܁ ܁ۻ்்܁ = ் ்܁்۹ଵ்܁ ܁ۻ்்܁ ்ܧ+							 ்܁்۹ଶ்܁ ܁ۻ்்܁ + 1ܧ + ்ߤ ்܁்۹ଷ்܁ ܁ۻ்்܁ ,	 (12)

where ۹ଵ, ۹ଶ and ۹ଷ are all deterministic matrices, the expressions of whom are as follows: 

۹ଵ = ۹      ۹ொ൩,						۹ଶ =    ۹ଵ   ൩,					۹ଷ =    ۹ଶ   ൩.	 (13)

3. Interval natural frequency of structure considering interval uncertain elastic joint 

As mentioned above, we use the interval uncertainty of both Young’s Modulus ܧ  and 
Poisson’s Ratio ߤ of the spatial beam element to simulate the interval uncertainty of the stiffness 
of elastic joint, thus, in Eq. (12), both ܧ  and ߤ are interval parameters. Meanwhile, assuming  ݁ = 1 +  then ݁ is an interval parameter as well. Based on IFM [7], an interval parameters can ,ߤ
be redefined as the product form of its interval center value and interval factor. As a result, the 
three interval parameters ߤ ,ܧ and ݁ can be rewritten as: ܧ = ߤ				,ூܧܧ = ݁				,ூߤߤ = ݁݁ூ,	 (14)

where ሺ	ሻ and ሺ	ሻூ denote the interval center value and interval factor of the interval parameter ሺ	ሻ respectively, the calculation formulas of whom can be found in reference [7]. Additionally, in 
the right side of Eq. (12),  holds interval uncertainty as well, thus, we can obtain that:  = ூ.	 (15)

Then by substituting Eq. (14-15) into Eq. (12) we can achieve that: 

߱ଶ = ߱ଵଶ + ூ߱ଶଶܧ + ூ݁ூܧ ߱ଷଶ ,	 (16)

where ߱ଵଶ , ߱ଶଶ  and ߱ଷଶ  are all deterministic values, the expressions of whom are as follows: 

߱ଵଶ = ሺ܁ሻ்۹ଵ܁ሺ܁ሻ்ۻ܁ ,					߱ଶଶ = ܧ ሺ܁ሻ்۹ଶ܁ሺ܁ሻ்ۻ܁ ,						߱ଷଶ = ݁ܧ ሺ܁ሻ்۹ଷ܁ሺ܁ሻ்ۻ܁ .	 (17)

Based on interval analysis method, therefore, we can obtain the interval lower limit ݂ and 
upper limit ݂௨ of the ݅th order natural frequency ݂ of structure-ܣ as follows: 

݂ = ඥ߱ଵଶ + minሺߦሻ2ߨ ,					 ݂௨ = ඥ߱ଵଶ + maxሺߦሻ2ߨ ߦ	, = ൜ሺ1 + ሻ߱ଶଶܧߜ + 1 + 1ܧߜ + ݁ߜ ߱ଷଶ , ሺ1 + ሻ߱ଶଶܧߜ + 1 + 1ܧߜ − ݁ߜ ߱ଷଶ , ሺ1 − +ሻ߱ଶଶܧߜ 1 − 1ܧߜ + ݁ߜ ߱ଷଶ , ሺ1 − ሻ߱ଶଶܧߜ + 1 − 1ܧߜ − ݁ߜ ߱ଷଶ ൠ,	 (18)

where ߜሺ	ሻ yields the relative uncertainty the interval parameter ሺ	ሻ [7]. 
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4. Simulation 

A special structure with interval uncertain elastic joint, as illustrated in Fig. 3, is designed to 
verify the proposed FIMS-IFM via using both FIMS-IFM and Monte-Carlo simulation method to 
calculate the natural frequency of the designed structure. 

 
Fig. 3. A schematic diagram of the designed structure 

In Fig. 3, ܲ and ܳ are the exactly same two rectangular cross-section beams (0.02×0.04 m2 in 
cross-section area and 0.5 m in length); ܥ is the elastic joint with interval uncertainty which is 
simulated by two same circular cross-section short beams (0.005 m in cross-section diameter and 
0.05 m in length) with interval uncertain Young’s Modulus ܧ and Poisson’s Ratio ߤ. Spatial beam 
element is used to mesh ܲ, ܳ, ܥ and the whole designed structure. The element properties of the 
deterministic structures ܲ and ܳ and the interval uncertain structure ܥ are listed in Table 1 and 
Table 2, respectively. 

Table 1. Element properties of the deterministic structures ܲ and ܳ ܧ / Pa ߤ Density / (kg/m3) Length / m Number 
7×1010 0.3 2700 0.05 10 

Table 2. Element properties of the interval uncertain structure ܧ ܥ / Pa ߤߜ ߤ ܧߜ Density / (kg/m3) Length / m Number 
2.1×1011 0.1 0.3 0.1 0 0.05 2 

By using FIMS-IFM to calculate the natural frequency, the designed structure is divided into 
three substructures (namely substructure-ܲ, substructure-ܳ and substructure-ܥ), and the former 
20 order normal modes of both substructure-ܲ and substructure-ܳ are taken as the reserved normal 
mode set of corresponding substructure.  

As to using Monte-Carlo simulation method, firstly, assuming that the interval parameters ܧ 
and ߤ  are all uniform distributions; secondly, randomly generating 20000 samples within the 
distribution interval of the two assumed uniform distributions; thirdly, substituting the 20000 
samples into the finite element model of the whole designed structure respectively and then 
calculating the natural frequency 20000 times; lastly, choosing the interval lower limit and upper 
limit of the interval natural frequency of the designed structure within the 20000 calculation results. 
Meanwhile, the two assumed uniform distributions are as follows: ܧ~ܷሺܧ − ,ܧܧߜ ܧ + ߤሺܷ~ߤ					,ሻܧܧߜ − ,ߤߤߜ ߤ + 	.ሻߤߤߜ (19)

The calculation results of the former 5 order natural frequencies corresponding to both 
FIMS-IFM and Monte-Carlo simulation method are demonstrated in Table 3. 

Table 3. Calculation results of the former 5 order natural frequencies 
Order ܨ / Hz ܯ / Hz ߝ / % ܨ௨ / Hz ܯ௨ / Hz ߝ௨ / % 

1 15.181 15.170 0.074 16.529 16.513 0.094 
2 17.926 17.925 0.005 17.942 17.941 0.004 
3 88.163 88.075 0.099 91.583 91.505 0.085 
4 108.118 108.092 0.024 108.604 108.583 0.020 
5 154.790 154.682 0.070 168.984 168.883 0.060 
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In Table 3, ܨ ܯ)  ) and ܨ௨ ௨ܯ)  ) denote the interval lower limit and upper limit of the 
calculation results corresponding to FIMS-IFM (Monte-Carlo simulation method), respectively; ߝ and ߝ௨ yield the relative calculation errors of the interval lower limit and upper limit regarding 
to FIMS-IFM respectively, whose calculation formulas are as follows: 

ߝ = ܨ − ܯܯ × ௨ߝ					,%	100 = ௨ܨ ௨ܯ௨ܯ− × 100	%.	 (20)

As a result, by observing Table 3 we can obtain that, as to the former 5 order natural 
frequencies of the designed structure considering elastic joint with interval uncertainty, the relative 
calculation errors of the interval lower limit and upper limit regarding to the proposed highly 
efficient method are within 0.099 % and 0.094 % respectively, which can be strongly proved the 
validity of FIMS-IFM. 

5. Conclusions 

Via using the spatial beam element with interval uncertain material parameters to simulate the 
elastic joint with interval uncertainty in complex structure, FIMS-IFM, according to both FIMSM 
and IFM, is proposed to calculate the natural frequency of the complex structure considering 
elastic joint with interval uncertainty. The simulation results illustrate that, FIMS-IFM is highly 
efficient and correct. 
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