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Abstract. This paper presents an analytical approach to investigate the free vibration analysis of 
cracked non-uniform beam carrying spring-mass systems by finite element method and illustrates 
a valid and reliable damage identification method which using hybrid neural genetic technique. 
Firstly, based on the finite element method, the dynamic characteristics of non-uniform cracked 
beam carrying spring-mass systems are obtained. Then, the first five frequencies are used as input 
parameters by combining genetic algorithm with neural network to identify the damage. Finally, 
Numerical simulations of direct and inverse problems of non-uniform cracked beams carrying a 
spring-mass system are carried out. 
Keywords: crack, non-uniform beam, dynamic characteristic, finite element method. 

1. Introduction 

Crack is one of the most common structural damage, and the existence of cracks will greatly 
affect the performance and the residual life of structures. The structure is often subjected to 
dynamic loads during the process of using. Therefore, the dynamic characteristics of cracked 
structures have attracted many particular attentions. On the other hand, the presence of cracks can 
lead to the changes of structural physical parameters, which causes the changes in its dynamic 
characteristics. So, it means that the damage identification based on the dynamic characteristics 
has great potential [1]. And the non-uniform beam carrying spring-mass systems is widely used 
in civil engineering, mechanical engineering and other fields. Therefore, it is of great significance 
to study direct and inverse problems on free vibration analysis of cracked non-uniform beams 
carrying spring-mass systems. 

The research on the dynamic behavior of cracked beams has received a great deal of attention. 
And the various kinds of analytical, semi-analytical and numerical methods have been employed 
to solve the vibration analysis of cracked beam structures. The beam can be divided into several 
sub-beams by cracks simulated by massless rotational springs and then the general solution for 
eigenfunctions of every sub-beam contains four unknown constants, which leads to a system of 
4(݊ + 1) equations in the case of ݊ cracks [2]. Based on the transfer matrix method (TMM), Tan 
et al. [3] studied the natural frequencies and mode shapes of cracked Timoshenko beams carrying 
spring-mass systems. By using modified Fourier series (MFS), Zheng and Fan [4] obtained the 
natural frequencies of a non-uniform beam with an arbitrary number of transverse open cracks. 
The finite element method (FEM) is widely used for free vibration analysis of damaged beams [5] 
and the key problem in using FEM is how to appropriately obtain the stiffness matrix for the 
cracked beam element.  

Structural damage identification has played an important role for ensuring safety, 
implementing rescues and avoiding emergency action. In the studies of the inverse problem, the 
genetic algorithms, artificial neural network, fractal dimension-based method and so on have been 
adopted to identify cracks in the structures. By using the genetic algorithms, Mehrjoo et al. [6] 
proposed a crack detection methodology for detecting cracks in beam-like structures. An artificial 
neural network based approach is presented by Jeyasehar and Sumangala [7] for the assessment 
of damage in prestressed concrete beams. This paper presents an analytical approach to study the 
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free vibration of cracked non-uniform beam carrying spring-mass systems by finite element 
method and illustrates a damage identification method which based on hybrid neural genetic 
algorithm.  

2. Theoretical background 

2.1. Fundamental theory of free vibration analysis of the non-uniform cracked beam  

The free vibration equation of the non-uniform intact beam using the finite element method is 
expressed by: ሾܯሿሼݑሷ ሽ + ሾܭሿሼݑሽ = 0, (1)

where, ሾܯሿ  and ሾܭሿ  are the mass matrix and stiffness matrix of the non-uniform beam, 
respectively. ሼݑሷ ሽ  and ሼݑሽ  are the acceleration and displacement vectors of the degrees of 
freedom of each node. 

Let ሾܨሿ be the flexibility matrix of the non-uniform intact beam. According to the basic 
concepts of structural analysis, we know that: ሾܭሿ = ሾܨሿିଵ. (2)

Dimarogonas et al. [8] presented an attractive method for modeling open edge crack in a beam 
as a local flexibility which can be derived from the stress intensity factors based on the theory of 
fracture mechanics. Zheng and Kessissoglou [5] presented that the flexibility of the cracked beam 
can be obtained by putting the flexibility of the intact beam and the local flexibility due to crack 
together. Then the flexibility of cracked beam can be expressed as: ሾܨሿ = ሾܨሿ + ሾܨሿ, (3)

where, ሾܨሿ is the flexibility matrix of the cracked beam; ሾܨሿ is the local flexibility matrix caused 
by the crack. 

The stiffness matrix of the cracked beam is expressed by ሾܭሿ. According to the relation 
between the structural flexibility matrix and stiffness matrix expressed in Eq. (2), one obtains ሾܭሿ = ሾܨሿିଵ. The existence of the crack does not lead to the change of the structural mass 
matrix, then the free vibration equation of the cracked beam can be written as: ሾܯሿሼݑሷ ሽ + ሾܭሿሼݑሽ = 0. (4)

Assume that the degrees of freedom of each node do harmonic vibration near the equilibrium 
position, it has: ሼݑሽ = ሼܷሽ݁ఠ௧, (5)

where, ሼܷሽ  is the vibrational amplitude vector corresponding to ሼݑሽ ; ߱  is the circular 
frequency of the cracked beam, ݆ = √−1. 

Substituting Eq. (5) into Eq. (4), one obtains: −߱ଶሾܯሿሼ ܷሽ + ሾܭሿሼܷሽ = 0. (6)

Eq. (6) can be written as: ሾܯሿିଵሾܭሿሼܷሽ = ߱ଶሼ ܷሽ. (7)
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It can be known from Eq. (7) that the eigenvalues of the matrix ሾܯሿିଵሾܭሿ are the square of 
the natural frequencies of the cracked beam, and the characteristic vectors are the mode shapes of 
the cracked beam. By using the similar procedure, it could also be obtained that the square and 
mode shape of the natural frequency of the intact beam are the eigenvalue and eigenvector of the 
matrix ሾܯሿିଵሾܭሿ. From the above analysis, one sees that the existences of cracks result in the 
changes in the structural stiffness matrix, which leads to the changes of the dynamic  
characteristics. 

Under the action of spring-mass system, the vibration equation of the cracked beam is: ሾܯሿሼݑሷ ሽ + ሾܭሿሼݑሽ = ሼ ܲሽ, (8)

where, ሼ ܲሽ = ሾܪሿሼ ௌܲሽ, ሾܪሿ is the position matrix of the force acting point; ሼ ௌܲሽ is the force of the 
spring-mass system acting on the beam. 

According to the principle of mode superposition, it has: ሼݑሽ = ሾΦሿሼݍሽ, (9)

where, ሾΦሿ = ሾܷଵ ܷଶ  ⋯ ܷ  ⋯ ܷሿ , ሼݍሽ = ൛ݍଵ ݍଶ ݍ ⋯  ሽ்ݍ ⋯  , ܷ  is the ݅ th order mode 
shape of the cracked beam; ݍ  is the modal coordinate corresponding to ܷ . 

Substituting Eq. (9) into Eq. (8) and left multiply ሾΦሿ் can obtain: ሾܯഥሿሼݍሷሽ + ሾܭഥሿሼݍሽ = ሾΦሿ்ሼ ܲሽ, (10)

where, ሾܯഥሿ = ሾΦሿ்ሾܯሿሾΦሿ,  ሾܭഥሿ = ሾΦሿ்ሾܭሿሾΦሿ;  ሼ ܲሽ  includes the acceleration and 
displacement of all degrees of freedom of beam nodes, and those of the spring mass system [9]. 
So, Eq. (10) can be expressed as: ൣܯ൧ሼݍሷ ሽ + ሽݍ൧ሼܭൣ = 0, (11)

where, ൣܯ൧ = ܯഥ 00 ൧ܭൣ ,ഥ௦൨ܯ = ቈܭഥ ௦்ܭ௦ܭ ഥ௦ܭ , ሼݍሽ = ሼݍ ݍ௦ሽ; ሾܯഥ௦ሿ and ሾܭഥ௦ሿ are the mass matrix 

and stiffness matrix of spring-mass system, respectively; ሾܭ௦ሿ is the coupling stiffness of the 
cracked beam and spring-mass system; ݍ௦ is the modal coordinate vector of spring-mass system. 

The analysis of Eq. (11) shows that the dynamic characteristics of cracked beam with 
spring-mass system are the characteristic value and characteristic vector for the matrix ൣܯ൧ିଵൣܭ൧. 
The spring-mass system will not only lead to the variation in stiffness matrix of the vibration 
system, but also cause the changes in mass matrix. Therefore, it can be considered that the 
spring-mass system could result in the change of the dynamic characteristics of the beam or the 
cracked beam. 

2.2. Theoretical basic of inverse problem for free vibration analysis of the cracked beam 

In this paper, a damage identification method for cracked beams is proposed based on hybrid 
neural genetic technique. As a global optimization algorithm, genetic algorithm (GA) is a random 
search algorithm based on natural selection and natural genetic mechanism. By minimizing the 
error between the numerical simulation and the measured frequencies, the fitness of each 
individual in the swarm is estimated to achieve the wide-range search. The BP network is 
optimized by using the characteristic of global optimization of GA in this paper. 

The three layer BP neural network is adopted in this paper. The input parameter is the first 5 
natural frequencies of the cracked beam, and the output parameter is the location and depth of the 
crack. The “trainlm” function is used as the training function of the network and the pure linear 
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transformation function is adopted in the output layer neuron. The Levenberg-Marquardt 
algorithm is chosen as the training algorithm of the network, and the corresponding learning rate 
and training target are set up. When the algorithm is used to identify the damage, firstly GA is 
employed to optimize the weights and thresholds of the network. Then the optimization results 
are adopted as the initial value of the three layer BP neural network. Through the training of 
sample data, the suitable network is established. Finally, using the natural frequencies as the test 
values to obtain the predicted results of crack parameters. The process of the hybrid genetic 
algorithm is shown in Fig. 1. 

 
Fig. 1. The process of the hybrid genetic algorithm 

3. Numerical examples of direct problem 

The non-uniform cracked fixed-free beam shown in Fig. 2 has one spring-mass system. The 
numerical results are obtained based on the beam with the following given data: rectangular cross 
section with uniform width of 0.3 m, the height of the beam varies linearly and the height  ℎ = ℎ = 0.8 m, ℎ = 0.4 m. Young’s modulus ܧ = 3.25×1010 Pa, mass density ߩ = 2500 kg/m3, 
Poisson’s ratio ݒ = 0.3. For the parameters of spring-mass system, the point mass is 1500 kg and 
the spring coefficient is 60000 N/m. Two cases of the cracked beam are investigated by the 
proposed method. 

Case1: only single crack occurs at 4m from the fixed end of the beam carrying one spring mass 
system, the relative depth (ܽଵ ℎ⁄ ) of the crack changes from 0 % to 30 % at intervals of 5 %. 

Case2: the same crack position and relative depth (ܽଵ ℎ⁄ = 30 %) with Case 1 and the second 
crack occurs at 8 m from the fixed end of the beam which also changes from 0 % to 30 % at 
intervals of 5 %. 

The change ratio for natural frequency is defined by Eq. (12) and the calculated results of the 
fixed-free beam are presented in Fig. 3: 

ܥܵܨܴ = ෝ߱ − ߱߱ × 100 %, (12)
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where ෝ߱ is the natural frequency of cracked beam with spring-mass systems, ߱ is the natural 
frequency of intact beam without spring-mass systems. 

BA C

4m 4m 8m

a1 a2

 
Fig. 2. A cracked fixed-free beam with one spring-mass system 

 
a) RFSC of the first order natural frequency 

 
b) RFSC of the second order natural frequency 

Fig. 3. Change ratios for natural frequencies of fixed-free beam 

As can be seen from Fig. 3, when the relative crack depth is 0 %, the first two natural 
frequencies of fixed-free beam increase by the influence of spring-mass system, in which the 
change of the first natural frequency is more significant than that of the second one. This is because 
the spring-mass system is located at different points with respect to the lowest two mode shapes 
and the positive RFSC is attributed to the attached spring-mass system. Then the lowest two 
natural frequencies of fixed-free beam decrease with relative crack depth increasing, which 
indicates that crack has a negative influence on RFSC. 

4. Numerical examples of inverse problem 

The non-uniform cracked fixed-free beam carrying a spring-mass system (shown in Fig. 2) is 
used to simulate the crack diagnosis. There are 6 kinds of crack case, in which there are three cases 
for single crack and double cracks, respectively. The first five natural frequencies are adopted as 
input data in all cases of the crack diagnose. Furthermore, in order to investigate the anti-noise 
ability of the crack identification algorithm in this paper, different levels of noise is added into the 
first five natural frequencies calculated by the present method. The expression of the natural 
frequency ప߱ෞ with noise is written as: 

ప߱ෞ = ߱ሺ1 + ߪߙ × ܴܽ݊݀݊ሻ. (13)ܴܽ݊݀݊  is the randon generator function in MATLAB with a zero mean and a standard 
deviation of ߙ ,ߪ is error lever. The noise level is controlled by the error lever ߙ and the inverse 
problem is solved under three different values of ߙ = 3 %, 6 %, 9 %, respectively. The results of 
crack identification of the double I-section beam are presented in Tables 1-2. 

According to the calculated results in Tables 1-2, crack parameters of cracked non-uniform 
fixed-free beam carrying a spring-mass system can be determined effectively and accurately by 
the presented method in this paper. It is also observed that the reliability of the present method is 
influenced by the level of noise pollution.  
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Table 1. Crack identification of the fixed-free beam with single crack 

Case Error lever ߙ (%) Crack location (m) Crack depth (ܽ ℎ⁄ ) 
Actual Predicted Error (%) Actual Predicted Error (%) 

1 3% 4.00 4.0704 1.76 0.30 0.2942 –1.93 
2 6% 4.00 3.9132 –2.17 0.30 0.3080 2.67 
3 9% 4.00 4.1824 4.56 0.30 0.3104 3.47 

Table 2. Crack identification of the fixed-free beam with double crack 
Case Error lever ߙ (%) Crack location (m) Crack depth (ܽ ℎ⁄ ) 

Actual Predicted Error (%) Actual Predicted Error (%) 

4 3 % 4.00 4.0636 1.59 0.30 0.2945 –1.83 
8.00 8.1168 1.46 0.30 0.3035 1.17 

5 6 % 4.00 3.9016 –2.46 0.30 0.3058 1.93 
8.00 8.2312 2.89 0.30 0.2918 –2.73 

6 9 % 4.00 4.1392 3.48 0.30 0.2893 –3.57 
8.00 7.7160 –3.55 0.30 0.3092 3.07 

5. Conclusions 

This paper presents an analytical approach for determining the dynamic characteristics of 
cracked non-uniform beam carrying spring-mass systems by finite element method and illustrates 
a damage identification method which using hybrid neural genetic algorithm. And the following 
conclusions are acquired: 

1) The effect of spring-mass system on the different order natural frequencies is different. And 
the natural frequencies of the cracked beam decrease with the increase of crack depth.  

2) The crack diagnosis algorithm presented in this paper has strong anti-noise capability, which 
further illustrates the reliability and validity of this algorithm. 
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