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Abstract. Fault diagnosis for bearings is a focus and difficulty in diagnosis research area, so an 
intelligent diagnosis method using intrinsic time-scale decomposition(ITD) and extreme learning 
machine (ELM) is proposed in this paper. ITD is a relatively practical non-stationary signal 
decomposition method, which can decompose non-stationary signal into several components. 
Then, coefficient of kurtosis was extracted, which was acquired to reduce feature dimensions. 
Last, in order to reduce man-made interference and increase diagnostic accuracy, ELM was 
applied to identify and classify bearing states. The experimental result shown that above methods 
work well in classification and diagnosis for bearings state timely. 
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1. Introduction 

Bearings, which play a key role in rotating machinery, are used to support the system to operate 
reliably. Bearing accidents lead to trouble of operating machine suddenly, resulting in huge 
economic consequences [1, 2]. Nevertheless, fault-diagnosis methods make little influence 
because of the tough and uncontrollable environment [3]. In spite that many fault diagnosis 
methods have been proposed, few can achieve effective rapid diagnosis, which makes it vital to 
explore an effective method. 

In this paper, intrinsic time-scale decomposition (ITD) method is proposed to realize the 
multi-scale decomposition of time series signal. For the purpose of obtaining the faulty 
information efficiently, the decomposed signals are re-processed by extracting its coefficient of 
kurtosis. In addition, extreme learning machine (ELM) is used to identify and classify the state of 
bearings effectively and efficiently. 

2. Methodology 

2.1. ITD algorithm 

ITD is a time-frequency analysis algorithm, which can decompose non-stationary signal into 
intrinsic rotating components and drab trend components [4]. ܺ௧  represents the signal to be 
decomposed, and ߜ represents a baseline extraction factor which should be defined before the first 
decomposition. Then, a baseline component and an inherent rotation component can be extracted 
from the raw signal using ߜ. The first-decomposition expression of ܺ௧ can be described as: ܺ௧ = ߜ ௧ܺ + (1 െ ௧ܺ(	ߜ = ௧ܮ + 	,௧ܪ (1)

where ܮ௧ = ௧ܪ ௧ represents the baseline component andܺߜ = (1 െ  ௧ represents the inherentܺ(	ߜ
rotation component. 

ITD method has following advantages:  
1) As a kind of local wave decomposition method, the time-frequency resolution is not affected 

by the time-frequency uncertainty, which means higher temporal resolution and frequency 
resolution. 
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2) Compared to the EMD method, ITD needs uncomplicated screening and spline interpolation 
process, which leads to lower computer processing time. 

2.2. ELM algorithm 

ELM is a new type of single-hidden-layer feedforward networks (SLFNs) proposed by Huang 
et al. in 2006 based on the generalized inverse matrix theory. Compared to the traditional neural 
network, ELM improves the network generalization ability and the learning speed [5, 6]. More 
specific theories of this method are given in Refs [7-10]. 

The network structure of ELM is the same as the BP network with single hidden layer, which 
shows in Fig. 1. About the input layer, ݔ௜  represents the ݅ th input value and  ݓ௜ = ,ଵ௜ݓ] ,ଶ௜ݓ … ,  ௡௜] represents the vector of input weight which connects the input layer andݓ
the hidden layer. About the hidden layer, ܮ represents the total number of hidden neurons, ݃(ݔ) 
represents the activation function and ܾ௜ represents the offset of the ݅th hidden neuron. About the 
output layer, ߚ௜ = ,௜ଵߚ] ,௜ଶߚ … ,  ௜௠] represents the vector of output weight which connects theߚ
hidden layer and the output layer and ݕ௝ represents the ݆th output value. The expression of this 
algorithm can be described as: 

௝ݕ =෍ߚ௜ ௜݃௅
௜ୀଵ (௝ݔ) =෍ߚ௜ ௜݃௅

௜ୀଵ (߱௜ݔ௝ + ܾ௜).	 (2)

                   ...
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X1 X2 Xn

y1 y2 ym

g(X)    b1 g(X)    b2 g(X)    bL

w1l wnL

β1l βLm

Input 
neurons

Hidden 
neurons

Output 
neurons

 
Fig. 1. The network structure of ELM  

2.3. Flow of the proposed method 

There are three major steps of the methodology.  
Step 1: signal decomposition. ITD decomposes raw signal into finite number of intrinsic 

rotating component and drab trend component.  
Step 2: feature extraction. Coefficients of kurtosis are extracted form decomposed components 

and the useless coefficients of kurtosis are eliminated. 
Step 3: state classification. With the use of coefficient of kurtosis, the state of bearings can be 

determined by ELM. 

3. Experimental verification 

3.1. Experiment setup 

In this study, the test rig mainly includes one 2000 RPM AC motor, one pulley, one radial load 
and four bearings. All failures occurred after exceeding designed life time of the bearing which is 
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more than 100 million revolutions. The vibration signals, which includes the normal, inner race 
fault, outer race fault, were collected by accelerometers installed on bearings with sampling 
frequency of 20 kHz. There are two sets of data, which include a set of training data and a set of 
test data. Each set of data include 3 types of bearing state and each state includes 30 sets of data. 

3.2. Feature extraction 

3.2.1. ITD-based signal decomposition 

Firstly, ITD was used to decompose non-stationary signal into intrinsic rotating components 
and drab trend components, which shows in Figs. 2. This step makes it easy to get the fault feature. 

 
Fig. 2. ITD decomposition of vibration 

3.2.2. Fault feature extraction based on coefficient of kurtosis 

The signal obtained by above method, which are a series of decomposing signals, cannot be 
used to classify directly. To solve this problem, the feature extraction method based on coefficient 
of kurtosis is required in this study. Coefficient of kurtosis is a dimensionless parameter, which 
means it has nothing to do with the bearing speed, size and load plus it is sensitive to the vibration 
signal. Thus, coefficient of kurtosis is applied to reduce feature dimension. 

The fault feature values obtained by ITD and coefficient of kurtosis are partly shown in Table 1. 
The feature information is composed by seven feature values after the removing of useless feature 
value.  
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3.3. ELM-based state classification  

Based on the fault feature extraction methods mentioned, state classification for bearings can 
be proceeded using ELM. The show results in Fig. 3 which obtained by ELM are good-effective. 
The left figure as fellow is the classification results of training data while the right figure is the 
classification result of test data, with both reach the accuracy of 95 % or more. 

Table 1. Processing result based on ITD and coefficient of kurtosis 

State Fault feature values 
1 2 3 4 5 6 7 

Normal 

5.2489 2.4123 3.6672 3.9192 3.7598 3.8047 2.4836 
5.4325 2.4121 3.7764 4.7186 3.6769 3.2378 3.4722 
5.3731 2.3534 3.7510 4.5026 4.3663 3.0383 2.5094 
5.3035 2.4303 3.6627 3.6806 3.4660 3.1984 3.5150 
5.6215 2.3982 3.6608 4.2447 4.3051 3.6260 3.0087 

Inner race fault 

2.7792 3.5932 3.1817 3.3381 3.5932 2.8444 4.2310 
2.9310 3.4284 3.2967 3.5655 3.9568 3.1091 2.2796 
2.9118 3.5717 3.2863 3.4483 3.3746 2.8262 2.3381 
2.8465 3.5669 3.1945 3.1932 3.4527 3.1717 2.5534 
2.7734 3.4385 3.2889 3.3134 2.9707 3.1238 2.2935 

Outer element fault 

3.6021 2.9423 3.3990 4.3574 4.1333 4.0896 2.8101 
3.6715 3.1132 3.4834 4.6444 3.0684 3.6411 2.5670 
3.8466 2.9663 3.5001 3.3135 3.4636 4.0476 3.4538 
4.8541 3.0087 3.7781 3.8116 3.9932 3.6156 2.6074 
3.6585 2.8554 3.5767 3.5362 3.7804 3.2679 2.3083 

 
Fig. 3. ELM classification effect comparison 

4. Conclusions 

In this paper, a method for fault diagnosis to bearings using ITD, coefficient of kurtosis and 
ELM is proposed. The experimental results show that ITD and coefficient of kurtosis work well 
in signal decomposition and feature extraction while ELM works well in state classification. Thus, 
the mentioned fault diagnosis method of bearings is reliable and effective. 
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